Answer To: { "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "HW 6", "provenance": [],...
Vicky answered on Nov 06 2021
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "GTECSaaF2HIz"
},
"source": [
"Before you turn this problem in, make sure everything runs as expected. First, **restart the kernel** (in the menubar, select Kernel$\\rightarrow$Restart) and then **run all cells** (in the menubar, select Cell$\\rightarrow$Run All).\n",
"\n",
"Make sure you fill in any place that says `YOUR CODE HERE` or \"YOUR ANSWER HERE\", as well as your name and collaborators below:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "FgdGPJGQ2HI0"
},
"outputs": [],
"source": [
"NAME = \"\"\n",
"COLLABORATORS = \"\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hdheqpHA2HI4"
},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "q5_8md-x2HI5",
"nbgrader": {
"checksum": "015255c8d63a81a6277731d085451e10",
"grade": false,
"grade_id": "cell-23f58e80afda25d4",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"# Homework 6: Stream Averages and Motion Detection\n",
"\n",
"## CSE 30 Fall 2020\n",
"\n",
"Copyright Luca de Alfaro, 2019-20. \n",
"License: [CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/)."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "HB7EBYTS2HI6",
"nbgrader": {
"checksum": "e42300239388933dcf5ae54de0207866",
"grade": false,
"grade_id": "cell-ed51b034c970c018",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"For how to work on this homework assignment, please refer to the instructions posted on Canvas. \n",
"\n",
"## Submission\n",
"\n",
"* **First, remove the output, or the notebook will be too large:**\n",
"\n",
" Edit > Clear all outputs\n",
" \n",
" \n",
"* Then, download the .ipynb file:\n",
"\n",
" File > Download .ipynb\n",
" \n",
" \n",
"* Finally, [submit the .ipynb to this Google Form](https://docs.google.com/forms/d/e/1FAIpQLSfUqr_ibrn1NKW8hKVT3eoomMogY6Q4kOJ7z2HfL0takEvrVw/viewform?usp=sf_link).\n",
"\n",
"Deadline: Wednesday November 4, 11pm (check on Canvas for updated information)."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "8XIJ_qZs2HI7",
"nbgrader": {
"checksum": "2177f64fe3d728669a088c66163e0e5e",
"grade": false,
"grade_id": "cell-dd3c62597369770a",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"## About this homework\n",
"\n",
"This homework notebook has many cells, as it is derived from the chapter, but there are only three questions. \n",
"Each question is marked\n",
"\n",
" ### Question n:\n",
" \n",
"for $n = 1, 2, 3$. \n",
"The questions are: \n",
"\n",
"* Implementing a sliding window averagerator\n",
"* Implementing a class to clean data streams\n",
"* Implementing a class to perform motion detection."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "5_tJZtWP2HI8",
"nbgrader": {
"checksum": "232d22754eec312f64dbf32844db108c",
"grade": false,
"grade_id": "cell-e435450e249172c7",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"Suppose you have a series of numbers, and you need to compute their average and standard deviation. What is a good way for doing this? \n",
"The obvious way is to use the [numpy library](https://www.numpy.org), which offers a wealth of functions to operate on matrices, arrays, and much more. \n",
"Numpy is one of the fundamental packages of Python, and you would be well advised to browse its documentation and familiarize yourself with what it can do. \n",
"With numpy, we can compute average and standard deviation of a list of numbers very simply: \n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"deletable": false,
"editable": false,
"id": "j-A0VUwm2HI9",
"nbgrader": {
"checksum": "290dfabdb17aa5b367c3ad5c54422cf7",
"grade": false,
"grade_id": "cell-69ecf72a2ebb31f5",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"avg: 2.5714285714285716\n",
"std: 0.9035079029052513\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"s = [1., 2., 3., 3., 2., 4., 3.]\n",
"print(\"avg:\", np.average(s))\n",
"print(\"std:\", np.std(s))\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "RF2VryFI2HJB",
"nbgrader": {
"checksum": "38c0d7df2df28d58371191274d6b0004",
"grade": false,
"grade_id": "cell-bc73c4e84a0a96ce",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"## Stream statistics\n",
"\n",
"Assume now that the numbers do not form a fixed length sequence, but rather, a stream of numbers, with new numbers always arriving. The numbers could represent real-time temperature measurements, or water pressure, or electricity usage, or percentages of utilized CPU cycles, and so forth. \n",
"What do we do in order to compute their average and standard deviation? \n",
"\n",
"There are various choices, and the way one does it depends on the application. \n",
"It is certainly possible to accummulate all numbers, and then compute their overall average and standard deviation; this allows the computation of statistics that apply to the entire time range for which the data was available. \n",
"More commonly, one is interested in knowing the _recent_ aveage and standard deviation, so that one can compare the most recent data with the average of the last day. "
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "UTQ9gsiV2HJC",
"nbgrader": {
"checksum": "35beafc102068b873a43c60641259ed8",
"grade": false,
"grade_id": "cell-c1a505237cdcea22",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"## Stream Averagerators\n",
"\n",
"One could implement the code that computes the average of a stream in the same portion of code where one reads the stream, as follows:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"deletable": false,
"editable": false,
"id": "OyWuLqy72HJD",
"nbgrader": {
"checksum": "5084146196b98a8631c7dc55b927cfd8",
"grade": false,
"grade_id": "cell-ff2ef3d9878b0d7c",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"avg: 0.26679361599246854\n",
"avg: 0.4613264239066112\n",
"avg: 0.36434457445090196\n",
"avg: 0.5154883464580592\n",
"avg: 0.5057340533820456\n",
"avg: 0.49884149192064453\n",
"avg: 0.5543345011717055\n",
"avg: 0.4956537177840408\n",
"avg: 0.46224197433186365\n",
"avg: 0.5142170482263289\n"
]
}
],
"source": [
"import random # We use random to simulate a stream.\n",
"\n",
"def read_stream():\n",
" \"\"\"Reads and returns one number from the stream.\"\"\"\n",
" return random.random()\n",
"\n",
"def use(x):\n",
" \"\"\"Code to do something with x\"\"\"\n",
" pass\n",
"\n",
"# Here we accummulate the sequence, so we can average it.\n",
"seq = []\n",
"\n",
"while True:\n",
" x = read_stream()\n",
"\n",
" # We add x to the average\n",
" seq.append(x)\n",
" print(\"avg:\", np.average(seq))\n",
" use(x)\n",
"\n",
" # This is an example, and I don't what the code to run forever.\n",
" if len(seq) == 10:\n",
" break\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "_vtHSgqv2HJG",
"nbgrader": {
"checksum": "b6d539715927bb6ed584998e3ae822d6",
"grade": false,
