Need help with this MATLAB assignment at the very least looking for half of it done
For this assignment, you are to modify code you have developed for previous assignments to analyze measurements from uniaxial compression tests to develop a relationship between Young's modulus and rock strength for a series of tests. Your code should perform the following tasks: 1. Repeatedly perform the following for as many test input files as necessary: 1. read data from a text data file formatted as described in Assignment 9. 2. perform calculations using the input data to produce stress and strain for each test. 3. determine the compressive strength for the test (i.e. the maximum measured stress during the test). 4. determine the value of Young's modulus for the test at a stress level approximately equal to 50 percent of the peak stress, designated as Eso. For this assignment, you may compute Exo directly from the. measurements (as was done for Assignment 8) or by fitting a polynomial to the measured data and using the MATLAB polydex function (as also required for Assignment 8), but you do not need to do both. 5. store the computed compressive strength for the test in one array and the associated value of Esq in a corresponding array. 2. Once you have performed the calculations for each test (one set of calculations for each test input file), you should end up with an array of compressive strength values and another array with corresponding values of Eso 3. Create a graph of the computed values of ESO plotted versus the calculated values of compressive strength. The individual data pairs should be plotted as discrete symbols, without connecting lines. 4. Determine a best-fit, 2nd order polynomial fit to the computed values of E50 and compressive strength plotted in the graph, and draw a continuous curve without symbols on the graph in item 3 above. You should compartmentalize your previous code into functions (e.g. one function for input, another for calculations, etc.). How you choose to do this is up to you, but you must create and use at least one user-defined function for your code in this assignment. You must also create a “master” script that will call the appropriate functions to perform the calculations. Run your code using the following text data files for a series of tests (each file corresponds to a single test). Upload all MATLAB files needed to produce the results described. There are several ways to specify the different file names. However, | suggest that you define the file names in a “string array” (i... an array of character strings..with each element of the array being a character string. that is a file name). Your code can then use a for loop to repeat the steps needed for each test (i.e. repeat step 1 above for each file). st_MAE2100_assign7_datafile - Notepad [HEADER] Created˽by˽Sigma‐1˽UU˽Version˽4.1.4;˽Copyright˽2005,˽GEOTAC Project:→ODOT˽Edmond→Load˽Frame˽Name:→Load˽Frame Date:→10/11/2018˽→Time:→11:29:20˽AM˽ Boring:→B‐1→Sample:→UC‐5 Specimen:→UC‐5→Depth˽(ft):→˽44.5˽ Diameter˽(inch):→˽2.025˽→Height˽(inch):→˽4.08˽ Piston˽Correction˽(lbs):→˽0.325234227878881˽ Comments:→ [SENSORS] Name→External˽Load˽Cell→Cell˽Pressure→Pump˽Pressure→Load˽Frame˽Encoder→Cell˽Pump˽Encoder ID→ID1→ID2→ID5→N/A→N/A Module→Load˽Frame˽ADIO→Load˽Frame˽ADIO→Cell˽Pump˽ADIO→N/A→N/A Channel→˽1˽→˽2˽→˽1˽→N/A→N/A Unit→lbs→psi→psi→inch→mL Cal.˽Factor→‐4603502.021˽→˽20000˽→˽30000˽→‐6079200˽→˽303021.5922˽ Excitation→˽10.0574035644531˽→˽10.0574035644531˽→˽10˽→N/A→N/A Zero→˽1.12014156911755E‐06˽→‐6.29662558640121E‐03˽→˽3.67343425750732E‐03˽→N/A→N/A Min.