Lab 7 BIOL1152: Basic Lab Techniques in Biology 1 Lab 7: DNA I Lab 7 Overview: Quiz (10mins) à Part 1: Restriction digestion (30 mins) à Part 2: Independent experiment (60mins) Practice loading...

Please answer the data analysis questions #2, #5 and #6 at the end of the lab handout.I had to select a reference type in order to get a quote, but no references are needed.


Lab  7  BIOL1152:  Basic  Lab  Techniques  in  Biology   1   Lab  7:  DNA  I Lab  7  Overview:   Quiz  (10mins)  à  Part  1:  Restriction  digestion    (30 mins)      à  Part  2:  Independent  experiment  (60mins)   Practice  loading  during  digestion   Run  gel  for  about  85 mins                  While  running gel,  work on final protocol independent experiments  (60mins)   Last  40mins  view  gel  and  analysis   POSTLAB:  gel  HW  &  exp.  plan   Plasmids   Plasmids   are   circular   DNA   that   can   replicate   independently   from   the   host’s   chromosomal   DNA.   They  are  mainly  found  in  bacteria,  but  also  exist  naturally  in  archaea  and  eukaryotes  such  as  yeast  and   plants.  In  nature,  plasmids  provide  one  or  more   functional  benefits   to   the  host  such  as   resistance  to   antibiotics,  degradative  functions,  and/or  virulence.  All  natural  plasmids  contain  an  origin  of  replication   (which  controls   the  host   range  and  copy  number  of   the  plasmid)  and  typically   include  a  gene  that   is   advantageous  for  survival,  such  as  an  antibiotic  resistance  gene.  In  contrast,  plasmids  utilized  in  the  lab   are  usually  artificial   and  designed   to   introduce   foreign  DNA   into  another   cell.  Minimally,   lab-­‐created   plasmids  have  an  origin  of  replication,  selection  marker,  and  cloning  site  (Figure  1).     The  ease  of  modifying  plasmids  and   the  ability  of  plasmids   to   self-­‐replicate  within  a   cell  make   them   attractive  tools  for  the  life  scientist  and  bioengineer.  For  instance,  when  scientists  want  to  introduce  a   gene  into  a  certain  cell  culture,  they  first  introduce  the  gene  into  a  plasmid  and  then  they  “grow”  the   plasmid  in  bacteria.  What  this  means  is  that  as  bacteria  reproduce,  they  make  trillions  of  copies  of  the   plasmid   that  can  be  collected  by  scientists.  Basically,   they  use  bacteria   to  get   large  quantities  of   the   plasmid   (Figure  2).  The  antibiotic   resistant  gene   in   the  plasmid  ensures   that  only  bacteria  containing   the  plasmid  can  survive  on  agar  plates  containing  the  antibiotic.     Figure  1.  Plasmid  map  depicting  features  with  descriptions  in  the  table.   Lab  6  BIOL1152:  Basic  Lab  Techniques  in  Biology   2   DNA   splicing,   the   cutting   and   linking  of  DNA  molecules,  is  one  of   the   basic   tools   of   modern   biotechnology.   The   basic   concept   behind  DNA   splicing   is   to   remove   a  DNA  fragment  of  interest  —  let’s   say   a   gene   —   from   the   chromosome  of  one  organism  and   to   combine   it   with   the   DNA   of   another  organism  in  order  to  study   how   the   gene   works.   The   desired   result   of   gene   splicing   is   for   the   recipient  organism  to  carry  out  the   genetic  instructions  provided  by  its   newly   acquired  gene.   For   example,   certain   plants   can   be   given   the   genes   for   resistance   to  pests   or   disease,   and   in   a   few   cases   to  date,   functional   genes  have  been   given  to  people  with  nonfunctional   genes,  such  as  those  who  have  a  genetic  disease  like  cystic  fibrosis.   Restriction  Enzymes  —  Molecular  Scissors   Restriction   enzymes,   also   known   as   restriction   endonucleases,   are   proteins   that   cut   DNA   at   specific   sites  and  thus,  they  act  as  molecular  scissors,  making  cuts  at  the  specific  sequence  of  base  pairs  that  it   recognizes.   The   sequence   that   they   recognized   is   called   a   restriction   site.   The   three-­‐dimensional   structure  or   shape  of  a   restriction  enzyme  allows   it   to   fit  perfectly   in   the  groove   formed  by   the   two   strands  of  a  DNA  molecule.  When  attached  to  the  DNA,  the  enzyme  slides  along  the  double  helix  until   it  recognizes  a  specific  sequence  of  base  pairs,  which  signals  the  enzyme  to  stop  sliding.  The  enzyme   then  chemically  separates,  or  cuts,  the  sugar-­‐phosphate  backbone  of  DNA.   Viruses  called  bacteriophages  are  major  enemies  of  bacteria.  These  viruses  infect  bacteria  by  injecting   their   own   DNA   into   them,   hijacking   the   bacterium’s   replication   machinery,   to   produce   viral   DNA.   Bacteria  have  responded  by  evolving  a  natural  defense:  they  produce  restriction  enzymes  that  cut  up   and  destroy  the  invading  DNA.  Bacteria  prevent  digestion  of  their  own  DNA  by  modifying  certain  DNA   bases   within   the   specific   enzyme   recognition   sequence,   which   allows   them   to   protect   their   own   DNA   while   cutting   up   foreign  DNA.   This   could   be   considered   a   very   primitive   immune   system.   Restriction   enzymes   search   the   viral   DNA   for   specific   palindromic   sequences  of  base  pairs  (Figure   3).   