"grade_id": "cell-d096d4fafbf0dee5",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"However, this approach is horrible in two different ways. One way is that the implementation is horribly inefficient; our sequence seq will have to hold all the data we read from the stream. This is bad, and we will fix it later. \n",
"\n",
"The other way in which this is horrible is that the code to compute the average is intermingled with the code that reads the sequence and passes it to the code that uses it. It would be much better to separate out the code, for two related reasons. \n",
"\n",
"**Separation of concerns.** Separating the code makes it easier both to read and to write, because we separate the concerns: when we write the code to compute the average, we can focus on that, disregarding the details of how the stream is read or used; when we write the code that processes the stream, we can focus on that, simply calling a method to compute the average, but disregarding how the average is computed. \n",
"Separating the concerns, or dividing the overall coding task into smaller, independent units, is key. Each person, at any given time, can keep in mind only a fairly small set of facts; indeed, several studies on software verification point out to the fact that in order to write correct code, programmers usually use no more than a dozen facts about the previous code and input, reflecting what likely is an underlying limitation of our brains. \n",
"By focusing on one task at a time, we can apply our full mental powers to that particular task, making it much easier to write its code. \n",
"The same goes for reading code: it is much easier to understand code that does one specific thing, than code that mixes multiple goals at a time. \n",
"\n",
"**Ease of modification.** As we mentioned, there are various ways of computing a stream average: there are more and less efficient implementations, and we can consider the entirety of the data read from the stream, or only the most recent one. It will be easier to change the implementation if the code for computing the stream average is all in the same place, rather than sprinkled in multiple places that must be tracked and updated. \n",
"\n",
"For these reasons, we introduce _averagerator_ classes that comput running averages and standard deviations. \n",
"The first we write, _FullAveragerator_, is for computing the statistics of complete sequences.\n",
"\n",
"The class has one method, _add_, used to add data to it, and two properties, _avg_ and _std_, which return the average and standard deviation so far. \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"deletable": false,
"editable": false,
"id": "x61K42ZO2HJH",
"nbgrader": {
"checksum": "46fe894687e588d7425434ee8ff76e9d",
"grade": false,
"grade_id": "cell-5426535d39bfd62f",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"outputs": [],
"source": [
"class FullAveragerator(object):\n",
"\n",
" def __init__(self):\n",
" self.seq = []\n",
"\n",
" def add(self, x):\n",
" self.seq.append(x)\n",
"\n",
" @property\n",
" def avg(self):\n",
" return np.average(self.seq)\n",
"\n",
" @property\n",
" def std(self):\n",
" return np.std(self.seq)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "UWxXe5Pz2HJK",
"nbgrader": {
"checksum": "bd5e3166dfdce416b8edc10296b6d770",
"grade": false,
"grade_id": "cell-e5f38b446235116b",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"The previous code can be rewritten like this:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"deletable": false,
"editable": false,
"id": "hferIZPd2HJK",
"nbgrader": {
"checksum": "cf37166ec81701a6226ecca873565d08",
"grade": false,
"grade_id": "cell-f0893bac670739cf",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"avg: 0.8481248454765221\n",
"avg: 0.504288984206181\n",
"avg: 0.6513735669656283\n",
"avg: 0.5826409775245193\n",
"avg: 0.5891647224299991\n",
"avg: 0.544397207289974\n",
"avg: 0.5019998731524652\n",
"avg: 0.48379177599808726\n",
"avg: 0.43511750176911945\n",
"avg: 0.45041774154479075\n"
]
}
],
"source": [
"averagerator = FullAveragerator()\n",
"\n",
"for _ in range(10):\n",
" x = read_stream()\n",
"\n",
" # We add x to the average\n",
" averagerator.add(x)\n",
" print(\"avg:\", averagerator.avg)\n",
" use(x)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "zMPJ0IuD2HJO",
"nbgrader": {
"checksum": "167d19c8e9a7a5f3b8b9b2decbc11734",
"grade": false,
"grade_id": "cell-2c61d18a5fd64a40",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"The improvement seems minor, but this is only because our averagerator, as written is very simple. \n",
"Very simple, and very inefficient, as remarked. Let us write it more efficiently."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"id": "QV8jZzte2HJP",
"nbgrader": {
"checksum": "b48df4448256c3c35a66d807bf7c9623",
"grade": false,
"grade_id": "cell-aae862d9de3e9b64",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"source": [
"A picture is worth a thousand words, so let's draw one."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"deletable": false,
"editable": false,
"id": "hFT-oCQI2HJQ",
"nbgrader": {
"checksum": "ab3e11b6cf72428254087c623cf81933",
"grade": false,
"grade_id": "cell-e689a2ecb1971dde",
"locked": true,
"schema_version": 1,
"solution": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9ebhlRXU2/tYezrlD3567EeiWSUBAARFxRMEBpzjnI2i+aIwTBjMnn8kvagaNiYnRqDhh1CBxRBHEMCijzNCNNDTd0jTdQM99e7zzOWfvqt8fe6+qVbVrn+Hec+mmc9bz9NPnnrOH2nvXXvXWu961Siil0LOe9axnPXv6W3CgG9CznvWsZz3rjvUces961rOeHSLWc+g961nPenaIWM+h96xnPevZIWI9h96znvWsZ4eIRQfqxIsXL1ZHH330gTp9z3rWs549LW3lypW7lFJLfL8dMId+9NFHY8WKFQfq9D3rWc969rQ0IcQTZb/1KJee9axnPTtErOfQe9aznvXsELGeQ+9Zz3rWs0PEWjp0IcS3hBA7hRCrS34XQogvCiHWCyEeFEKc0f1m9qxnPetZz1pZOwj9vwC8rsnvrwdwfP7vgwC+OvNm9axnPetZzzq1lg5dKfUrAHuabPIWAN9Rmd0NYL4Q4vBuNbBnPetZz3rWnnWDQz8SwCb29+b8u4IJIT4ohFghhFgxPDzchVP3rGc961nPyLrh0IXnO29NXqXUJUqpM5VSZy5Z4tXF96xnPevZIW1fuOFR/Grd7ADabjj0zQCWs7+XAdjaheP2rGc969khZ1++eT3u2rB7Vo7dDYf+MwDvztUuLwKwXym1rQvHPSRtqpGit6hIz3r2v9cSKREKH7Exc2tHtvh9AHcBOFEIsVkI8T4hxIVCiAvzTa4BsAHAegDfAPCHs9LSp7mt3TaCt33lDpz8ievw5ZvXH+jm/K+1eiIxMtXoeL9akqKeyFloUXds11gNSTr99u0dr+MtX74Dm/ZMdLFVPXNNKQWpgDA4QA5dKfVOpdThSqlYKbVMKfVNpdTXlFJfy39XSqmLlFLHKaWeq5TqFWjx2K3rhvHrJ/chDAS27Js60M05ZG2ynuJvrngI+ybq3t+/cdsGvOXiOzo+7of/+3584ipvKsYBt0Yqce5nb8HlKzdP+xgbdo1j1aZ9WLdjtIst65lrqcxm5wfMofesO0boaV5/ZUZIaratlqQHuglt2ea9E3j/pSswUU+s79dsG8H3730S9z+517vfzpEp7BzpfEDdvn8K2/YfnANxI5UYnUowPFqb9jGoT5LD6dnsWKp6Dv2QsHqaPcj+SoDkIH1pdo/VcOrf/wJ3z1LAppt2/5P7cMPaHXh8l00RGMfk308qTOv+S6UOWmdH7ZoJUKB7cpBe4iFjMn9EPYf+NLcklYgCgTgMUD9IEfqe8TpqicSWvZMHuiktrZHz2Q3nXpJjKnO+03XMB7NDp2Y1ZtA+uo9yFgL2W/ZN4rzP3zqtmdGhZknu0Q9YULRn3bFEKkShQBwEBy3loh3DQdo+bjQo0gtC1soxTR+hH7x0BKmmZtKvUo3Qu3+N63eOYd2OMWzcNa6/+/Q1a/H+S//3hdt6CP1pYNc+tA2f/+W6pts0Uok4CBCFAkl6cDoGepmfDg6d2lhP7HtJ97bM+ZLzkx06ZylVYfA4WIyutTGDftVocd9mYqmkQdZ8lzn5AxeA/eWaHQckyK0Res+hH7x2zertuHzFpqbbJGmG0KMwmNHUeDatG46hlY3XEuyf7Fw26Fq9lHJphdBzNNupQ1cKB+k43JWZFd232UiRoEGWP5NGKjFeS8p2mXX77j1P4CczUAVN13pB0Vm2DcNj+NwvHplRss9kPdEPqswaqUQcBogDcdBSLqoLjqGVffLna3DhZStnfBwadNy2tkKa9HWnSDRVSiPNg830IDWDEafVzGYmRu3jDr2WSIzXD4xDl1Lh/if2tnxnZ8N6ssVZtl+u2YEv3rQeT84goWKinpaqKsgaqUIc9iiXXWM17B6fvryOjNroziYIaTYLivLt2jUpy5UzB9r0c5vBgEP3czacnC9QXU8kphrygICb9cNjGJlKDkhMpOfQZ9nomT6y3c/nfeeux3HVA1uaHmOinrYMJiVSZkHRMJjRizebRi9znTnJkamGFcya8Tmk6oo0roxyaXim99zUNBG6PKgRevb/TIAC3Y/ZKEthjm2+o+c30Xjq8x5WPrHXatdTadqh91Qus2P04pc59B/cuwlX/rq5Q59qpC07R5IqRIFAFBy8CF15EPolt27AOy+5u2vnSFV3lBQGoTscuqYO/PvNhEM/WPMHKMA7k6BtQza/b61s7bYR7Brzz7x8dA49t4nagXPoUs3OANbMegh9lo1ehkdKIu7tBMMm6mlL1QRx6FEYHLQqEh1cYzVLRqca06p9UmaplF0JvGnZYgnl0ky2CHSuckll5/s8VWaosplw6DPTof/+t+/FV295zPsbzfw4nUPPb+wABEbJoQNPPUqn+9tz6LNk9DzLJFRSqZYv8kQ9bck9ah16KA5apGdULsahT1e33ewc3UTobpJWK8rFoNnO2qAOYoTelUzRFvetmSmlsGusjrEpv3P20TmacnmKA6PDozVs3DWOef1x1ranGKEnPYQ+u0YdeMPwuLeaXjsJJZP11gEWjdAP6sQiCq6Za0m7nCEpZZcol8QfwPXVJLl61Vb887Vrs/MTWpwWh35wOnTNoc8kU5RmNtM4RiYKUKUzTxMUNd/Ru/ZUI3RaWOLlJyzJ29SjXA4pU4xT3bBrrPC7lM1fZKUUJhutg6I8sagbOu9bHtmJj1+5uqs0gJYtsoFN5Y6sW1xjqhS6EVssp1yKDvvmR3bi6geyNVemy6GnLfrBgbRuqJNS4rmncYlEyZXlV6QeOqfeBod+yyM78cHvdDeb9JZ1w1g8p4pTj5yXte1AOfReUHR2jE+5fIHRjEMvf+i1RLaF4imxKA6CrmQc3vybnbjs7ifwnbsen/GxyHyOgZrarY7frcGhXkq5FJ2HZMoao0Pv7BmoNp7xgbJu6NDJGU/n2YzmVEujpF58qu99kXJppkVf+cRe/GLNjq72vdseHcYrTliCKBT6u6fStEMPew59VoyKzUeB8Dr0VpTDZD3Vx2n2MjSkQtRFHTo16V+vf6SjRQl+vHIzrlu93fubL1M0nSaiLbNuyRZLi3N5VC5cWaNU8fd2LD2IOXQam2aUKTqD8rkjeeZv2flTJ1CtlNID8XgThJ7o/tj6ur53z5P42armK18+sGkf9k00cM6JSzTl0UPoh5hJlckJ5/XH3pT0LKEkewhrto5g9Zb91u9cR8sVFBdethL3btyjf0tSiTivttgNlYtUCpUwwEQ9xbWr21/x71u3b8Sldz7u/Y3Go7oVFJ0e51xmqWw+42nXymSLDY/KRSoTiDV8c4eJRW0Exw+UdUXlIu3704m1olxcDj2RSve1ZkFRHex1jltPZKHe/X/etgHf+NWGpu28dd0wAgGcffxiBOLAOvSox6HPjkmpEAiBIBBeHpwHwz59zVr80/+stX6fZB2SthuZauC6h7fj3o2mrriu5RJ0R+UilcJANQTQ2YucSlWaqemjXJR2gN3p+FJ1h3Khay5w6B7Ns025TDMoKpvfg/U7Rw+Yw59u9iu3mZTPbUm5kILGg7ibBUXpWbrHvXb1Nrzjq3daC3rsHK3h0Z2jTZ/r5j0TOHxeP+YPVLRDfapVLtS+oOfQZ8eIcgmF8HYGju5qSVrgbCfrRTQ7ntMwXDXDdehdoVykGeU7cSSJlNgz7l+ezS9b7D5C70qmaAmH7qMOuFRyuoqQZrGUrfsm8ZrP/wo3/WZnR8fslhnZ4vRvrC6fOwPKpWxASfW9z/7n78VEvZxyIarGzawenUqgFHRxr4l6grFagqmGbEo/NqRCnHPX5FCf6iS/XnGuWTapFITIbrCPCUkZMks8Sgc+ZaTtqKPxFPqGzItzhaIrqf8ZVZQ9vk5QRiIV9ozXSwavvK2J7Qyz/bojtUxVd3Topan/0nYe2WfjqNQ0B6hmsZTdY3UohdJMydk2/dxmhNDz+zKNZzMyVezv3Oi+pR6H3gyh6/hNYRZm18LfOWLue1mCIO0Xhdk7o8FQL1P00DJDufgfrmLcqfQoNDiHnroOnXVck/ofdEUxQTML+tyuJWmGkH2LKOvUf1mkXNpp776JestEkVR2h4smR172shc5dFjfd3L/lVL6mfnoIrrmqQNQlwToVrXFYs3ydk0HRUsoF5efr3GE3syhl8w8TLA0+38no17W5cKG/RMNvPOSu7Fln1l9q5G/gwB6QdFD1aQCAoFSyiVlU+3EE9CbZFNGclQ0jayn5rdGalQu2d8zQ7xSKQRB1jE7cZB0jbs9tAtdm49y4S/Vu75xN672KAre8+378K/XPdLy/N0ARWWZol6VC6NcNFrs4J7xTflnmt7T854qcWizbdJxcNMx7XSnQ7nkCL2UcnGObXPoTVQuxKEXVqWy++TO0WxpuzAQGqGvHx7FXRt2Y83WEXO8fJZM2/K2PVXWQ+izbFIphEEWFPVNN3liUYYu7d+5Q6f9x3wIXUrEeep/9vdMEXo+sxCdUy6Anx5oRrnw9PI7H9uNh9mLQrZ7rOYdKKxzyG6l/vudmJ9ymRmHzo9FTmvD8BjO/tebseLxPcahHzCEbrdtOjaToKhWubSgXDSHzhx6WyqXkllYw6FcTls2T5fwqDWK10PCBMAg5AMVFO059FkyqQAhsqCoD51IZTs1t8NbskWN0POof+p0piDQvPdM0/+zmYVAIPzqnDKjQJMvMOqrtug6QAr4+hJzlGrtEFLV5fK5iYvQi0FRTrkYDr39+8+viY67N6estu2fYpTLAULoXaBcXJ67E2utQ7dBAQc6402ComU69Ibj6HeO1hCHAi88dpEu4UG0Dn+nSZgAHPig6GzJFqNZOerTyDIOnYKiPoeurM4unE0s2aJG6EWVSz2ViCOBOAr0391qd2cql5xyGfNQLvTCWbJF+2Wk+IA/gNyaH0+7VMulfJHoIqUiWaVEPUB18CLzUxjnlP09Xku08zjQHPpM+hTdt+k8Gi1bLK3lIq1j03sxVI2aLkNXpkPXQdH8/52jU1gyp4oTDxtCIhU27hpHLcmBhzW7UuiLD46gaE+2OEsmlULYBOm6/GtR5VIMilKgp2YFRbNaLnGXkIGhXERHiFdz6M0olyayRUKjrTT7zdrdXQ7dPpiblQjYyprpBEV9CJ2c1Fgt0X2AnMhTbV2ptthipadm1ppyyf93Bp75g3HToCi1yb0ujdzz/4dHa1gytw+Hze0DAOwer+nZEr+eJJV6hqwRehvXe+dju7q2oHUvsWiWTVMuJQhdKSZbTIt0gR0Uzf4n1KF5SZntR4tE07Fm1m7GobNG3bF+F377q3eWvtyaQ/dQLr6MQ/pI56DZh4+vlW1QLkkqu5MpWka5eIKe3loundBUDsrjx5+op3qWdqAoF8WubboKopmUzx2ZbI7QU2ewIIS+cKDSXLaoSxrYbWo4CH14tIalQ1WNvmsNqQdXfjnZMpCZI+0kh+NjP11dWuu9U6P+E/RULrNjpBbJgqLF37n+mAfXdoxM4cndE5hsFIOibmIRBW9Ih86/m367ASGydnMp3UNb9mPFE3tLuUm6lj0eysXHoZtqlNl3E00oF9UGP96O02/HtNKhQLn4ZYvUvuno0BU7hVtPfZwh9ANFuVgrAU2zX3Hw0amNTjXn0Ole0b2n92L+QAUT9bQ0c5gGAvcZJ05AfKd26Fnm9FQj1bNjC6FLg9ApKNoOQp9sFBMKp2t0f3tB0VkyolxC4e/MvIYHTyz69DVr8eHvrvRTLnVKtLC10qRD599Nu91SmQxXK5JfPnVWbHDypf8bRFROuRCi8t2rdmqnk2zRfYlvXTeMf75mbclexeuol1AuvtR/PsuYTgDRi9BTcz9o8Jw8wBw6MP1+ZUBLZ/uR8wxE+bnduAM9uwUDMRKpLGqSG58Ze7+XEvUky3xeOtRnHHqSapVL6twbrXLpAKHXE9nV8tFAj3KZNSO1iI9y0QklxL9Kw/+OTSXYuGvcplycoKhbQKrrOnQhIBwO3bwExePz6/MFRb2Ui4tI64n1t7W/RwVUaINGy/b3P1+1Fd+8fWNbLw5vn0u5+NbG5AHR6ZQD9nPoBqFPHvDEIvN5ug5d37cOHRcFRBcOVvKiW56Bns1wAdP35w9UAJSn//tKUQA8KKq0/HbpXEO5TDHKhTvseurRobdxvfVUdrX0BdALis6aSZml/geiqEPXfKsHoadKYaKeYut+k4nmBkVNenr2faWrOvQ8ISqwO22S2g6HG//Op0PndISL2IzKhcoF+2YArekU6bzcvD2JVG2tYMNf8OJ0vJxy4ZRZRzp0jvYdDn2sljLKpf1B+kcrNuHBzfva3r5p+9i1TpdyofvWKRKlgOjCwcw5+wKjBR16Qgg926dM6ZJI/7PickbKEl06VEVfVKRc3MHOzRRtpx/U8zUPumEHRVBUCPE6IcQjQoj1Qoi/9vw+TwhxtRBilRDiYSHEe7vf1NkxQro++Z9LN3AESt+t32lWOXJpCeq45HSicGY69G/fsRF/9sMHdNtErnLxcajerNf8u6FqhJGppLDknnUc5wV369SUZtW26PllZVqH8wFm73jrBam5Q3cdiC+4R23KqB7T1nbNOwOimEJ9ehz6v1z7G/zwvk1tb9+8fTOnXHxUVTvGETrgn3kmJQ594WC2rmfZIhdlCF0HRaXSFReXWBy60aHbdJmp5dIJ5dJIZdcqaR5whC6ECAF8GcDrAZwM4J1CiJOdzS4CsEYpdRqAcwD8uxCi0uW2zopRpmjoyRTlKJUWCTYBtmybUbYwLv1mZGweDl1TLp13kFvXDeOeDbutdruyxbQNhL5kbhWASY4x7TefGw4XTwEqk1jkoVxU8+Xl+EtRQOijWVv2eGrMuMYDVO6g5BvQ9CCsTOmGtIMBNfWgfa7Lp5hJGRfsPWYb9FQnxyKbLpVn6sh3th8lFS0arJae3+XQaywoCpQvcuHWbNHf69R/qeMWA5UI1Ygol1QPrnZiEau22GZQNEll1wL5wMGB0M8CsF4ptUEpVQfwAwBvcbZRAIaEEALAHAB7ADy1q79O06SCRrruKMyfIdEQvlog/Tky0C953ZZx0f+ZyiVH6NOYGm/dN2nkdxImscgrqyt/sQ4byvS6vJ404EzdNdLNj5u2RuhSNUe+/De+mZSGC93bonQAb1sgylcscqst0nczpVxcSmtsmioXKbuztirgSvOmd1C33kq7RpTLojkdUC46KNqcctFihIIO3VCZFEOphAGCQKASBXZQ1Hp2RuVCwKrV9ZoqlPb3O0emmu5XZgeDbPFIAHxuuDn/jtvFAE4CsBXAQwD+RClV6FlCiA8KIVYIIVYMDw9Ps8ndNStT1EXoTnIKT1vnv83pyxJudT30mqNyoVE5X+AC6HxqrJTClr2TVm1pkevQbUdsn5MbvQjz+rOprqvKsKfuNuVSyBT1OO5WQVEfagaA/ZMN3d6yWu3c6CUerESlWYSuDh3I5IeacunAcbkDO/9/3OLQO3DoqjsrN9GxyKYbm5muDr0dyqVQnCuvFTR/IOuHZfVc3AQiMi5Z1WApyt6rviiwdOh2fMEg9HZlizQD5LGF1Vv246xP34hHp5FsRPfgQCJ035ndu/BaAA8AOALA6QAuFkLMLeyk1CVKqTOVUmcuWbKk48bOhnHqwu2LLg/LU9v5yD5UzRw6vRQTTuo//R8FBqF3iqRGpjJ5HHUspbJOGTjqnLKCRvy3Sj41dZ0a/5MGI43Q9eyjFeVS/oL4ApWAHaB1aSCfUdsGqmFbKhc+CE4HobsDO9/f1qF3RuN0m5cFZkC50EDYYZNogJ+fgwRfv9NZqBqhpwgDgaEcCJWrXMoyRRlCZ7NfAOiLQycoaoMUV+XSagCrewACxXt2eZRirYz6zYHUoW8GsJz9vQwZEuf2XgBXqMzWA9gI4NndaeLsGlEurloEcPi3xEYwvCMQQk9VJttyKZdEO1LDoXeKpLbmdZ25yiYIsqmbPeUuUkJk9LKRQ5dKYXSqgQsvW4nh0ZqXciki0ulTLvyaOd3AqZ+2HDpD6GUrFvkGD6sEQCeUizWw5y94SjEFw6FPJSnGawnO/NQNuOWR5qsXSdk9XpYfZtpBUVns153s11/JaEdfAg4PSgPZ86uEge6HbhzEPbZ7Tbx8LuUhkKOuxoGTWJTtw7O1AaZyaXG/6p7+NJOs2mxmnfmc2bB2HPp9AI4XQhyTBzovAPAzZ5snAbwKAIQQhwE4EcCGbjZ0tixTufgpFx9i1UE19tucHKFLmaE0qYBqFKCRZiiMnAyvttgpkiKHzvngQBSXztP1L3wqFGl3fimBR3eO4bqHt+PBzfsKlenoPPx45NDdziy14y+/hrKg6DBD6Hs6ULkMVEMP5VIc0Gjw4EHbbnHoUmUIMwqygXXT3gnsGqvhid3lS6FRW7pV6M9VckzHppspSveZFCbNg6I5Qk+yUtLVXGZYFkzWKhfnmng9HTofBUT7otDWoSv7GJ3q0GkGyJuQNKE1W1kq1azRLUAbDl0plQD4CIDrAawF8COl1MNCiAuFEBfmm30SwEuEEA8BuBHAR5VSu2ar0T7bOTqFcz97Cx7fNd7RflZxLucBcafgUhB8W3LoKUPnFPCpp1Ijiojr0Dt8m7fun7LOSzML4XDovlom7m9VhtCtpBs+gGnuEPnxDCL1tZ+n15dZGYdOCP2wudWOgqIDlcgKVANcrcFRtUGI00n955umJfsvyDlkqs3dasDuJuXim1l1amWos5akOP/rd+H+J/d690t1nwqt4/i2MUFRhUoU6n5YVtQsYUjc/r4YFLUolyQtFOfiSjOgfdmiD6HrmvvTdOizFRAF2iyfq5S6BsA1zndfY5+3Ajivu03rzDbtmcDGXePYsGsMRy8ebHu