˽Reading→‐50˽→‐14˽→‐14˽→0.0→0.0 Max.˽Reading→˽10000˽→˽190˽→˽290˽→˽3.5˽→˽75˽ [SHEAR] Time˽˽˽˽˽˽˽˽˽˽→External˽Load˽Cell→Cell˽Pressure→Pump˽Pressure→Platen˽Position→Cell˽Pump˽Volume 10/11/2018˽11:31:22˽AM→‐5.91053423704579E‐06˽→‐5.09068593964912E‐03˽→˽3.67641448974609E‐03˽→‐4232823˽→˽0˽ 10/11/2018˽11:31:28˽AM→‐2.34157253544254E‐05˽→‐5.41600365068007E‐03˽→˽3.4797191619873E‐03˽→‐4259990˽→˽0˽ 10/11/2018˽11:31:35˽AM→‐4.17073988501215E‐05˽→‐5.48750204870885E‐03˽→˽3.56197357177734E‐03˽→‐4284064˽→˽0˽ 10/11/2018˽11:31:41˽AM→‐8.03165337856626E‐05˽→‐5.72106348226953E‐03˽→˽3.58104705810547E‐03˽→‐4308036˽→˽0˽ 10/11/2018˽11:31:47˽AM→‐1.04494908719062E‐04˽→‐5.57687504624482E‐03˽→˽3.56078147888184E‐03˽→‐4334796˽→˽0˽ 10/11/2018˽11:31:53˽AM→‐1.43437702845404E‐04˽→‐5.59713292568631E‐03˽→˽3.27587127685547E‐03˽→‐4358718˽→˽0˽ 10/11/2018˽11:31:59˽AM→‐1.86432072860043E‐04˽→‐5.31590589343978E‐03˽→˽3.23176383972168E‐03˽→‐4382741˽→˽0˽ 10/11/2018˽11:32:05˽AM→‐2.04449669163296E‐04˽→‐5.26347373488534E‐03˽→˽3.65138053894043E‐03˽→‐4409603˽→˽0˽ 10/11/2018˽11:32:11˽AM→‐2.27495986127906E‐04˽→‐5.0799611799448E‐03˽→˽3.51428985595703E‐03˽→‐4433529˽→˽0˽ 10/11/2018˽11:32:17˽AM→‐2.54021891796583E‐04˽→‐5.69603904295946E‐03˽→˽3.55243682861328E‐03˽→‐4459873˽→˽0˽ 10/11/2018˽11:32:23˽AM→‐2.72897468876181E‐04˽→‐5.3242473732098E‐03˽→˽3.62873077392578E‐03˽→‐4483848˽→˽0˽ 10/11/2018˽11:32:29˽AM→‐2.92535695534752E‐04˽→‐5.41600365068007E‐03˽→˽3.70979309082031E‐03˽→‐4507826˽→˽0˽ 10/11/2018˽11:32:35˽AM→‐3.20181742772547E‐04˽→‐5.55780880677048E‐03˽→˽3.55243682861328E‐03˽→‐4534475˽→˽0˽ 10/11/2018˽11:32:41˽AM→‐3.54119649036875E‐04˽→‐5.68650592322228E‐03˽→˽3.67164611816406E‐03˽→‐4558550˽→˽0˽ 10/11/2018˽11:32:47˽AM→‐3.88331632493646E‐04˽→‐5.13477661843353E‐03˽→˽3.23653221130371E‐03˽→‐4585310˽→˽0˽ 10/11/2018˽11:32:53˽AM→‐4.27762999006518E‐04˽→‐5.40527889097575E‐03˽→˽3.63349914550781E‐03˽→‐4609281˽→˽0˽ 10/11/2018˽11:32:59˽AM→‐4.69327401060582E‐04˽→‐5.48154384887312E‐03˽→˽3.5560131072998E‐03˽→‐4633202˽→˽0˽ 10/11/2018˽11:33:05˽AM→‐5.04504612890742E‐04˽→‐5.60547440545633E‐03˽→˽3.51309776306152E‐03˽→‐4660117˽→˽0˽ 10/11/2018˽11:33:11˽AM→‐5.50168256431789E‐04˽→‐5.31471425347263E‐03˽→˽3.60012054443359E‐03˽→‐4684087˽→˽0˽ 10/11/2018˽11:33:17˽AM→‐5.90100111730862E‐04˽→‐5.88789307767001E‐03˽→˽3.57627868652344E‐03˽→‐4710282˽→˽0˽ 10/11/2018˽11:33:23˽AM→‐6.38957350383862E‐04˽→‐5.7151052824338E‐03˽→˽3.42726707458496E‐03˽→‐4734358˽→˽0˽ 10/11/2018˽11:33:30˽AM→‐6.81808723602444E‐04˽→‐5.32067245330836E‐03˽→˽3.81946563720703E‐03˽→‐4758329˽→˽0˽ 10/11/2018˽11:33:36˽AM→‐7.30105891470885E‐04˽→‐5.41957857058151E‐03˽→˽3.78966331481934E‐03˽→‐4784989˽→˽0˽ 10/11/2018˽11:33:42˽AM→‐7.81191496862448E‐04˽→‐5.48750204870885E‐03˽→˽3.48567962646484E‐03˽→‐4808959˽→˽0˽ 10/11/2018˽11:33:48˽AM→‐8.27474793186411E‐04˽→‐5.36595477205992E‐03˽→˽3.64184379577637E‐03˽→‐4833035˽→˽0˽ 10/11/2018˽11:33:54˽AM→‐8.79430295753991E‐04˽→‐5.26347373488534E‐03˽→˽3.61442565917969E‐03˽→‐4860103˽→˽0˽ 10/11/2018˽11:34:00˽AM→‐9.38261560932006E‐04˽→‐5.15741777780931E‐03˽→˽3.45230102539063E‐03˽→‐4884283˽→˽0˽ 10/11/2018˽11:34:06˽AM→‐9.92743340229936E‐04˽→‐5.48273548884026E‐03˽→˽3.44634056091309E‐03˽→‐4908151˽→˽0˽ 10/11/2018˽11:34:12˽AM→‐1.04662929954429E‐03˽→‐5.0823444598791E‐03˽→˽3.53693962097168E‐03˽→‐4934912˽→˽0˽ 10/11/2018˽11:34:18˽AM→‐1.10156390202974E‐03˽→‐5.49107696861029E‐03˽→˽3.67164611816406E‐03˽→‐4958892˽→˽0˽ 