Payback Machine X Cumulative cash flow Machine Y Cumulative cash flow Investment 1,000,000 1,000,000 (1,000,000) (1,000,000) Year 1 $500,000 (500,000) $200,000 (800,000) Year 2 $500,000 0 $300,000...


Payback
































































Machine X



Cumulative cash flow



Machine Y



Cumulative cash flow




Investment




1,000,000








1,000,000









(1,000,000)





(1,000,000)



Year 1



$500,000



(500,000)



$200,000



(800,000)



Year 2



$500,000



0



$300,000



(500,000)



Year 3



$300,000





$500,000



0



Year 4



$100,000





$500,000





Payback



2 years





3 years






ARR



Machine X


ARR =       Average Profit


             Average investment


Therefore: Depreciation (1000, 000-200,000) /4 = 200000


                                            = 200,000X 4 = 800,000


Profits before depreciation 1400,000


Less depreciation                (800,000)


 Accounting Profit                600,000



Average profits 600,000/4yrs =150,000


Average investment = (initial investment + residual value)/2


                                 =     (1,000,000 + 200,000)/2 = 600,000


 (Average profit/ average investment) X 100


   = (150,000/600,000) X 100 = 25%




Machine Y


Depreciation (1000, 000-200,000) /4 = 200000


                                            = 200,000X 4 = 800,000


Profits before depreciation 1500,000


Less depreciation                (800,000)


 Accounting Profit                700,000



Average profits 700,000/4yrs =750,000


Average investment = (initial investment + residual value)/2


                                 =     (1,000,000 + 200,000)/2 = 600,000


 (Average profit/ average investment) X 100


   = (750,000/600,000) X 100 = 29%


Therefore ARR for X = 25%


                                Y = 29%


NPV


Net Present Value      Machine X





































































Yrs



Cash flow



Discount factor (7%)



Workings



Present value



DF 19%



PV



0



(1000,000)



1



(1000,000 x1)



(1000,000)



1



(1,000,000)



1



$500,000



0.9346



500000 x .9346 =



467300



0.8403



420150



2



$500,000



0.8734



500,000 x .8734 =



436700



0.7062



353100



3



$300,000



0.8163



300,000 x .8163 =



244,890



0.5934



178020



4



$100,000



0.7629



100,000 x .7629



76290



0.4987



49870



5









255180





(1140)





Machine Y





































































Yrs



Cash flow



Discount factor (7%)



Workings



Present value



DF 16%



PV



0



(1000,000)



1



(1000,000 x1)



(1000,000)



1



(1,000,000)



1



$200,000



0.9346



200,000 x .9346 =



186920



.8621



172420



2



$300,000



0.8734



300,000 x .8734 =



262020



.7432



222960



3



$500,000



0.8163



500,000 x .8163 =



408150



.6407



320350



4



$500,000



0.7629



500,000 x .7629



381450



.5523



276150



5









238,540





(8120)




IRR


Machine X



IRR = 7% + (7%  X255,180)


                                        (255,180 + 1140)



IRR = 7% + (7%  X 255,180)


256,320



IRR = 7% + (7%  X  0.996)



IRR = 7% + 7%  = 14%



Machine Y



IRR = 7% + (7%  X238,540)


                                        (238,540 + 8120)



IRR = 7% + (7%  X238,540)


246,660



IRR = 7% + (7%  X 0.967)



IRR = 7% + 10%  = 17%


Explain which is the most appropriate method to use for selecting the preferred machine for the project.

Jun 01, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here