Please help me with this math homework question. I really can not figure this out. 0, y > 0, z > 0, have been omitted from the answers.) Donot attempt to solve it!The Flustard is an animal that eats...


Please help me with this math homework question. I really can not figure this out.


Formulate the following word problem as a linear programming problem. (Note that<br>the natural constraints r > 0, y > 0, z > 0, have been omitted from the answers.) Do<br>not attempt to solve it!<br>The Flustard is an animal that eats three foods: squerps, fleebs, and blurds. A squerp<br>costs $8 and provides 26 mg (milligrams) of mertle, 15 mg of perkle, and 29 mg of<br>kerple. A fleeb costs $5 and provides 6 mg of mertle, 21 mg of perkle, and 9 mg of<br>kerple. A blurd costs $3 and provides 21 mg of mertle, 17 mg of perkle, and 25 mg of<br>kerple. The Flustard needs at least 0.7 g (grams) of mertle, 1.3 g of perkle, and 1 g of<br>kerple every day to live. What's the cheapest way to feed your pet Flustard for one<br>day? Use the variables<br>* = # squerps<br>y = # fleebs<br>= # blurds.<br>(Note: 1 g. = 1000 mg.)<br>minimize 8x+ 5y + 3z<br>minimize 700x + 1300y + 1000z<br>subject to the constraints<br>subject to the constraints<br>26x + 6y + 21z > 8<br>15x + 21y + 17z > 5<br>29x + 9y + 25z > 3<br>26x + 6y + 21z < 700<br>15x + 21y + 17z < 1300<br>29x + 9y + 25z < 1000<br>(A)<br>(В)<br>minimize 700x+ 1300y + 1000z<br>subject to the constraints<br>maximize 8x + 5y + 3z<br>subject to the constraints<br>26х + 6у + 212 < 8<br>15x + 21y + 17z < 5<br>29x + 9y + 25z < 3<br>26x + 6y + 21z > 700<br>15x + 21y + 17z 2 1300<br>29x + 9y + 25z > 1000<br>(C)<br>(D)<br>aximize 700x+1300y + 1000z<br>maximize 8æ + 5y + 3z<br>subject to the constraints<br>subject to the constraints<br>26x + 6y + 21z < 8<br>15x + 21y + 17z < 5<br>29x + 9y + 25z < 3<br>26x + 6y + 21z < 700<br>15x + 21y + 17z < 1300<br>29x + 9y + 25z < 1000<br>(E)<br>(F)<br>maximize 700x+ 1300y + 1000z<br>subject to the constraints<br>minimize 8x + 5y + 3z<br>subject to the constraints<br>26x + 6y + 21z > 8<br>15x + 21y + 17z > 5<br>29x + 9y + 25z > 3<br>26x + 6y + 21z > 700<br>15x + 21y + 17z 2 1300<br>29x + 9y + 25z > 1000<br>(G)<br>(H)<br>

Extracted text: Formulate the following word problem as a linear programming problem. (Note that the natural constraints r > 0, y > 0, z > 0, have been omitted from the answers.) Do not attempt to solve it! The Flustard is an animal that eats three foods: squerps, fleebs, and blurds. A squerp costs $8 and provides 26 mg (milligrams) of mertle, 15 mg of perkle, and 29 mg of kerple. A fleeb costs $5 and provides 6 mg of mertle, 21 mg of perkle, and 9 mg of kerple. A blurd costs $3 and provides 21 mg of mertle, 17 mg of perkle, and 25 mg of kerple. The Flustard needs at least 0.7 g (grams) of mertle, 1.3 g of perkle, and 1 g of kerple every day to live. What's the cheapest way to feed your pet Flustard for one day? Use the variables * = # squerps y = # fleebs = # blurds. (Note: 1 g. = 1000 mg.) minimize 8x+ 5y + 3z minimize 700x + 1300y + 1000z subject to the constraints subject to the constraints 26x + 6y + 21z > 8 15x + 21y + 17z > 5 29x + 9y + 25z > 3 26x + 6y + 21z < 700="" 15x="" +="" 21y="" +="" 17z="">< 1300="" 29x="" +="" 9y="" +="" 25z="">< 1000="" (a)="" (в)="" minimize="" 700x+="" 1300y="" +="" 1000z="" subject="" to="" the="" constraints="" maximize="" 8x="" +="" 5y="" +="" 3z="" subject="" to="" the="" constraints="" 26х="" +="" 6у="" +="" 212="">< 8="" 15x="" +="" 21y="" +="" 17z="">< 5="" 29x="" +="" 9y="" +="" 25z="">< 3="" 26x="" +="" 6y="" +="" 21z=""> 700 15x + 21y + 17z 2 1300 29x + 9y + 25z > 1000 (C) (D) aximize 700x+1300y + 1000z maximize 8æ + 5y + 3z subject to the constraints subject to the constraints 26x + 6y + 21z < 8="" 15x="" +="" 21y="" +="" 17z="">< 5="" 29x="" +="" 9y="" +="" 25z="">< 3="" 26x="" +="" 6y="" +="" 21z="">< 700="" 15x="" +="" 21y="" +="" 17z="">< 1300="" 29x="" +="" 9y="" +="" 25z="">< 1000="" (e)="" (f)="" maximize="" 700x+="" 1300y="" +="" 1000z="" subject="" to="" the="" constraints="" minimize="" 8x="" +="" 5y="" +="" 3z="" subject="" to="" the="" constraints="" 26x="" +="" 6y="" +="" 21z=""> 8 15x + 21y + 17z > 5 29x + 9y + 25z > 3 26x + 6y + 21z > 700 15x + 21y + 17z 2 1300 29x + 9y + 25z > 1000 (G) (H)
Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here