SOCY2339 Assignment 2 Making Inferences About Immigration Attitudes Date Due: October 19th 2018 at 2pm Please submit your assignment with an assignment cover sheet (information on the current version...

1 answer below »

View more »
Answered Same DayOct 20, 2020SOCY2339

Answer To: SOCY2339 Assignment 2 Making Inferences About Immigration Attitudes Date Due: October 19th 2018 at...

Pooja answered on Oct 25 2020
154 Votes
1)
A)
(i)    
P(Z<1.75) = NORMSDIST(1.75) = 0.9599    
(ii)
(Z>-0.89) = 1- P(Z<-0.89) = 1 - NORMSDIST(-0.89) = 0.813267
(iii)
P(-0.89 < Z < 1.75) = P(Z<1.75) - P(Z<-0.89) = NORMSDIST(1.75) - NORMSDIST(-0.89) = 0.773208
B)
(i)
P(Zz=    NORMSINV(0.26)
z=    -0
.643345405
(ii)
P(Zz=    NORMSINV(0.18)
z=    -0.915365088
C)
(i)
P( X>30)    
= 1 - P(X<30)    
    
I know that, z = (X-mean)/(sd)    
z1 = (30-28)/8)    
z1=    0.2500
    
Hence,    
P( X>30)    
=1- P(Z<0.25)    
1 - NORMSDIST(0.25)    
0.401294    
(ii)
P(9 < X < 29)    
= P(X<29) - P(X<9)    
    
I know that, z = (X-mean)/(sd)    
z1 = (9-28)/8)    
z1=    -2.3750
z2 = (29-28)/8)    
z2=    0.1250
    
Hence,    
P(9 < X < 29)=    
= P(Z<0.125) - P(Z<-2.375)    
= NORMSDIST(0.125) - NORMSDIST(-2.375)    
0.540964    
(iii)
P(Zz=    NORMSINV(0.2)
z=    -0.841621234
I know that, z = (X-mean)/sd    
(X-mean)/sd =    -0.8416
X=     -0.8416*8+28
X=     21.27
D)
(i)
For large sample size, the sampling distribution of sample mean is normally distributed as per central limit theorem.
E(Xbar) = E(X)=    3.2
SD(xbar) = SD(X)/sqrt(n)= 1.3/SQRT(226) = 0.086474714
(ii)
P( X>4)    
= 1 - P(X<4)    
    
I know that, z = (X-mean)/(sd)    
z1 = (4-3.2)/0.086474714)    
z1=    9.2513
    
Hence,    
P( X>4)    
=1- P(Z<9.2513)    
1 - NORMSDIST(9.2513)    
0.000000
2)
A)
(i)
CI = mean +- z(a/2,n-1)*(sd/sqrt(n))        
lower    = 3 - 1.96*(1.22474487139159/sqrt(508))=    2.89
upper    = 3 + 1.96*(1.22474487139159/sqrt(508))=    3.11
i am 95% confident that estimated population mean level of confidence in the Immigration Minister lie in the interval (2.89, 3.11).
(ii)
ho: the mean level of confidence in the Immigration Minister is 5
h1: the mean level of confidence in the Immigration Minister is not 5
mean=     3.00
sd= sqrt(var)     1.225
u=     5.00
n=     508.00
alpha=    5%
test statistic, z = (mean-u)/(sd/sqrt(n))
= (3-5)/(1.22474487139159/sqrt(508))
-36.8058
critical value, z(a/2) = z(0.05/2) = 1.960
p-value
2*(1-P(z<|z|)
2*(1-P(znormsdist(abs(-36.8058))
0.0000
With (z=-36.8058, p<5%), null hypothesis is rejected at 5% level of significance.
Hence conclude that the mean level of confidence in the Immigration Minister is not 5.
b)
(ii)
X=    257
n=    856
p = X/n=     0.300
CI = p +- z(a/2)*sqrt(p*(1-p)/n)        
lower     =0.3-1.96*SQRT(0.3*(1-0.3)/856) =     26.9%
upper     =0.3+1.96*SQRT(0.3*(1-0.3)/856) =     33.1%
i am 95% confident that estimated population proportion of people who picked “tightening immigration laws” as their first choice lie in the above interval.
(ii)
ho: the proportion of people who believe “tightening immigration laws” is the highest priority is 0.16
h1: the proportion of people who believe...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30