Network Security and Cryptography 4. RSA variant. Let us consider the following variant of the RSA public key encryption scheme, named RSA-M1 = (KG1, Enc1, Dec1). The corresponding key generation and...

I need the answer as soon as possibleNetwork Security and Cryptography<br>4. RSA variant. Let us consider the following variant of the RSA public<br>key encryption scheme, named RSA-M1 = (KG1, Enc1, Dec1). The<br>corresponding key generation and encryption algorithms are detailed<br>next:<br>Key generation KG|(A)<br>Generate two distinct odd primes p and q of same bit-size X<br>Compute N = p.q and o = (p– 1)(q – 1)<br>Select a random integer 1 < e < o such that ged(e, 6) = 1<br>- Compute the unique integer d such that 1 <d < ¢ and<br>e.d = 1 mod o<br>(N, e). The private key is SK<br>The public key is PK<br>(N, e, d)<br>Encryption Enc1 (PK, m) of a message m e Zy proceeds as fol-<br>lows:<br>Generate a random integer r in Z<br>- Compute îm = m ·r mod N<br>- Compute ci<br>Compute c2 =r¯emod N<br>- Output C = (c1, C2)<br>-<br>me mod N<br>(a) Give the corresponding decryption algorithm Dec1 (SK,C). Prove<br>your decryption algorithm is correct, i.e. given a legitimate key<br>pair (PK, SK) +t KG|(A) it holds that Dec1 (SK, Enc1(PK, m)) =<br>m for any admissible plaintext m.<br>(b) Is the public key encryption scheme RSA-M1 one-way? Justify<br>your answer.<br>

Extracted text: Network Security and Cryptography 4. RSA variant. Let us consider the following variant of the RSA public key encryption scheme, named RSA-M1 = (KG1, Enc1, Dec1). The corresponding key generation and encryption algorithms are detailed next: Key generation KG|(A) Generate two distinct odd primes p and q of same bit-size X Compute N = p.q and o = (p– 1)(q – 1) Select a random integer 1 < e="">< o="" such="" that="" ged(e,="" 6)="1" -="" compute="" the="" unique="" integer="" d="" such="" that="" 1="">< ¢="" and="" e.d="1" mod="" o="" (n,="" e).="" the="" private="" key="" is="" sk="" the="" public="" key="" is="" pk="" (n,="" e,="" d)="" encryption="" enc1="" (pk,="" m)="" of="" a="" message="" m="" e="" zy="" proceeds="" as="" fol-="" lows:="" generate="" a="" random="" integer="" r="" in="" z="" -="" compute="" îm="m" ·r="" mod="" n="" -="" compute="" ci="" compute="" c2="r¯emod" n="" -="" output="" c="(c1," c2)="" -="" me="" mod="" n="" (a)="" give="" the="" corresponding="" decryption="" algorithm="" dec1="" (sk,c).="" prove="" your="" decryption="" algorithm="" is="" correct,="" i.e.="" given="" a="" legitimate="" key="" pair="" (pk,="" sk)="" +t="" kg|(a)="" it="" holds="" that="" dec1="" (sk,="" enc1(pk,="" m))="m" for="" any="" admissible="" plaintext="" m.="" (b)="" is="" the="" public="" key="" encryption="" scheme="" rsa-m1="" one-way?="" justify="" your="">

Jun 07, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here