10/11/2018˽11:34:24˽AM→‐1.15612909612537E‐03˽→‐5.24679077534529E‐03˽→˽3.59892845153809E‐03˽→‐4982960˽→˽0˽ 10/11/2018˽11:34:39˽AM→‐1.30274847768305E‐03˽→‐5.36714641202707E‐03˽→˽3.61323356628418E‐03˽→‐5047184˽→˽0˽ 10/11/2018˽11:34:54˽AM→‐1.44237293263359E‐03˽→‐5.42077021054865E‐03˽→˽3.30924987792969E‐03˽→‐5108035˽→˽0˽ 10/11/2018˽11:35:09˽AM→‐1.58659711785731E‐03˽→‐5.59594128571916E‐03˽→˽3.27587127685547E‐03˽→‐5169409˽→˽0˽ 10/11/2018˽11:35:24˽AM→‐1.71710552705917E‐03˽→‐5.27300685462251E‐03˽→˽3.59058380126953E‐03˽→‐5233317˽→˽0˽ 10/11/2018˽11:35:39˽AM→‐1.85277373731878E‐03˽→‐5.29445637403114E‐03˽→˽3.44157218933105E‐03˽→‐5294649˽→˽0˽ 10/11/2018˽11:35:54˽AM→‐1.96402524465157E‐03˽→‐5.62454064493068E‐03˽→˽3.43680381774902E‐03˽→‐5355862˽→˽0˽ 10/11/2018˽11:36:09˽AM→‐2.02012765430482E‐03˽→‐5.44936956976017E‐03˽→˽3.43799591064453E‐03˽→‐5419832˽→˽0˽ 10/11/2018˽11:36:24˽AM→‐1.85976866392593E‐03˽→‐5.41123709081148E‐03˽→˽3.52263450622559E‐03˽→‐5481195˽→˽0˽ 10/11/2018˽11:36:39˽AM→‐1.1924026167253E‐03˽→‐6.00229051451606E‐03˽→˽3.54766845703125E‐03˽→‐5542569˽→˽0˽ 10/11/2018˽11:36:46˽AM→‐8.65988596924581E‐04˽→‐5.41957857058151E‐03˽→˽3.53693962097168E‐03˽→‐5569333˽→˽0˽ [PEAK˽POINT] Deviator˽Stress˽(psi):→˽0˽ Axial˽Strain˽(%):→˽0˽ symbol indicating space character symbol indicating tab character specdiam_in specheight_in loadcal positioncal loadexcitation load_volts (2nd column) position (5th column) Note: Symbols shown to indicate space and tab characters are not in actual data file. They are shown for illustration only. 1. Calculating stress for each measured value of voltage - the magnitude of the axial load for each set of readings should be calculated as: Q = WOR where Qs the axial load in units of Ibs, Vis the measured voltage for the specific reading, V is the initial voltage under zero load (i... the first voltage reading in Load_volts), C'Flaaa is the calibration factor for the specific load cell used, and Vegetation is the excitation voltage applied during the test. The magnitude of stress should be calculated as: Q Q TEE where A, is the initial cross-sectional area of the specimen and d, is the initial diameter of the specimen. 2. Calculating strain for each measured value of position - the magnitude for displacement for each set of readings should be calculated as: = g where § is displacement of the specimen in units of inches, y is the platen position reading for the specific reading, y, is the initial platen position reading (i.e., the first element of the array position), and CFpouition is the calibration factor for the position readings. The magnitude of strain should be calculated as: =f where £ is dimensionless strain, and h,, is the initial specimen height in units of inches. Note that this value must be multiplied by 100 to produce strain in units of percent. 3. Calculating an estimate for Young's modulus directly from measured values of stress and strain - the estimate for Young's modulus must be calculated at a stress level that is 50 percent of the maximum stress achieved during the test (i.e., the failure stress), denoted as os. The value of Young's modulus determined in this way is designated as Egg and should be calculated as: Bo = 42 where Ag is change in stress and Ae is change in strain. For the purpose of simplicity, you can base your calculation of Egg around the measured stress that is just greater than or equal to agg. Thus, Bigg can be calculated as the difference in stress between the reading just after ggg and the reading just before ogg.