Part a. Make a diagram of memory for point one when n == 2. int expo(int x, int n) { int r, t; if (n == 0) r = 1; else if (n == 1) r = x; else { t = expo (x, n / 2); r = t * t; if (n % 2 == 1) r *= t:...


Part a.<br>Make a diagram of memory for point one when n == 2.<br>int expo(int x, int n) {<br>int r, t;<br>if (n == 0)<br>r = 1;<br>else if (n == 1)<br>r = x;<br>else {<br>t = expo (x, n / 2);<br>r = t * t;<br>if (n % 2 == 1)<br>r *= t:<br>}<br>//--<br>-point one<br>return r;<br>int main(void) {<br>int i;<br>i = expo(4, 5);<br>return 0;<br>Part b.<br>Using divide-and-conquer recursion to solve a problem similar to Prob-<br>lem 3 is somewaiät tricky but a good test of programming skill. Write a function definition<br>that provides a divide-and-conquer implementation of the following interface:<br>double max_adj_sum(const double *a, int lo, int hi);<br>// REQUIRES: hi - lo >= 2.<br>// PROMISES: Return value is the largest sum that can be made by adding<br>//<br>Elements a[lo] ... a[hi -1] exist.<br>two elements among a[lo] ... a[hi-1] with adjacent inderes.<br>Hint: It makes sense to have two base cases, not just one.<br>

Extracted text: Part a. Make a diagram of memory for point one when n == 2. int expo(int x, int n) { int r, t; if (n == 0) r = 1; else if (n == 1) r = x; else { t = expo (x, n / 2); r = t * t; if (n % 2 == 1) r *= t: } //-- -point one return r; int main(void) { int i; i = expo(4, 5); return 0; Part b. Using divide-and-conquer recursion to solve a problem similar to Prob- lem 3 is somewaiät tricky but a good test of programming skill. Write a function definition that provides a divide-and-conquer implementation of the following interface: double max_adj_sum(const double *a, int lo, int hi); // REQUIRES: hi - lo >= 2. // PROMISES: Return value is the largest sum that can be made by adding // Elements a[lo] ... a[hi -1] exist. two elements among a[lo] ... a[hi-1] with adjacent inderes. Hint: It makes sense to have two base cases, not just one.

Jun 02, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here