Some   restriction   enzymes   may   leave   a   short   length   of   unpaired   nucleotide   bases,   called   a   “sticky”   end,   at   the   DNA   site   where   they   cut,   Figure  2.  Bacteria  are  used  to  propagate  and  create  large  quantities  of  plasmids.   When  bacteria  divide  they  create  a  copy  of  the  plasmids  inside  them.  You  can   begin  with  a  single  bacterium  that  contains  your  plasmid.  After  a  single  day  of   culture,  you  can  have  millions  of  bacteria  cells  resulting  from  cell  division  each   with  a  copy  of  your  plasmid.   Figure  3.  A  palindromic  sequence  of  bases  reads  the  same  forwards  as  it  does   backwards  on  the  opposite  DNA  strand  (Example:  5’-­‐GAATTC’3’).  The  actual   palindromic  sequence  of  DNA  is  called  a  restriction  site,  and  DNA  is  cut  at  these   sites.   Lab  6  BIOL1152:  Basic  Lab  Techniques  in  Biology   3   whereas   other   restriction   enzymes   make   a   cut   across   both   strands   creating   double   stranded   DNA   fragments  with  “blunt”  ends.   There  are   thousands  of   restriction  enzymes,  and  each   is  named  after   the  bacterium  from  which   it   is   isolated.  For  example:   EcoRI  =  The  first  restriction  enzyme  isolated  from  Escherichia  coli  bacteria     HindIII  =  The  third  restriction  enzyme  isolated  from  Haemophilus  influenzae  bacteria   PstI  =  The  first  restriction  enzyme  isolated  from  Providencia  stuartii  bacteria   As  you  can  see  in  the  list  below,  each  restriction  enzyme  recognizes  one  specific  restriction  site  and   cuts  that  sequence  DNA  always  the  same  way  leaving  either  3’  overhangs,  5’  overhangs  or  blunt  ends.   If  a  specific  restriction  site  occurs  in  more  than  one  location  on  a  DNA  molecule,  a  restriction  enzyme   will  make   a   cut   at   each  of   those   sites,   resulting   in  multiple   fragments   of  DNA.   Therefore,   if   a   given   piece   of   DNA   is   cut   with   a   restriction   enzyme  whose   specific   recognition   sequence   is   found   at   five   different   locations   on   the   DNA  molecule,   the   result   will   be   six   fragments   of   different   lengths.   The   length  of  each  fragment  will  depend  upon  the  location  of  restriction  sites  on  the  DNA  molecule.   Electrophoretic  Analysis  of  Restriction  Fragments   A  DNA  fragments  that  has  have  been  cut  with  restriction  enzymes  can  be  separated  by  size  using  an   agarose  gel   and  a  process   known  gel  electrophoresis.   The   term  electrophoresis  means   to   carry  with   electricity.  With   the  help  of  a   loading  solution   (see   ‘loading  dye’,  below),  DNA   fragments  are   loaded   into   an   agarose   gel   slab,  which   is   placed   into   a   chamber   filled  with   a   conductive   buffer   solution.   A   direct  current  is  passed  between  wire  electrodes  at  each  end  of  the  chamber.  Since  DNA  fragments  are   negatively  charged,  they  will  be  drawn  toward  the  positive  pole  (cathode)  when  placed  in  an  electric   Lab  6  BIOL1152:  Basic  Lab  Techniques  in  Biology   4   field.  The  matrix  of  the  agarose  gel  acts  as  a  molecular  sieve  through  which  smaller  DNA  fragments  can   move  more  easily  than  larger  ones.  Therefore,  the  rate  at  which  a  DNA  fragment  migrates  through  the   gel  is  inversely  proportional  to  its  size  in  base  pairs.  Over  a  period  of  time,  smaller  DNA  fragments  will   travel  farther  than  larger  ones.  Fragments  of  the  same  size  stay  together  and  migrate  in  single  bands  of   DNA.  These  bands  will  be   seen   in   the  gel  after   the  DNA   is   stained   (treated  with  a  chemical   that  will   allow  DNA  visualization).   An   analogous   situation   is   one  where   all   the   desks   and   chairs   in   the   classroom  have   been   randomly   pushed  together.  An  individual  student  can  wind  his/her  way  through  the  maze  quickly  and  with  little   difficulty,  whereas  a  string  of  four  students  would  require  more  time  and  have  difficulty  working  their   way  through  the  maze.   Making  DNA  Visible   Staining   the  DNA  pinpoints   its   location   in   the  gel.  To  visualized  DNA   fragments,  Ethidium  Bromide   is   added   to   agarose   gels.   This   compound   intercalates   between   nucleotides   and   is   lights   up   when   illuminated  with  UV  light.  The  solution  you  load  into  the  gel  before  this  though  is  colorless.   A  loading  dye  containing  two  blue  dyes  is  added  to  the  DNA  solution.  The  loading  dye  does  not  stain   the  DNA  itself  but  makes   it  easier  to   load  your  sample   into  the  gels  and  monitor  the  progress  of  the   DNA   electrophoresis.   The   dye   fronts  migrate   toward   the   positive   end   of   the   gel,   just   like   the   DNA   fragments.   The   “faster”   dye   co-­‐migrates   with   DNA   fragments   of   approximately   500   bp,   while   the   “slower”  dye  co-­‐migrates  with  DNA  fragments  approximately  5  kb  in  size.   Part  1:  Restriction
Apr 17, 2021
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here