/TC3ily1y51RPbATDX2gdFJVKI9gFgxVsH5lCI5UaNdEi0UDnSMogdNOZQp/KpaSsLG8zDSpcN+7K6BrOjMQg9GJZ0qxd9jl8Zsv/zPe7xuqohAGOWjjYlmxRI/SKQYVhYDsU3+DB66J3xKH7YhTO/gsHKhgerelEl2b3gTKQu0W5+GYQnZorLSQbHq3h3o178NDm/TjjmQuwZd8klsypFuIwlKXpo1x8OvRqFGiHXka5GGfs6tDN9/VU6Bk2tSOjXGyErh06IfQOg6LtltdoZQccoT9drGw0b2Vpzmn5lqBLPQ6dB9jm5o5cI3SptMNbkEfw64m00AGVz+0USWkOnZ3fVz63WYIIOXnNoUt7rU2+S8NBbC6HXpqE1cRJ8TGGD5a7xmpYNKeChYMV71qnrnEOPWurUSJ4qy2yazCf2x9QfWi/iNCz502zjWaOop3BrxOzntt0KRdp7iE3Km2RSIV6InHe527F5SuN6C1DnJlsEPAnzBUol1SiEmXgJhBNKBdNlzgIndGKPJ0foKCoNCsWObRN7NZyaTMo6n3HpjEgJ1LNWlIRcAg5dO7oOjGlzBJ0RSdlPnMKQuXBtZMOn4tlC/px8uFzdRuIkiBJVj2VulNYCH3GHHqunw9cDt2PIAGmcglDfQzL2VlIz6ZcXB26e/x2go181sA3Gx6tYclQFQsGK21x6HQ/B6s2Kk88TpyfK0PFKGzbyprVciEj2R6tb9kMWPgC6zOxmWaKptLUKCqsmdswK1TVU4nxeop9E+YZpfn7E2n1Vnm/o1tWT1LtWKtR2JJDL6hcuGwxUXowoeNZQVEXoQc2h97qfjWcmTnQPBu7lUk1uwj9kFmxqOxFa2VSwQQXSwJ9gL3gs1TZ+RbPqeKHH3ox1m4b0dtryiXn0BuJ0p0mZsW5Ole52By6yoO5rg5dS8S88rG8HZFZIJfzm/w4LndIDp+W3CsERZX9v884eHRli4fN7cPCwRh7J+pQSjVVARjKxUbo/OW0eG92jaqNgafQbo7ONNq0nYxx6DXv79xcBzdTc5NnOjXfkoNkEwyhp57ZXyozhx43KTpX0KGnSs8Sq3FQrnJhXLnVXmmet4DUq4ABGeVSS0xQ1K0gWqi22DZCLw6a03HoSX6/ZssOHYReMhVuZSQjypBu8TcyjiKIngicAEuqOOVCQdGU1XIRiINyJFNmSSqxPc9M4w6Wyuf6gmLNEXrWBqXs2jQ+yoUPlJONtDQxx6VmfOZLoQcyhL54TgULBipIpdKryJeZy6HTS8fpBl9ikVTFmEA75jtWEaFnqe/DFBRtSrlM3yH4jPuk6dTtTjzXR0YIPUmVF5mmMhMVNMuv8HHo1AcrYVAaFOVqFut4rB56tk6ocZCuDt2t8e9SLq36gVsCw3c9nZjsOfT2zI2kt2tZpmiuQ3f2tRM27E6cdeTsb4pap7JIudQSo3KJA4bQO3jxdo7WkEqFJUNVSGUccdAssYi9BB/53v349h0bCzr0tODQ+fUWVS48Rbvg0Nu4/3wf2kxKhd3jdSwZqmqU20rpQjkBg05Cl43Qi585rdRZpmjxZXZnQAvz502US7Pjm9lMdxy6W/O74/1L7htgc+hGLeRD6K0pF/qpnkgLoddKErJa6tBzGsjm0AOrlos7c3cpl1b9wFV7Ze2ZPuWS5APgbNkh59A77dBSwSwU0QaHnn1vHCpgT98mHMolC4oahE78WTME5xpxlovnZCgw4/HzFYuEG7CxO9uarSP4+YPbsPKJvQWEng1M7JqsAayoQx/3LOZh7gms7X3mc7L7JhtIpcKiwaqW/rVSutQ8Khd+7W77TA12wxV3xqGbz9xB8PdygUO5NJMtThd8lLePDzjToFxKZjaAceiplGYw8zp0QrxNKJd8v1oqUcllju1w6IXiXIxyaaQ2h2506DaHXkDook2H7gmANotTtTIpe0HRtmy6gSZKLPIHRc3ftkO3H4zpHCY1nlQPPD05CrMFKaJAdJRYNNnIBokhpnfXiUVOuxsOWv3Rik36bze5gkvnUukfwDiVRQi9GgUe2aI5TpklziwHMBrk/kqoB8FWSpeGo3IxlEvx+IDh7qWy0Xq75psBpVLp5wGYaoMTTV3BrGUAACAASURBVEojkE1HC9/MfM+/E+PPxX19NOUiFQML5vcsKGpKWvj4cE1RkINOJCq5Y80ol+YIvawAWyOVaCRFlQunBk2Br5khdN/sdVo69FkOih4yDn26o2YqswCcNyhqBQltdJoqM3XK+4gOikaBMM7GoVyAzKF2QrmQkyBVBxV2MuVz/Q6nlqS48oEtALJOmLqUC6cglEu50ACZ/Z0whz63P54W5eJTntBxQiGwMHforZQuPFMU4JSLPYtyP3Np5nQpF47Qq7FJjqEBnKxZPzRBwrab0NR8M7ROjDvMgsqlbjh0d21QIKNrwgAtKBfbKZJsEcgpFw+HbimuXA7dkS1WnKCodRxl70OUp6+wnc98zrsnW3wKzI2kt2tKZc7EtwSdxaEnHMVkVIUvKDpRT9FfCU2dChYUpWh8FIqOkJRx6KbEgJRgKy2ZbRuss9/6yDD2TTQQhwL11EyZeS0Xvryen0NnCD2PD8zti0opl6ZBUWnfQ7oWILuX5BRbcuipjdBNmWI/QufZndNC6Mp3LIkoEDoHgfh/smaOtdscui9TuBMrk3sCXLboLx1NwKYdyoVuCQ+KViM/QudtKquH3kilNyhqnVtTLnnfZ2g+DETbiUXS846142tWPL4HX755vf5byh5Cb8umL1vMi1w5GZeAPf2scRQjVa5fz/7m07dG6hYeUib1P98uDoOOuE5CSbzEgKKgqHCCdqlxOMTnLlswkCF0h0N3EatUho8scOip0mulzu2PS+mppkFRD0LXyInNalotQ0e8Jr28pkyxORYdn/PmFHvg27ZjFgJm/SwMBAarEaJAYKivfYTeThJWJzZTyoVLLN3namSLkvUJvq9CGBoduo9ycTl0HhStRGHTfQB7cOTJY0mq8rowXIfuIHSXcnEcesvUf4d65Mdqx9dc9cBWfIU59ETObur/IefQO+Uls0xRf1CU/11rODp0HhQVJiiaymxlcZ3WnJpMUep4USA6Ct5OOA6dHLFvZsEHNnoR+uIwnzJnfxvKxaZKUmleiGK1RakDvkN9caEztzND8hXnov+DPLmLVArNzFTrs7Nu6Z5Wo8Cr9eZa+076ibWmKAs6R4HAQCVEfyVEn+NI2kos6haHPmPKpTjQkk0x2aIvmEuyRZ0p6rkmV+bXYMqUcoQuC/sXP2eDDKdcqi5CJx7eoVyA7P1pidC9OvT2VS7j9cQGMrl/mC075Bx655mipq64VDbaLSt6RI7bVblQ1D1ygkSJlFl5AYbQmyGp2x4dxq3rzAIgVJ7VUC5Kl88V7pqirLNRZx2shBZCjy2Ebu6bUgrV2EboXBVCyHluX1Q6m2m6YpHHoZP/oUGxPw5L62Pza4xDI5UzCSjZ/9U49A7w/HqnnSnK7keYUy4DlRBRGFhT/3aopy75c6TKLNxAgeGpRqoT3lqZL1hNRn0vkf6yCiZTND9/E7RN/1uyxcjPofv6tNvWRv6+uUFRbnom6MSxAHhpVte8QdEOfM1ELbUrNcqebLEtm07CCGBULgZl89/MZz4tpGAiOWji0qXKUHAUCt1hG3nqP+9IUSiaTvm/cMOjuPimR/XfhJKG9MpI0NmUoVMPnVMChC76KyHqLKhlceiM35QqezmEKFIuqVTa0XqDog4n7jOfDl0HRfN7OFCJCispuUaozC1FzKtJKlV86aYbFLVnQPmAmQ/cg9VIU0W06nzWliYcuuy8Dc2MFE9cPXXF/Vvw5otvL10NiBuh12oUeDh0BhA8FRmzoCiT4/oyRfPtabdayikXf6aohcS5E7eQu4dDdykXTRl6EHobDt0AJNY2p781s/F6UuiDs5lYdMik/vtWEmprP2USiwCjq6XfyOzUf6MyAWxNKyG3CkfoqT3NakW5jNUSvWAAYOptV7k6RcFbx51PB6mzDjgIXXPo0kboqcyCrHEYFOq/U6ZolF9bgXLpmEO3URuvljfZFkI3lEvdQ7lMekoUNEOizawZh/7qk5ZiW17auBqHGK35ywvbx5vebLL0ePlsUYTm+Y9MNdDIOeaBFsu184SzYmIRR+hFtEqyRZHTLm5+hZTKGryVytpU1ZSLX4duIfQS554tcFGULfqOQ8eILYdelN+65luCTg9sbfShiXpaSPzqOfQ2bLqyxUwtIiyUbX5jDp3r0HPNNs2cuMolydF4HHGHbne6jHIpR3BjtcTiBUk5Q21UijJVy+uhZ5xnRvVUoxCJpXKh9trqFJXTOJUwYCs0md9pqhx5gklaDdM25QJre7o9A5WoJaqsJ8pecNsJilaiQAdwffEFfp/aMV+fSPOZ2O+9+Gj9G5fMNZUtdtuhq6wPCggWT2gfRSYWQrd/M6n/BhC495SeXRSKAuXiKmh0PSHOoXtmZGVBUf6ZVC6VZg7dRegW5QJvzSNubhlpwL/MYZmN1xJd0E/k0uheULQNm65sUeZqFV/mmPUQHQ5dMi6MHpDMp6VRyBB6Kq3FaQGiXMrbOV5LLCQyWU8xUAlNiYGcCxaexCKucmlIhTjIFDeNVOmAnq62KIv10INcgubKFql8ajUKmq7uRJ3XZ2Xp+ECGloCMHmqXcnHrhxiEHjIUbPZLSpx7K/MOmLKItLgzaUa5dD2xSGVZq5zKc5N5mplG6GHQROVinDHfJGXvQeybuTkOnYCRzaG3UrmUoHVZVLm4OnTdf7XKhc+U20DoXh160cmXmZto1guKtmnaMXWIenjGpbs/PxTvdKlLuWjZYtbJogLlIi1kEAWtETrv0BONFAOVyOL5lYK/Hjp7oRuJzFdJCkp16G7SDVEuumojQ6SE0N36MbS/vj/5b1v3TeJNX7pd1wjnl+zWVOFB0VaUCy1hRi8GUS58OTLfAF+mnGhlrgOj/93gFjmTuX1RU8rFlFtouwnN2ydNPRW3EmA774NG6HFYmDVMMofkoxo4RUn5DtzcMgE+h15PZQEEWDp0Xpogb4MQRoRA1UMBe1CNWD/lJazJgqD1gFd3ZqoAV4C1hug026T9e7LFNm26QdGUKBeGss1vZZSL0g4VyLhsakMWFM2cXhQILVvko3IclnPotSRFg0kMgYzH7I9DTfEQ9x1QYhFzXpwiocElOx/j0HlxLuag0vyYcRgUOjLxlUS5NJN40sd1O0bx0Jb9eHTnaL6NLGxD+wWacmkPocdhYDTziRMUjQ3SLCtc1dECF54+4UXoeVB04WClLR16NykXGogbenBrfxbAk27K6qFnxbk8HLrl0AP9LJ7YPY4LLrnLKuMglXGsJlM0hFJF/Tydy403kXPvj0N/6j8LTPdXQj14GsqlC7JFDXaa7grArPDFn3kvsagNSz3ooR2jBCFfbQc7KMq5O6IJnDRiolzy7ymC7wZuoqA8sWjcw/1O5JQLD9bSi8QTi1y9LqcmGh6Vi1JGhseTlYhycVPeSf9NswL+O/cDLp3irsDOt6H/O5Et1h3Khe6lQeihl6e2ud+mp7CsrLSCO3UmdLighUOfbs5E6fFI5cIoF+1827hOTVXFQWF7k/rPi3PZ5+YOnbZ5aMt+3L1hDx4bNmv8csqFnh0Nyq50kY6T5VAUZYv9cdgy9X+gYmYcutqik1jU7iLRPgqo1YCcSmVl2tK+vfK5bdjMZIt+ysUuzmU6HL00/LlQ50jYi55x19Jy8kDz1P+xqeKKQDooynh+paA5dHPtdvCokVM9RLkYHbo5DlcH0fqqFLR1+edaklXJazX4uQ6LyqP67q150XKHXmlNuRBC19rnZolFjgbYtLF9j+4LrGYDqv369MWZ5HN+f9z0+N1OLKLFTjia9VVGLDMdTA59KhdenKs55RIxyoXu0yQLcEtlpLRVjdD9GaZ0rr7YVs7QoN1HCN0JivLEooGKyZfQ9ZRc2WKLoCi1l98WX410n/GZJgcYPYfehk1XtkgJQmYVcH5M85l3OHqgvMhOIESO0A1fXgkDnVjkqlzKEDol7/DOooOiGqEb/bxgHDofJOgFzAK0GeLWCoOAyx/JQeVILzAO3XVkhIZ8g58vmGwQej7tZNvQrvRdwDn0lpRLVqKArqOuKZeintouezo9Dp2/zDy5xp0698Uh5lQjVKKgKYdOp+4Wh059mKuneOyjlXHZouukOML0LezAB7YKKzpHx5ywSi6bZ8VruQDFdUWpHdUotBOL8u/7K5ncUSqUBkX7WIIZtSu2EHrroKhP5eJLsPLZBCthoYj68VB13bRDxqFPV7ZIXLhWuaiiYwJKKBfhjPZ5pycUEOcOPctma0+HPl73IPRGgoFKpGcEFMzUC3N4OlgqFRoyc3xRGECp7GWKAmHLHxlyIKQXRwHqqV2sK5ES9SRFNQz8gx+7HOq8dOxao4hoynToxKGXKWUAExSlOIWhXIwT8AZFp6lD9w1cvhdz2YIBHLN4MKfU2qBcuixbjJg6yXDorffnck/e7AyMmOvVSVUuQs9vA5950ja8hr5SppS0plzKHLoyNJCtPTccukvfANlAQa9lf2wGdkL5FocetO4H1K7ppP5b6wewWZk7s+umHTIOvRNt7+ot+/GFGx7V21M9dMBFkWyqlxQdA3+hqfwu58gogk+BUrJmOvQyhN4Xh5a0Uqqszbzsb+IgmSQ1KhcgyzjlyhweFOUql0quJ+a3kuvQqR0c8SrPQOgidF/gNHEcen8lglLlK8EDdi0QHgik66/Ggeb4yzj0TmrpuIk02bFkAaH/xXkn4EcfenFWxa+JJ53Ouqat2icErIHE53zLrMGoKn6tfKaUUXjUV8y+haCoo3+fcFa50tSHVrnkBdZKEHqfg9Bp/35GrXCwJIRAX5SVNY6CwELoUSCstWrDoDgjKd4bQ7mY5ezaG5B5PoUFBGYPoB9CDr2DqP7PVm3F529Yl7/wuWPM74TNs5p9eLVFirTzzkELZDSY86agaMPDoZchOM2hs/NRUFQwhw7AUC7SRiG0jeHQs/0m84xTAPlapLbaJJWGckmkLEwza0yHDtgIvYxnBoCpJhy6DoqSQ8+nzM0Co/VUWqWI667KhQd9pX0N7vnbMbq/cWg4Vx9Cj8MAfXHYMs9Azx46aMNVD2zBN361obR9tGqQ61DbOQf1tUpkyxYnLbqkSXEuj0OnAWXCQal0jIiBHsATFCXHXQmdYL8ZtMl4UJR+q0ZBJktkwMENYoei9f1xF7bhbWg1IPNr5zPSXj30NqyToOjIZLaAglTIqy3a64KS2UFR5tDzz7x/EOLl3CoFIzmiBHIkVUa5OAhdqSxSzlUudI16xSJyyg6HTlQPdfhJhtCFsBOLDI1D7S6iW43QvQFkcw2u6saH0N3kGkL9A3ldlGbZorWG1I6gwuIRDcYFU/t4u9wZTLtGm9oIuFx+5pN1+o7XCe1z9aptuHzlptLj6fwBJ0Dczjn4QGjNDDlCl82LcwHIBxT72dNzDIOs5hA9K9qnlHIhhB4HuQjAvi4boTvB6ShENQ6tpLuGU0+J2tBqpmYt/iHtNrTqQ3wN3p5ssU1znUU709j9uUOnjhLyoGhbKhcbVdLnVCJXtBiErlUujg69FeVC55hqZNRHpnLJz5+alyJgKMNeG9IEY6k9U41Uzx6ygcAuJ6uYY2gkUnPh2TlNUDTQA0tzykVqh17kId0CVbqWS17DplkJ3Yl6otcTjVmZAk255NN4HvTl95Qc7uUrNuHcz97SlK/nbYxDUzM/o9b8r0/kVNPcuGsc373nCXPt+uVuelqnDbLUORMoiVgtFT7Fb2VczspvBTnjapQFO+n+uqUQ6D7wlbhcDr0SBhbKNwjdT7lQ3yJdudHX5xx6pYlDJ4Ru0ZEehN6GbNFdSzhrW3u+ZsKZ4dC+vaBoif1m+whO+cT1eGL3eEcdeGTKOHRCN77U/3IdelHlEpLKRZrqb6RyKSD0ZpSLg9DppRqIjcqFOrfIuX8XOdDnRqJyDj2nXBhCzxKS+FSQAlwClUjkskUPQg8D/TJalItPtqhoUPJx6A5Cp6BojryaUS4ZBZUheSsQyBwTncNHuUR5otWjO8ewcdd4y0UhqK2VKOwAoZub86MVm/C3P11dWKavE8olkap0ACBQEjPu3ldIq/TYuiSEjdBNlc/YSf2376kOigaBKZSWb0u0DQ2GbvypjHLRKpfYzjWg78s4dCBTt5BD1wtcOHEsakNrDr3YZ9tN/bcQuqT/ew691Lbtm0IiFbbvn+qIl9QIXVFdc+Ocy5JPbNmiTRMAZjkrHhSNo0ArBWyVS3lQdJwhdKVMydpM5WIjY0r9p0tOLISe8fkxWz1pqmE4dEL2Jg2d6sMYLtSV/LlB0TLKxUXfJrHI49Dz/wNNuWQvapkWPc25fHqhK6wyJAW+7OBxcaCJc8dF5/DV4+amHXpoHHUis5V6fOZO5YniczXaHSltpCrdnvIHIpaB3AnlUhYU1eWS8yUHfe22ZIuRgCubJEBSiYIc8BBCd1QuDReh55SLi9A1FWMceiV0OfQQ1TxfgpraSBXiwEXorYOiNQ+H7s6CysyNH9B19eqhlxhHSz6UWmYjk3bgMWBOQKrsRa8nNkLlDl3vZwVFs305Gq/kXLRby6U55WKvjEQoqb8SMnUJOUE4KhcbOVFCE5170lG5lFEu2YBjO0OpzMIEevDzoBf+2QRFy1Uuegoe2pTLRAnlQrwuLZht8cYym5EEbAZhJRaxFPdEmsFyquF/Fm5bY8Yx+1QuZG6RqpE80O2mkXeK0JtRLkEgcsrFCYq2RblIhIHQfYJML33YF2nVVNZudm5pqi1yysXVocdhpjzSKf2hi9DtZ0DtpkShhA3agE25uEHRgTjUiXiWysVF6KK1U/Zz6O3KFj0cupxd2eLTunwudY6GVB3JFolyoVHfyhSVCv/3m/fgjGfOx3FL5uh9WiUW0RJ2fCpejQLU89osVpW3sDwoytfTTKRkCD3U9U4S1m7OoRcQej640OxgqiEZQs/ay2ueSJWhGOKY+a1MpNQLE9Ax7EJmDLUVZIvlKpdiULQ5QifE1++jXPLAF93qVBW19ECOFqeUHmjaRegxoySacaHuVJ4QOgXT9fS7fX9emG1w0/kDbGbQidadav64hd4m2cIqm/ZI7yDBg6IEBLLzZxdJM85KFGCinlpxDMA47CKHTkg8sP5uJyj6F+edgFQqfPP2jZYOvciht0boRDPyAmLtzn4mODiz+k3T3WZkhwRCL6vV7DMplXnBNNK2Vx3atm8S20dqdpKFt5aL+T3IAywNNhWvREzlwhF6Ts/4gnHjjm6XHDpP/W+wGUKQqwcU4yeze2O4e5L4TdYZh55PR3kAk2qCBHn7XN02LUzQip5yE51oOm2vKUr/K90ewLyoZQ6dvieuPbYol+yl5YOzL8Mv1gg9u9fNNO+83dyhN+PQ40BYAWoCEO6iIZ1QLk0RuqRl4LgOvH0depJm9eXdKpp0r4eqsXX+Mtkip1yMyoUhdHYMvU9JLRejciHKhcCbSSwicx36mUcvxAuPXWQNrI3Ep3JpD6ETj6+P1WZ8giN0/czVQZBYJIR4nRDiESHEeiHEX5dsc44Q4gEhxMNCiFu720y/cbTUblA0WxIq+8yRtuFdc8Qvbcql4ThLwKZcdFCUOe8410i7GlhTVKrYVhuhK0w28qBoJfLIFm25pavioPPSS5Nx6IHeV0q72qLUlItNx4SB0GjW4tAtB11E6Fqpo5VI5joLdap1YlFzyoXPWABKNzczlIgNOFIpG00yekcpUwit1aLUdIgKC2YnTabOYZCpRejcmkP3rH7TbnJRM5WLVFk+giUb7ES2mCeg0fhE7aN7PZRz6CahhrfLcMI8NmQ4dE65KPa87Vou7qDqcuhubKDPolz8AyuBLDqei9Bb1UMnzp8GFbqV00HoHAgcUIQuhAgBfBnA6wGcDOCdQoiTnW3mA/gKgDcrpU4B8H9moa0F4w+53aAoBUQBm3KhdzPNnXKSlk9x3WqL9JmUCFxjmy1k66pcAqv93CixCMg4aotycWSLQcDllnbhIuLQY6ZKsTJFc+6dI2WaulOmI11+HArdjmpJcS7bSdH/NkJvllhETpjUK1OllIuZsQBAHNnp7nEhKGr25Rw6AL1cXCuE7gZT6btSlYtesDk7LnHovvUp2+XRk1SVOh+eP+AucNFWUFRmUlt3oJ50VC6mgqOL0D1Zu9qh55RLaChJAHoWW17Lhfqyv6ImXzvURehkfL3dhodDp2TAMqundhvoHWm3zAhH6NQOPgDOhrUzVpwFYL1SaoNSqg7gBwDe4mzzLgBXKKWeBACl1M7uNtNvpvMa9NIqKEoBUcCmXHhQlAaIsofNKQ+yQAhWW4Kmk6FeUzS2ELr9wnPjnYAH7vpjQ7nYHLppt5mmZo4nK9srDOXSSLWzCXIUbmIPZvpM6gCj7jCryvDEInvqba7B1euaXAGmGHB16Kw4F1AuW9QyTuLQGSqkwBenhGzZIj2f7H6M1bLBvRVCV7n6h6bwegnAJrJFfm2E0H16/HbruTRVueSyRZ6w1onqi9RBvPgbkFEugQD6K4FVPrdIuWSfY4/KhWZBpHF3OXRDufgROjl8d6BopkMnC1jQM0kVKp5M0WZOWTv0iBC6srZvdW9dHTr5kwNNuRwJgKeobc6/43YCgAVCiFuEECuFEO/2HUgI8UEhxAohxIrh4eHptZgZD5S024GJzwRsx8xRZ0NmnbdsbPA59DAQ2nEREogjgfF6gslGqhMoANOZfYPPeC2x2jJpIXR7IKCgKF03L07VYOoavSg0mz2QRtelXKgkLx8kuYogc+jZ57LO7T4LnfrfxOlz9U0lCjDR8GeKupQLZbVm9yXn0PP7pJTdLreEKs2GWiJ0cpgOyixD6Jwam2qk+vimFkpxNtPKmgEMU/bYDhBn+7U+tlYHCXugnsxXyoqCwJoBWrETxgnHQZHDJ5Qf54tn0Pd074TInne7HDovzkVW6tB5joa0lWZA66AoBbGpDam041QtVS41m0M3fb3pbjOydg7t67XulUQAng/gjQBeC+DjQogTCjspdYlS6kyl1JlLlizpuLGu8elvu6n/NuViBxeB7MY38gGiLIPQV5wrCIR+camzHrVwEHEQ4K2nH4ELzlqutzWUS/FtG51KMLcvyq9FWjp0l+ogeoS+S9g0NZUmQ9UuO8Blizb1wSkXWggbKFazoxe4XQ5dl8+1VDH5frJ4L/vjsJRymXQol0rEkmlI5cKepT3Q2Ah9lBx6G7JFmg3xBJsyHXrMKLVRRqHVPQi9bcpFllMumWzRTljrSOVCQVEGDoBs8OyLQz0AemcY0pYt0kzPdXZlHDpAajCXcnEdut2nmunQybJ6RUrvX1S5NHfKLuWilJuN3RqhmyQ8HpM6sLLFzQCWs7+XAdjq2WaXUmocwLgQ4lcATgOwriutLLFEIzODJlsFmUa8HDpbJDp35hyh8mAT34/3o1Cg4NDf9cJn4vwzlxW4u9JpZipRSySOmN+PvRONHKGb9GuaEHDuX2hUZb8Ek40UDZlndjpF/YEsyzRLrMq+p5cwzDnoRBqZVgGhO0jO/exWE5xqVj6XOjmb7QxUylctchG6TblkLy0dqki50PO0g9ItZYsyd5hEU7WN0KXXofNxvBPKpQzNK6UQ5AuZEJI3YKc1RE9yTb0LGMZqCeZUQ+2AiJqiW6qpJwqK6gVHZGH2mSUWMYqN9UnfQtGuQ+f69kDYfTIuCYpyXb27JkH2e/OgKJWUmDZCrycY6ouwd6IBqXDQIPT7ABwvhDhGCFEBcAGAnznbXAXgbCFEJIQYAPBCAGu729SiWQi9TUQyMuXh0Fln5tl8PoQKmOmkKFAulDRRDIBy06u0OAid+Ma5/XF+noxD78/T/rWjsNQ52b5Scsol0KoErnIBDDIiVQ4vkpVlihoOne6lhdDzKnZZO/zUAV2WcZj+qTq1m0oYkPU3WVfUlEKIdNt4FiF3TNJB6IlDuZC1RuhUez7jqM2LWVLLhVFqI54ZoSXfbOEUdNud6pfcaCCm59SQUiPJdiiXrJ8EFjgAgH0TdcwfqOjr0QhdU2rZdnyBC7pO19nRakguhw5kFGFppqijQ6dqpnz/MspF5OUtAOgkO26tEboRAmTXq6xZdascxolaiqG+7F22AsIHEqErpRIhxEcAXA8gBPAtpdTDQogL89+/ppRaK4S4DsCDACSA/1RKrZ61VuemHzLj0FsFRUspF0Gd1iy5Rc7A7Qi0H0eVPCjaqppatSTdeTQP0s3rN51gIq+0SOegtmV/2/r5RE8RQx1XoCXoyNxMUXuBCzueQAjFdeg0KJQhdD7QAq3robtR//64fBk6H+XiBkUtlYs10BSvBzCyyjJLJd0X+8UsV7kYSooDCG+Rsvb8uT6vygddbhT70MH2VHW0xm6SB885OACAvRN1LJlT1f3BIHT7+RrKxQxkLvUZh1SNNH93LIfeCYeeKZncPumzMACjXIoIPWrBodc1Qjf9nZeobnVvx+sJFg4O6H2NAKDpbjOytjJFlVLXALjG+e5rzt//BuDfute01qbrajBE0DIoWiJbNJ2WIXRZpBwA86Bd2aIbFC0zyo5zOzEh9PmE0NMsKNrvOnSPyoUHXfri0NKNu6slAQa9uHGIkPHyhPK4OiBbsQh6H7Jmqf8+2aKeGahifeimlEsjtUoCc8qF1pe0VC4coROH7jzP9hC60S27JWBd0whd2gjdTSyiNrZjRmFSdAhctgjAUqS0mykaWiqX3KGPN3DC0qECh+4mRhHijJog9DjMVC6+OkgVD4du1hR1deg5Qmc3oRmHboKiRQ6dlwbwWZ0BJCC79+2WYKY6TEN5PMxy6LPIuRwamaLSHxRdtWkf/ufBbdY+vilwFgjMvqs1aJVzVaActA7cl1jEKBd3Su9amfaWkoo4Qqf1RL3nD4xDV6yzVaNAUxZRIAornWf/Z51O62MVpxYIoRupom57HJTUjgf7bDuTeiq1okYrbljMw7c2ZxnlMplTUGSccqmnvJCZDgAAIABJREFUCrHD8fsSi1wH0IpDV/mgQ7LF1gjdUGOWqkojdLNtu0FRvoDLL9fswJdufNQ6RigMaq1zh97GgEELl3BwAGSUy4LBCuPQiXKBtR3dzop1frtvVyLj7PnMEijj0AlMODp0mUmA7dpI5SoXUyFRFVQupFoqs7pWuZgZl1V9scm+tSQb1LyUS684l984zeILiv7XnY/jU/+zxtrHK1sMOOVS5ND5iix0Pv49faYO0Ko8JnFybicmfnhuv1G5UA1yflwrmMsTojwIPQoDm0MnHbowC3IAlDWaIffIOY+tcgn1i1GqciFnwjp/PUdtNNg1o1wGKuWUS1YL3UwsufaZ6m7w4B5/5/QCGC7l0gKhk2xRrxvref7cbITOgqI+Dr0DlQttf+3qbfjevU+aY+TPzXDYvJBW6+OPTDYwty+2wEEtSTFeT7FgIDYceinlQgjdzCB9CB3I17V17n81CouUi8oGek4jZce2V+HiSi/XePncRioLQIvXS/eZSWLiOnSKnzWf/fAsW9rXHQBnw57WDt2gEFbLhd3kqUZaSBoZmUw00iWOmKNScrKJlLp2sVt3giN7slCY9HgXCbhmOHS7bbp4P4uqc+7PUC5F7p879Cpb7Ddm9dAB8/LRdJNPn2nq7taMKQuKWpmfHiflPotUKf0y8+pzLuXSH4dNdegDFVuyximXamSn/vvoDXfq3bo4l9HnWwi9tHyuGfh9AMI3+LUyTo1xFQsdLwyYyiRpP9EOyOSbQ32xBQ72TWTtnj9QKbwbbozELBJt0LRLRxAoqafFKpVeykWa+jR0TLqeKDTfl6FzwF7Awke5tAyKOjp0Kc39rOblgMvMZG0T+OES3R7l4jV6GA3WwTkqrCWygL72TzawYKCS72ccsxsU5Q6O1zcH/NUWqdgV0CIo2pjEvD2r8EKx1uPQHd7QdegM+bnt5pRLn0NJhIGR8nEdulJMYpgrQrKXqLlD96X+WzQCk0KS0RSUBhdD9RQzLvsrESbrftQ8wWIK2fUY7XM9oeAetc8eaNxMUbKW5XNl7jADYTmr8hWL6DlJjEw2jDPz1YVvQ4XC206xEtehB4xy4W1st/ro3P6IqVwU9k7UAQALBir6ekw+AazrIE6Y6o03PAi9whC6+7y9lIsu/WwjdFIyxQ7I8lmG0LPPjaQ8sags38SX+t/QtGZYGLS46VWgGIA5WGSLB63xNOdShJ6k1gMbmWpgwWDu0BODdN2gKPHyfDUjHcX3cGH8cxlyQ30C+OpLsPwnb8IPq5/E6ff+OVAbLVxP1ULoyppeZucvtpsSogAzAwCgVzqngmFhIIDxXXj15HUI0poVTCYkahB68Xj9E1tx+K/+Bh8Ifw7VmNLf+xKL+Es91Ui16oZvT5I7bhnlUobQEwuhkwa5kUpWr920yYeG3SB3O+VzKfmMB5KbrVgE5JTLVILFeX/zq1xaO1zJqCNC5+7Mgzv0euJf/7Ps2GO1BHP7YhN7kFlAFEBOuTgcuku5aB26mZm4MwPO77v3rRoXHTohdJfmNEHRfBApUbgAjspFFikXE2vx7+8idC48cNdfdY2ApV49Sx4kssWD2XQ99FR6nUgtyQpM1VOpeev9kw0sXzCQ75cj3YBTLgahuzK+2KFcXA6drHQaeM/XgD0bMPLqf8PXrr0Pf7n1x8BPLwQu+C4A46jJgRJCJx5OL3BhJRZlh6YoOlc78LbEoUA9Bc4YuQm4+Iv48OQenFp/AD9e+AF8JLwKdye/hQkZ4rXbv46TN6/BnLgKWfsinicexRv23oBGMA/PC9Zj6WU3QaR1/G3cQO26a4GHzwBe9GFI9SwEkJAwvKX7LKRS2gFzlOeVLTYJis7LZ1iATYPRbMY4Jhspuqn/vG3NjGSLtLRca5ULo1wmG1g0p4qt+6cY5cKO3YZDd0sAp1JZM1Glsj5MVQcpXtHO8UdrCZTKuF4+EO7LEfr8gYqWXroLlbicMC9KVuDQqW2JLDg0WqrRumZpzxZ50bGIfd9MgOCuKVqQLYZmpul7lhqN5w5dMYTeF4eli9Tw9vIFy5+KoOjT2qH7arnYTsSsSJPVN8lS6ecPZJHnuuaiGeXCEbrLoTuFgvhzCUqcu7aJPcDt/wEc/1qoM96Lr/z8SLzy2Utx5m8uBp68G3jmiwpSrVTKHKHblAudP5KTeO5Dn8UZ4jhI+XKddMHPP5DsB276Nv442Ig0quNdm34GLHsB/mfvOXjj+BV40dbbEMYST0zchd1qCKfvfAR7552MNwX3Y+S238VrK+tR2ZXijRUgUQHSo1+HnS/+BP7yP6/Gvyx7CEftXgV8/504/ZnvxZ3Vy7FZLcG+8a8CONx+Fo2ccikg9OL9qkSGRnF/m6inOHxesS5OI1XFFZVUcZEOwB7wBiphW8W5gsBU1GxX5ZLp0BuYPxDrUsr0PVk7OnF3+wJCd2SL/HrazZye22+CoqlS2Jtz6AsGY2zdZ89M9bPTweHsvHpwTTwqFx4Ude7bnL7IijXQucIg0P2FB0XjMGAlqptTLkpBl8EtVFv0qLW4GXrF8OCcQ2/WbwzlYmbbBqH3HLrXuMaUfyajKWKtkQL9sVkjkem8AX9QlDh0qrIHMAmVD6GzZ+RFDbd/HqiNAK/+O50pev8RF+DMHZcDN/w98N5rTS2WyCA8Hp2vrr8O7w5vxIh8LyIkeM6df4LFW2/BtyqD2LP3lUjSGK8MHsAb1n0bK4MzcJp4DOdefw2QTuD9AMJI4oEFr8Ppv38Zvv/t+1FXARapffjB/pPx2colOBJb8ZOj/x7hqe/AHT/+Ej478nXcJp+Du57zD7j3gVXYoA7HXeefDzVWw13yFNxz+jtx1HPmAt95K57/+CV4RC3DiWITqje+HVjwdah0Pp4tnsQuNQ9TjQSpBF4u78FpwV5IeUJ+nx1OtT6OeckwhjCBRioRBsZ5A3lQtMopF4PQSREU1/ZCQBZ16B7VzoKBStvFucxC4M1fTK7jH5ls4Ih5/VkRMV899Nb+3OrTaR7odQujUbVFANbshm/3V5evwonPGML7zz5Wf0eOdG5frB2YKuHQ9fnKEDqjmspULlkZW/t4i+dUsW+ioQdkIOsXHImbxa8pKNqaQ3ezv901RX0rb3FzKz5yLXk1DpCON+HQqa9FJmbUc+gtzLdiEUckHKEDRlUyp5pdtlVt0c0UTY3KhUZywwMWp04coRdULvu3APdeApz6O8Bhp6CSt3FcVoFz/hr4+Z8B938HjfQcAMBhe+7FmeJRpPKMfLUjAdx5MYZ+8bf4xxj46sgJODu+Dou33ob1J/0h5q/5byy/6rfxlr7TcUrwS4jhAP9duR4AMHzYq7HkrZ/Gm7+xGtXRJ3H6Mefh9KgCEQhcOvgHqEYB7tm7B/srzwLqIzhh0StxeiDwE/lyvOjlb8NHfzGMd/c/AytVxpdzWaCUCuibB7z7Slx39Y/wkZVLsUwM48r530Dl+xfgC6IffdXJ7Bn8+Ej8kTwSp03eC1SAFRvGgVd+EanKB8O1PwdWfAvYeCveIxNcUI2BGx8EnncBsOAYoJLRZJOUOTu1H3jocpz5yIN4f5gg3X0clsnNePOGS3HKPdfijupC1Fedjz1L344PhVdjsdiPn6fvxmuD+3DO+p9CRg0sxT4sT2vYvWsZdl/zC9y7A3jd7/45RH4uMknUW+gidPaclQJGtwNP3IGjH/oF/jyqYfGGbXjRxCa8ZKyBk8NdmL/nDKB+NKxaLu0gdKd+CE96y54DVS3M40B1P0K/ff0u7JtsWA6das3M7Y+0siWVmQa9Lw7QF4eF/txOYhEfSHjSko9DXzJUBQDsHq/h8Hn9ug025aL0sePApP6XZYnSeQFWY8lF6OTQS5RAbt6ClHZQtBmdpR1/xBC6aj6z64Y9rR26leXo4QyJPplyHDsF1ewl6PJ9HB06cacAT20uqlysACl/YEkNuPEfACWBc/8/vV+FIvtn/D6w5irg2o/imBM/is/FN+C0G2/H9yohHtj6DMxN+vD7274IPHITGie+GevX/hof2Pp3iMIET5z6p9hw4ofxhQeOxA+W/xInbbkFN+OF2HL2p7HyxiuwSS3Bn73id7FkyRKMxVvxsOrDC5imXTJKYoNYhhHZwEksKLo/XgqJ3fqlifMFmN3FqtE3D48tPhcJHsHj6nDc/NLv4W2j38Odv16Lq/cehfkYxUVDj+OEHStwef/5mBrdg9/b8h3g0o04e/x5+OPJnwM/3ADMeybw4otw554hbF99C95+9xeBu78IxAPA2X8BnHYBhuo78PzRtcBXLwH2b8Kzgio+FteAS7+LGytAuivErlPei4cfXIVXr/k6jl7zNSAGpBJ41+jNGKxMorF9ACeFk9iNuairuXjB+H2I703wegDy4u9DvOB9wLGvAI44A8hRuRBsJSg9oCtgxxrgwR8CD3wXGM9KQs+rzMMfhqOI7rkSzwUAym3b8EPgi5/DK+a8HOdV7sFG9QxUd8wBnnG26YAe4/QFSecKCD0wgIMjdP4+jNcSK7EOYJRLX6w/y5xyITWYiyh5/CO7D+77YSP0DBRln30qlyVzMoe+a7TOHHqG5IlaodlNkipUokDnSzSjXAQ7J29fdqA6hmo7UEW9HKE7Mzqp7BozzQZjP4de9Bvdtqe1QzcFe8o49NyhO4sBD+YIvc4Rula5mFoufI1NoFilr8yJx2EAbP01sPJS4OGfAlP7gJf8EbDgKL2Nrl8RBMDbLgG+9lK89OG/Rz0IseO0i7D919firLv+EFcDSGsh8KpPoH7mR/BXD16CK/r+Ed9uvBYnPvcjCBOJh9Ux2Pi6S/H9ux/HTet24YPVhfiZfInVZvqfr1jEddp6APNIxWJneutb4IIjwUZQAV71cXxr4z1YNboPo7UEZ77kDHz/3icx2Uixcu8ePOPEs/CazV/G+bXb8HjwTOAtX8lmMGGEDXc/gY/9+mS84n2fwaKxR4DVVwA3fRK46ZO4NQTwGIBFzwL+4Be4du8yfPYH1+KycybwH7duwZlnn4dTTzsTH1h5O/77dXMx99Er8KlHjkQDET7WfzmuqZ2GY8/7C3zsZ2tQjSO8bPlibNs7gZcdvxAP3H49vjv4Pwhu/AfgRmQO/aV/goFkCBfWLsNpj+zHoqCCxes24GPR7Tjz8ouA2l5ABMCJbwCOeQVwxOnYEJ2AN3/hRnzhDUvxmWvX4oJzno8f3L8D/+ewLbgQP8GpT/4E9+EEvCxYjblXvRm4dgh49huBV/w/YNFxpf0cMJQL3XPKhuQqF3thBXOciXpqVX8ETLE6nliUSoW941lhLv783WftUgg6GJzLJgOROcGIgYC6Rz5ICH14bArAPH3NhOypPj+QvesDoUlkKg2KpgkWTTyOGIl+74cau4Ff3wmsux547GacXx/F+X2A/MIcYHAxMLAYiPqA6hBw/Ktx+HAf3hyswbNX/QIfCcfRt2cORsRiHCe24AW1x7BTzs9mZp4gp0boDN3Ts+gFRUuMkHIq/SoXcs6EzOn/QQehc1qFI3RdH1y4QVEzEJBZ1QL3rQN++BogqgLP/q3MUR33SqvtWXZc/oSHDgM+cDN+fPsD+PjtdVz54vPw7ntOw/dP/TWueXQc/Se+Ched/VYE9RSr1bG46Mgf45frx/D9IEAQmOuuS2Fl0QHmZaSXvayWC0n8eOVDuk4K7LgZq2U6dL1eqJQYqIYYrWUvFSlawiDAqqVvxWve/n584ns3477xpbj2eS/X++s1UOcfBxz9HOA57wA23Yva1ofxqZ89gDPPOhtveeObgKiKeHQ7HleHY9NxL8RPbr4Hpwwdq9s3MvdZeORZf4x7f5NlC/9R/I/YOjGFf40rUAjQH4eoxiEmU4V9kwr3qJOw550fwdJgFFj7M+Cui4HL34PPIIACMDK5DL8T7sDgPdfh6DDE2BGvw4LTfgs45uXAvGW6/eHwGCbRh63hMjymRhDNWQgVj+Lh/jOBC96Pz1+3Gl+69UnMxTiufs0+HDW+GnjwR8CDPwCWngIc/TLgmLOBZ70aiPtth+7Eiyq5lFIwh24FRfNnQWvbusFHExSNrJyGvRN1LByMreftHtN16EZlk7VxsBJhtJYgZLO+eloMdC/OEfrwaM26zkgPFMKSLRIXHlPhOSmBnWuAjbcCm+/LqK8dD+N3aiN4U7WK8Hsn4PrKXpz4q83ZwYcOB57zdtw7tRy3rFqHi543D4PJPmB8F/aMjGH8ifVYvu5avB7A6ytAur4Pfx7VEFx7OQDgDVUAw8CfBgD+/Z+A5Wdl/w47BZjzDGDxCaZUcyQAKKu8dSgAJHUgMmqtbtnT26FrXo2vWGQciovQiXoZyBF6wtQqmm9zVC4cvVOCjkksMm3ho+7iu/4JqMwB/mglMMe/kEc1CuyiUPOXY/vAFCaxDn1xgP2Yg9XHX4T/emQNzh9cbp1vXFUBjFkDUTYdlNaq9wBbPSmkayCnTLVcOEKn4Jrt0CmwQw498Dh0Wxed/S8lMFiJANQw1ZB6IYYMuSlgcBE2x0chDI2ePWtzfn4erFx+FvbPPxWX/XQpTlh6SjZYwjj/8bp/EWu6vigQzkuWLRpCz4GqcCZSAXOXAC94H/D83wd+83PcfN1P8RP1Spxyxkvw2evX4r/eehj+/Mr1+Par3oAFy+bDNUKghH4HKmEeFE0BIdBA5ihHMIhdz3oNjjrqg8C5fwv8+jLg8duz/+/9OlCdCzzn7YiWvwGvDe7DXjUHaXp2QW2iNOWSXdekhdCzbaishIvQ6e85VbaAisoyRQ+f329dDxm9Y8WgqBEN8ME8DBmHnqTZDFkpYO9GYMv9eEZtEm8PVmPhY48B808C5izF3Np2vKqxErj+F/hY+Bjm7nw+MLYIcTKOk2u/AW67DR8M1uHM/duAz64GJnZljZj/zIy6O+VtuH3yKKx/6G68oz/FJhWhdsLbcOq55wPPeC4gBB6/bxO+cv+D+N1XvBKD+bVefPUafGvzBjx40bG4fsUa/Oe9w/j0B38bF379enz7nBrqIzvwvVX7sPy4U7Bn4wP4h2PHgU33ZACArG8eTho6HldXduHEa/biVdUGdq16JYIlJ+Dj0VqcceX/A170fuBlf1boOzO1p7VD93Ho+m8nwYj/P1jxUC5OUBTIHD6XLZLSoVDLozGFQZklCL00eAgDT9wIvOYfS505QMkU/kxRCqQkMl8XNHdAxWqLPDlCGY2uRf84CJ3XcpEeykXYASzAOE2N0D1yL67cSB2ETvdVSoU4zvhP2pXkadx4xiM3UzrXdFu6Hlrui1dbtBajYKv50PH7K6GeKWmHzgNkQQic/BZ8794jsGN0Cs8VAgoB9vcvw24Ml+vQ8zYR+u2vRHrBcGoXmf48dBjw8r/M/iV14Mk7gVU/AB78EQ5b+V/4eg7mJq/4Gf52XxUbogGkw8cBRzwbUiksrG/H4JatODt4EHLqMCwTw5iPUaRpRvPRgDc61bBK8I5MNTBYCfN66KZNeyfqWJDLe+PGfoTI9j9ObMWTammOOGmGGwAjWzGwYx1eIH4DVT8eSBIsj0YxhQTnYgNOX30lficcQFBbhFPlZuDiPwV2ZwXGYgCfqwD4Tf4PwGfoBt3Xj98WEv2PXwt89lO4EgBGAGwD/gjAvtpC4JTXAMeeU5gprb9jI/7+18/G6a95Kd7/5Tvw7yeehlMPN7/7gqJP7hkHIFCbfxw2z4nwiHoU1UoFw1iAbc88EztGpvDj+1fjd+Yux+XJYvzD29+Y7Ti6A9i9HhjZAmy8FWrLoxhW8zH/mS/GPeu24LeGb0Pf1p/j/4YRJue/HNUlJ3n7zkztae3QeeSbO5dEKkuKZpB6HhSt2iU5uROz9kulhd6J0yvUQ7/qIvzpmmuxNXgvPh5fhmTe0YjO+lDTtlejsJBybhKDyGFKJHlJWH4+vsAG+RQpzRqi3EHGBYSeO/SAinPl+yteJpYQch7lj2ydMUdyZD4+PVVmMedaPuXvz9vMVzVyaVBqK5UpJnNXK+LXR4truwhdV8wMAk3RaYceh+iLA9QaqaYi3EGErpPPXGotavbQdoR+ByuhVa/EVwHSPkAlc1DHngO84d+w9YEbcOGVm/DcYCM+Ju/BQjmG54Sr0P+NFwPHvAKfk6M4d80KYA1wWQXAff+CP8kmMNj98DIgPA99mI+/iDYgUSHqdzyO6pyFQP98LNm1HW+qbAWu+CnOfvhKXFU5AoffdiY+2hjGGU8C+NImPHv3eqythmggwqCoYb8aAK69E3MHTsf7wrtw+g1fAHbeg6UALq8C6fX/jDcphUo9AfoASEA+HuEzcQLUkf1b/FLghR8CnvkioDqE3/3G3ThhST/+7tWHA6Pb8e1f3oe16ij86x//AV72qRvw/uP24sPH7sbXblqLcOkJ+MDvvQfnfO4OnLhsMb7+9hd4n4MbF3Plkj7Z4pN7JvRzoTwIq16STjYK9ExFCJENyEOHZQc59XysXLsD77t0BS594Vn4y4fvxchrT8YxCyJ86LKV+NFrz8Hpy4szu27Y09qhm3roSnNutDAFR78uQi/IFvP3MgyE5WQpIk8PlKL1PMMUI1uBh3+KigK+WLkY+9UARt/+XSyI+5q23VfU36zGkjUoy640joPGD66D5kk0unCRJaH0c+ihsGu5ZEvOwVKxuLVcKvnMIfQgGx58MxyrxEAlQ3lTjRRSZc8oEMLiYV2ky4Nr3CacxS142yZqZjFiE7Q1NWMilthTaYLQfQ5WKlOcCzAzl3KETpQLIfTQTizqJPW/OoT9z3wVHlS34cH0OJz/1r/DX/14FXbv2ILbz30U/b/5KZ6nhnHrEX+A55/zVnzw0rvxnuXDuG1zghpiXDhnJRY9fCUWTe7BH4YiU+bc8BN9+Avpw9pB7DrqjaitX425m27GuUEDldoi4Mjjsef438YPb38YfahjjToKrwgexBvv/w6OT7+Bj8fAxNRxwLl/i5FFp+JPv3cf/uyEXVj5xF40hpZj++59GO1fhrPf+C78x4+uxxH9CapLn4X/fO951mU25m3DwzVkXDSAG+88LFPrBAGiKMATfScBLz4Vl916E140bxHQNxeI+1CJy11Y4Dj0qiNxNNSh0d+TQyfpZfaOQf/uatNTWSz6BZTUchEV1BGjJ1ssMauWi1Loj0Mk9Sz4xvnpKYdLL8oWjZPjTjar3WwcJK23yaka3P8dQKX47smXYM5Dl+K7yavwzaUntmy7ryARrcZC6y1Se4lyIUTOy+daxbmkKmSKlqlcAuHIPaWZrfA1Mfm+VZdyYc7Iolz0MbN9K2Ggi3OF2qGbbV3HaJKFbGdHlMsgL5+b3yuqJV9ha6/y1P8oDDTtQNczUMkQej2VWoPtnpOOw6k36lut1hQlhz5QiVCJQk3BcB/eTnEuN1aRSoXdmIexl/w1+s/7BF7yd9fhXUcehRcccwLulGNYuuAIXPlEtuxveMzv4V/ecSrufHQH3vXNFQiR4roLT8fxQw1gaj8+ecW9GFED+LcPvhUbtjTwzjV34zNvei4++pOH8O9vPg3veP4yjO2ewGduuVlf8+WNc/DKvzkH61bdjQ9ftQVfeM9v4axjFgJTDdwkU7zkuJPwpSfW43kL5uOWncNYXunHK8IKHlNHYkca4XnxvMI1LhmqYu3WEf13whLOskVMzGycnvlfv/4kPGNeOXAyNCo9Lyf1Xzv07O/h0Zq1wA0lN/H+7hbQS5XyOlG3bpDkssWeysVvdNPqaYYuK1GACXLozDHXdFA0u6FztGzRODEgQ+rcydYTaVVbJHSpV11RaSZNPO5V2D7vNHy5cZHerpVV49BaDg9ghYc0srARJbWVl8+166FLD4duUy70G8ndyCnbNdZtykPLFllQVIjyut68NG4ohA48UpBZCLseSOxy6E5QlkyvJ+pD6JxyYbMWOk8cCEa5ZL/3x6GOV9CA4EfodtVN6iOt6qGPsqAor1dSFkwuM0tz7g7C+eAYBv5MUR0UzbtaihD7MQdYtBAAcA/GsXRuH9A3F4HYDcCsnEUzIb6gcyUKkNRTyLCK/YtOxTZMmVpHLE1f5iqX7H6YVa58OnQg06L/ylG58LiPno0zRPy65zyj6X1zlWtuIS+zpGP2O6FzOk8jj6HxtVb5IjJA+YBcRPJm4Cgt3tcFK1flPw3MXYSYHF8qlUWdaB26Rug55aJfzGy7UAirSBAh9IA5QWullQe+BYxuBV74ofaqLTLri4Ji+VxpL3LMVx0iyyr+GXUOL3naSO39eVsMQs+dsqBFou12cWrBrWXBp6yhELajUbCoDiBHWaFANQ4xlaS6PG9WY8M4JRex0IvnVuyj++GjXAz6Fl6VSxiy8sYW5WK/Ag0fh+6onfTasSXP2Q2KDlRCVCIzs+u02mLK2mQFsvXAaa8pOtmwtwdMjAGwF3kZmUwwl4q/EZDIwRC9TzxlvsKoBnd9UJ6mn0jFlk40/dSXKQpkCH20llh5IDx2RWt5NtKijr3MXMqlUG2R+mt+u57YzR261DQuz4ymdtB98MVcAPPMOEL3rXTWbXtaO/T0/2/vy+Msqao0vxsRb8mtMrP2Kmplp5BVKAWV1WZVFG0X3FBQGhVmWhtFBttxtGfaRp3fjD0OjNr+bB23nm67x1Gxu8dRaVc2QVAaBYSmBKT2yvUtEXf+iDj3nnvjRryIly8zK6vfx49fZkXGcmM7ce53vnOOMujmVDq0gqJah06JRaQi0cFFIJ3BRd4E18PSKmuwB7U7/lOsFT7qAmNb2+N0oVbx0xXmEg6cDNKMoly4h66NDlFAgFZ0VHyz36JdxIhz6NyDJXBqIcWh85mCJyypomRTWFJzwPDQ25FMukOZ2Yb2C27LJglK5cLqvSvZYuJhuxpc8DgI3yamXMxaMS4PXUq73k88jqwEkbRsMTAacWQlZGWBf9hCqSsthkw143vaqPPUf7pHXMrIpYsHZlv5hZdIAAAgAElEQVSqTRq9B7Q9PXfcQaBrJ2U6UUbdt4h06L66HpmZ1AlWWVp0TsXxgHablZPuBHpcGy3TPhDsoKjhoYe6oJcSHkgSHgjlGGV66HaWaaRLOc9nLZclbdCVh94yPckwIyjaSCgUaillUy72hW6G0qgPft6uL+IP8NcAgBsrXwGiNnDJRwEme+SJOXlwceitKPY+yOgpz8KzPGNHk+g4JTxKDLJe3y4zylUusfTMNCicWrBb0PG6GYEnDGMkpTQeXgCKAqpVvNhDj4oFRe0yxer6hKbXw89vigdFmYdOHxVu0CkmEVMulofuKIlKHwUyAJ1aDVK+gumhc5UL23cBg25Lcu0G0JQpSufPuz1pD12/D5rLl5iYbauWh9pDN2e83CPO89ApHV/r0PV+uY/jaqKus0Vjg94O9Yfe93iz53QLuyykKJesWi7JeTxpUS7EodtdwWKnK14vizKzOXSuKOsHRTNAN0JRLuxhM4OiWuVSr/iKA1aUCwuKcjTbcXcc3wOGMIPznv1L+FETP/AOx8u8HyI67Z3wlx8OQD8cRbxzwK1y4d5H4HmpoCgAg8P3hFboUMCm4mdx6LYOPTa80rMNetpDV7LFDpSLKhvLqADPE6gHfsyhJ/I/rkPnxsges90Rpml9YPjvnEPniU9Uh4UfQuvQg0Ieul11MyvIxhF48X0SIr7XvNqiqXLJ3IWCnSnKVURS6vwBOjfujdO60w3ulce/U7xpWeKh02NDz53KO7A4dDoH5aFbz1szUWfVknhG4Jsf1CzKBcjw0P34Wkp6xgsaRPt+2Z69HRR9Ys80hKDKiFzlEq8npS4O5sqW5iBqRvXQZR/A+azlcmh46G3zAbSDojz1nys1yGDRs2Zf6FaoudOLvLtQjeKMxk9XPo4QHvD8d6h1Od9XBLXEyJnno70P3xPqxazYVAejiji/F9MXtsrF5tD1OO2em4BZjKwT5RJFEh/7+4fx3YefVU19AZNDJw89TiyiZiIwOPSUPthqgUfQpQiYx2hnihqyRVbTnhmUesXH2GAFG8YHUh66q60YGcwU5ZIz9ad1h6pBUgnR67pJdGitr7sRacWMNuim9JZ76FXfQzXwFOWiSucOVIx9KINu0XR8mZT6w2THbMiBCryYbuMzSXt9AqX/70o89Ph5IifEMxRZRTv+ZJ2P/XceFD0syRjlUmiuciFpsCtbmiNUJXvj57HvoReA5tDTQVFaJoSpQyePLC74Y1EuKQ89whXTX8LGp9uoBPdjT+0wfKd9Ml4VfhNfbZ+DV4+uV+vqNlwFDbqr7VZo1q+YbaU9Qd8TxswiZBH4VhKE5FNVwV502i+dM1ESHJ5IN4m2M0VpP6GU+MsfPY69082k7o1Qnj8QGxzy0KkFHdEfnHKxPXTevZ6j5fC07ExRk3KBk3Kp+h7ueO+5GKoG+NGju1L3wAbJFm3KJe/FrHgeZhGpwCBXuZRtEm166Jo7b7MaRjSUim82XiAjMtNsY7DmI/CEMuQHZuJrNmIHRUldFTgMeg7loo9Pyz3UAi8dqHdctxXDcSqsy0P3PWGU5C36jtmUi03VBMp7jp/1nRMNvODIFdixdwbtSKpMcYNDj0wlWqda6r6vY0Z92WIH0MvXtDiyWOWSVFirBdpDb0eGQaftPA/A9B7UhFnnwm/P4JXNv0J1ugV4wB0r3oov7DkTo81n8Mnw5XgNuzF2RcZOqCUeG39wuSTL94UKilYNyoU3t2b8XuI9VNjLYxbpcqhcZDooF1dbjNdRFEdyfJL40XphJDHdClONQkJGCfhCYLge4Mk90ywoynTo0pFYlOOhc+qDn9e0ERSN/8YLjvF3yPeEohnSlEuaQyfZom0g8mZj5L2TxDJO/SfKxdx3J2SpXKJIb8+fP9LUU8s8IPbQBytxEDjlodczPHRHUNRs9gB1HELsiHAP3U8FpV0edsX3sHyoqgw6ze7ivwkVVKd/F4GdKWpvxz30PVNxQ481y+rJMpIBsyB7pCkfHbvK59BVzIjNMObTQ1/SlIvt3VSNoGj8tI0NVlmji1BTLh5L4YcEbnsh/n37vyBAG39R+Sje4f8dTgofQBUt/Hj1a/GD8Hg8sPoy7PeX45rWH+EpscY4Nj0rZSgXACmZpJpmshfDoFxYUFQI7ZnJhF7gmaacz0+pXDxkUi60Waud7aH7Ip5BUKAoZEaPl1cl4zkx22ZqDLNiX1ZQtB3GGZzfe/jZ+Fol7fiE4AY98dCb7qConb4dnyO/D3ZQNP2C0iyCPjQNK/biAt0DkshWfU/pmCP2ESti0O3a56qxSxSpACunXGaYQabTmW62MVgLMFIPVFD0n369C0IAW1cOxeeTXIoZy6Bzak83PWYeZ6aHHtNt3MuNr437uq0c1gY9DKXar+95aEU67b6obFGrXNJUHY0PiK8pHXctGfTE2eL8P90/nryXNcPi2dwU1FWMQN+gu2HznUobGuqg6OhApSPlUtsXF9U5L/wRPlP5OM73f4brg7/DJfIOzIoavr/xWryhdTNmBtayJCTzpmiJVVGDHo/VLgbG1Sja07EMOnsw+IPVCs22XXxqantbinKJpPGyxRy6qbF1qVx8TyhPrx3FRkp736axHkl6RhLHT70e1Tp2UJQlqPzNPTvwls/dhclGGy1W14ZAUr0plimqX0Cpgq78o8E/COVki8nMJVFL5b2YZLTIQycJYDPphKXr9WTuwjkmumf8/ABtvPjHvxZ4at3pZoihqo+RegUTsy3MtkJ88SdP4PxjV2Pj8rhDE10XencMasuagRpBUesDy2unUEyDX/8sp2fVSE1x6FRoDojfKeqva48rD0qGSZx+hmyxHUrsTjx0yjxtR7rYHXcQWqRyYbNqF7Q37imJMN2rvoeeAXt6zEX89FCNDlSUR9VoRahXWFA0WT7w9E8BALvEcpzj34+fRMdhQDTxEu9HeLB2CmQQ32SSE9L2HPRyF5VUUV9RzqPb6c4uysV4MYTlPURmLRc+Fs7N03ilJHUK/2Bo5Qy9QHRda5ZBn2zokrNcq00vOgVKl9UDTDbaaFOilmCZog4PnVMuU0lX+tlWaKR9G+t7nq6dEZhTZP2h0eu7PPRKBs1D5+F7Qunf9800O3qJvmXQdQPleEx2s+w8GDp05um1Q20k7DaJQOKhk0FvxIqtZQMBDsy28fX7n8LuqSauesFWPWbLANb8dDNuXpvExaEHjMP3PYGxwQpG6oFzVmVj1XBNyRZtDj3Whbu58Cz4OR8oAMaHf1fioSvKJdSzO8EovLalcsm6fzo+B6Wc6dSLthdY0gbdDmBRdxAKinoiTvPn9dANDj15eQefvhMYXoMPDv47fCN8Pq5pvgvfD08EANxf324kTmSpWezkik4gLTxXurQjCa5GcQVFhWWYuPHS1RbNlw/IqOWS0DS2eiVgnigQX8P3XHgMLmap1rFBTzz0kNL6Wa1zJFSFJ7BsoAIpY1rE92B48Zx+sMfKq2Y221Fi0F38a9qT1MoCLZXU141zwvF9WDFUU2O2QTz8usR7++3emY4vJS8vAOiPYiMMEUY8IFdO5cI/OKGUTsqFnxtRalPNNoaqAUZqsYf+hR8/gWPXjuCMI1ao9bM4dEA/N5pycXexDzxT5fLxV52MP37JNstDd5udVSM17JxoqCJYfFZAQUrabxHYma+pxCI2S9o9ZVEuUZSIFDSF51JNZVIuyWxZCE25RJH58Z0PLG2DnsWhR7FssZ6UR9VNoiNlSDWHLlF76qfApjPwSOUYXNf6NziAYfzX9ivwSLQePxs80zASdDPse6I99IKUi/LQTcqFe9IzDg7dpg7on2Y9dFNzDugpvwq6KpWLKRvkteF58bJ3nnskDl81bIyDKJeQe8KeMLzvIKFc+HUijwUwU7zVWFX53Eh9dFthhGZbOg0618mT4Y7PjySHsDx0TrnE2y4fqqrx2CCVy+plsdHfO93qaFSUbLGmOXQ6p/iaa+qiE/iYmtygR9xDj5fZHjqnXAZrAZYNBNg50cADv92P33/uBvNDl8GhA9orNnTo0jxXOj5XuWxaMYh1owMFOfQaZlsRppphcs21E9IOo5SMthO8lIeeLVvcNdlELfAwmkg4qTYSf+cjCZXr0VG2yAUOnsjU7fcaS9qgZwZFE8+uFsRdy7mHToY01mEDG8QuBJNPAZtfYFzoe+XReHHzY5gIVrDgjFlKl0MlJxVOLKLGD1ZQlHnSqtyrlVikjum5NLKeUliY+mFzfPyBrFiUC21PhsTlUPhCYFJx6IxyEdR8Wie8UGo5bddJtqgyDqNIpW2Th+7q8k4fMHOmkXDMySzB/BDqbZWHnsjm2g7Khc6jFvhYmayXp0EHzCYaAG9fSJSLNhKdwKlFHkTnihe6n/z6VH1NRU0324pDp2NecsI64zjaQzeL0gH6Wao5gqIpHbqrBlEHHTpgJhdxxRc1JykvW4x/Ntph6nz4+CIpsWuygZXDNVaPRmeFquS9yCFbzAmK0nNJQoF2lFZp9RqFrI8Q4iIhxMNCiEeEEO/LWe90IUQohPj93g0xG3SBCLZssRb4pkFvhYaHDgCni6RFyuYznBeaG02fKUBsDt0lFcyDMygamUFRghkUhfG7IamKIiNTlBtqrp6Jt9VG267mqDz0dmSsy+F5AhOKcqHgI5UUMCVa3EO3U//J+7UR+DFvSh5pQ1Eu6XXtFnmAnoEQ/51NucTbrMjx0PlHh4JmRT30QYtyabZJPaGpi07gY2pleujpex43YTA5dLoXz908jvVJEo095tlmmPpwujl0829Aor9nHDqhU6YoYBp0fs2ppyide2nKpeWm6lRgM5TYNdnEyuGqQffZCinKVA08sw+BCzwGQM97LHmcXx+6496FED6ATwK4GMA2AFcIIbZlrPdnAP6+14N0IQ54aS4aSMsW6xUvqSOiM0XrzEMHgBO9xyCDAWD1NnXjaB3ANJrcuGepXIo+bMqgW1l9fg5dEo/HplySaWU7KSHMJFVGirylcrG9KrV/5s3mNXII2AyCKtPRx8CWaC1jHjrRMmSjOFfKUfFinT5dn2aYx6G7PHSdOEWBWPU3/rsncNjYAI5aM6LGY4OahQPA2mUDmdfEvj4AU7mw+jRS6g9/2Voutoduc+j8WtaSoKiUUnHodC9ecqLpnQN65jLbDtMSP6uEclZ970rAYz9urzxrdmN66FqHHqQ49IKUC+PQ7fPhY6Kg6IrhGlOvpDn0MIpncFwam/VB5uMnoUAseZw/7xwo5qFvB/CIlPIxKWUTwFcAvMyx3vUA/gbAsz0cXyboy8iNb5V9XRutKPbQg7iqYZR47SoomtyQbd4TaK86HvB8dTO5lI2m/4CZeZnloRd92GrJMWathhoVdSwe0HS/GJ5gkXxWz0a/CHrd0zaP49IT1ynNsWtmo/apHmqTn+XgH7TYQ9eGM2QJL7aH7gurBZ2UqY8jEH+A2qFEgzj0dqR06Kl1SXdvqYEU5SJMo2PPOL7zR2fj6hduBZAVFNXXZJ3y0PPvM3ngVKBKBUUTD73CPN1OaOcZdFu2yCmXwFf0YyTj1osnbxrD9i3L8dKTdJYzQcdOpOpOpc6HaC0jUzTZzppNujx0ftuyvFRK/392Yta45kS/laVcuMrFtQ1/zndPNWIPXTW61qn/9LioOFVB2aLy0D297XzSLUAxg34YgCfZv3ckyxSEEIcBuBzAbb0bWj7oxas5PPQokoovrzPD2WhHsSGdeAZnhHdDIMI28QTaa04AoB8A7vX7wlS2cJUIh/KQylIuXOUSMt7QmsYSOHXAJVU8CUlr4vV268cG8MnXnZr6oNE2/Dzo0HSNhXC8DGxRO/ECPY/kkNpDj3XolocurI5Fjv3Hxa0sD72d1qEDjHLhwWMW9LV10Pbh6hWflRtwyxbpGhDl0unFtGWLPNDLA9Fla7k0OOXCtM00PrvOTSSlat03VA1wxKph/NW1ZyjjyWGWRzDPT1Muvhq39tD1ehVfOA2v/dy6MD5Yhe8JPHNg1jhm4HkIQ51YVDoo2nbP7BTtGErsnmxi5XBNzR5UUNQXSnwQSYlmsi/l3WeqXFi1yIRyaUfucfQSRfbuuvr2WfwXADdKKUPHunpHQlwjhLhbCHH3zp07i47RCXpouIfO+/yRooX+TnUr6hUP+M6H8aGpD+F08TBGxAyi1bFBJ/tnUC6eOZ3tSLmUSP0H0jp0HhQlcK+L757z3VxqFjg8VhumMsH0XoXIlmcSuIdKNUV46n9kGHTmoXv65aDAqesYFT9uO0YxBiVbdJyTXVESMLl8Oqf4/NwfKNKquxOLNOWyriCHbssWa4H+YMS9VelZzd0NAFOe24lyMWWLMVVBSVe8MYgL/Jm2OfSUbFHCGZ8w6w6ZH1i1TobT43sCK4aq+NkT+wDoGjOBL9DiHnpBL5cO32iFTkNK+9kz1UQ7klgxXFPL6Hg85kReNqc1czl0X28bJpTRfCYVAcUM+g4AG9m/NwB4ylrnNABfEUI8DuD3Afx3IcTL7R1JKT8lpTxNSnnaqlWruhxyDCpQxOkRW7bIPfR9M3Em2IAXAQ9/EwDwh0HcLFeSh+6gXHjKN0nu+LoEel4Kc+gVUrlwykWrH+z6GHw8BMGoBC41K0L/mIke6aBr1kxErcd2zSkXm0P3PRF7wKzQE5XPdemY9ZjiaTYZsFYBDr0WmOdBtU74rCNPA8wTlDj49Lm4hx6PRcsWdamHiHHoZWu5ZAVF7UxRCtxFkemh54GfUiooanHoRLlkJYXRGPS+O3voQEy73Pn4HgSewCUJzx8k8RAVFC2aWMQ5dIc6ij5gzyZJRSuHq1q9EuriXLRuGJESzayR7kIr0gFQci5aGZRhL1Fk73cBOEoIsVUIUQXwWgBf5ytIKbdKKbdIKbcA+GsA75BS/l3PR8tAWWP8JVbVFiWXLcbLqGDRpon7gJm9aMPHmf4v0ZYeojXHAdAPXc0y6IaHzqZRHK6gVB7qDg+dB0Vtba99HDU2RbnoehW8qFEW+J9cL55u2JHtTREU5SJ0VlxkGWtqc8YrMrrKr/JzboWRzvLN49AtY0PjD9kMQJVsyDPovsiVLQLA+tFyQdEBlfqfUC6hxaGXVLlkyhYtlYvvxbGfMAmIAjGHnoesZy4+H5NDp/re9ntg0F78uWK7y3tHKDB64fFrsXokmQ0lszXdBajYO8ZjAq5j0rJnE4pnJQuKUtcl7aEnKheLcuEGfbYV4u3/8x48sXsqvjbMVmjJ4yJ76FLKNoDrEKtXHgLwV1LKXwghrhVCXDuvo8uB4tAzPPTZVogaawJMBn3rzv8LVAZx++BlAIBH5GHwK+ZLOlAxH0pOP2QlFrmUJXlQHnrL9L7sMrc2/2v8zj42nHKhmUTeWOyCSvb++YPsAp9OUxEsnfrPPPRkfMSj0zXk0ka3bDF+icmAKR16joeeolzUuJB538xzEk4PPXLJFju8mErlQrJFxtGXTSwKmZzVNugyZdD1/Yv1z7r93GClA+XCOfQM2SJlY8czrLRxLuahZz+XZNBf/7xNqf0UaSzCkTULtcf6z89MAIgNOokgqMGFokATo9xKPsYuHfrju6dw+4PP4K7H96a8+0jCWDZfKFQ+V0r5LQDfspY5A6BSyjfPfVidYXfVBkwduu2h759pwkOE9U//P+DIF+MHO8/HS6f/Fr+Um7HZ8kpNlYsp9eMSRg6dWFSQcsnQoevsMj115uD/FALwQQbdrCgXF+nKMejGw27SOACTamZ56GwxGSkKeIYOY608dJdBdxwj7lITqevTSnTITh16RvEwChryWi55HnrF99z10BmHXq/4GB+s5BolQBsLVW2RzcgimW4GkgfibVthaFSDpBkIPy/dmcqD78XvAnHoRP9kwa4Zz2Fz6GESFLVjSUGGh+5KUnLh3GNWY6YZGiUJ6FpmlcHNQlYcilALfLz29I34yl2x5kMljSUf9pBJDymQT88grwNDoOvcYpUa422T0hwimncd+pKth07GwMWht5VB95ViZf9MCxd5d6Le2Amc8Co8+YNV+GL7fHwzeh4usYxYSuXCDH6WYSib+h8kRoa8DlX+1jLkWV1WhIg9EBqGapTN9OZ5lR9NHXqa0rETkPK213rvRC4YpQ268tCTMUdS99Z0yhYT46pruYRqupteNz07MlQuglMumZck00O3a7avHR3oSK2p8rk100OPE4tM6qkTKBFJiDBF0enrHC/jHDp91IhDH+wUFGWn1IlD5w24OSqG4XZThXnvyKUnrsOllkaervWMquJYkEPnTkvG/fqTlz8HE7Nt/PDRXRgbjA06PXtcZkg8eDuh/TTlovc12dAB/LZFn4ZSAmFx+9AtlqxBd3nohmyxFWJr81fY/Mu/wzmehwOTm3Bt8H8wM7IFA8deCv/Hd+Pm9tUAmAeuPHTzQTRkixmeeNnEIiHiVHJ6Qe0IPkXIbc/CxQV7It1mq+J5uQ+P8fI6vCoyslkOLT//VhirWoKkdC2vs64NeqDOLy4BHOnqeRn8Zly/RcsWm6F0elouD91WuZBtyfXQPd0QgiOS5vT95Sev70iV2IlFOvU/UvEG9aJ3ACWp+EJk1nJRskX2QSd1BRnCTioXfk9tR0Ippxj3766UmcGhs9XKKj3o2K6SAnngznAW/Rj4Hv7b605JCsfpd9tWpXgikS1SYlGyuzZ7XqjJisoGZk5RGElEovjHqFssWYNOLx556COYxgk//DdYi0tUUPSCp27FYQfuwueqwIF7/wLLvN144oT/iM0siQhggUDy0HlQ1ObQMygXrUMvfsNqFZ2EobLgmIfFfxJcQVnfE6mCSr4/N8olyDhPexxAfC9I7+15AqFDwaK64iTXsxkiVYeEoxp4mGq0U9UW8zj0mstDj0zpaS6H7gs35RJJQy76B2cfkb2TBIpyqZiUC73sPJbQCWp9T6DJKLq8TFHloUc6DuG6dhz8o5XJoRsqF0cte15uIiMhrmi9I3s/vM56EZgZrPmKr+GaWZ6CaBPDy4407UfL+f2j6qPNMDJKYfueUI2ni/ZL6Bbz+7mYR9g69Od4v8HKf7kdr/T/Ce1QQrRnsWHy59i/7fV4W/PdmPCW4cloFSaPeRUA0yAqGsVl0IXFoSfr2uoPncxT/IbVAk8FRamtnF3LxfYshDB/0lhsDv36847C5acY+V8GzClwemrcSRXCl7cTykUIAV+YpVXJEOi+lbpjERmjrMSiNjNGzVwOPX2tSGamPjR0Pjn3J0u2SNLHMqAXfsCR+s+bbhShXEilwcstAB1kiwktEEVay1/rEBSN92N6+lnLI5lfKZNvA5jvS/ceetmORXzGUfyYgc9UKWqmGn/s47INZjkAwhTz0HmzGk9Ae/x9ysUN8qSI7x7DJADgxf69+EkzxKnerxFEDbSPvBD/eG+A6VUX4M5Hn8XtA9RuK/2w0bXmBp0bA0PxYt2XstUWASSUi+WhW565bcC0Ppy9OEKkalhTKnsWOski6cHLki3ylzJ+0BmNwAw67W+E9a2kAFMu5eLHTZVTiUV5tVysBCyiforr0IUxhSZw2WJRBF7cScnU32sdugogF+xY5Psx5cKDotT6D9D3qcKOR9LNoh46kBgfx7qB9dGksgopyoU9/5m1XEobdNNDLxoUNQuCFX8vg6SOUCT1eftCGHXVVd9a9kGmNojNpKH1IKu2GMq4eN5QML8md8l66HZQdFzEBv0U7xFg8hmc6f0CkfAxdPRZqAYefvn0BFoIUsW5TK2sNqLccPJ1hUhvF28LtW1RxI2D4/NQ/RKVjjgtxaPxpMYt3E0J8mBkBRpeVfKzQxCRb6+qGgpKGnIFRXVneU/EQeC8oGjV91QNEiAO+mYlZrhki5pykeojknc+NDabcum2KcFh4wPYlLR2A6hVnodGRjOQPFApVs/y0CMmW6T7VWUzPJtyKfJsetaHgUAG0WgSLfNliz3j0JN9lg6Kcqel4HtBx9MSSf3c8M5Huk1jWuVic+hcKLDoOvSDFXZi0Rgm1N827PwnvMB7ELtHj0d9eBynbR7H3kSHzjsWAeaDprsOeYZB5zUltKFze85lblglMVrx+WR56NkqF7XMY5RLUYPOXzB2DPuDlcmhswG0kmbFQuh66Ha7rWVJ4wBePje06AKOwNcdkQCtpXadX15QVCUWsalzFqgzThhJ/GbXFACkKI2ieNuLDse3/u2LjGU131Mt6KhGUNFMUTLQPChKVBfgli1SxclGUkc+79wJnvowuDl0M1M0LVs0u0dlqVzKXUx6hlxVHPPAVyvjaPmeUHX4ef+AhsND50FtUhO1wsigo+g+t0JZaqbQDZauQbdS/8fEFKKgjh1yJV741GdxongMu1Y9HwBwJtO01pgKAHAXDeJ9OT0BjA3GxmhssKIekvRUszzlUvWpa1I6KKo5dGsm4KAOPEa5lM2ii7dJv3guaoeDf7ikhPI6ySvUhtD00KmuSmg0SHAb6Slm0Mm453HohkEXXOWir1uWrp7G2o4kvv3gM/i9//x97J5spCiNovA9YRSOo/E1w1A13SD1wye+82t84+d2NQ0NUlt4wvLQJae24mU8qM4pl1pJr7aWwaFzyoV7oYSs7lpzoVxon7wAXREYyXOlKJd0CWBPaK89q3zupOGhm/x7KKn0bt9Dd0JnisanMI4JyPpy/Hn7cuz3l+Pn8nA8uznOBj3jiJVqO7vaoBEcdVAuvidw8sYx/N93n42j14yodVI6dPKQSjysMeXiDopmeejOmYWn9dO8sW8eDEUDnyZbM5AsO2Yb/mbSAFoIOFUuLsrF1TWeUPGF8ngAPZ3Nr4dungd9WIpSLpQhuGsy7pizb6alWuWVpVxcqCRxAdLsUwbhV+96Erc/+EzmdqRy8T04PHRTKWRTLlLGnm2tUuxVp9N06dB5cbq4Y1E6WOxqTA7YfHb5jyMQG3Qhin8QDKclp1CdjcDzlDfO7YHvnh8AACAASURBVICiYZh94JmiRlCUe+giSSyKZOnZSVks3aAoceiB9tDlwDi+uutcPLXqVfinX+/CF9YcCwA4acMohmsBZljVtTzKhaf2isSjPHL1sLFOVrXFTq3JOOgFB3hQVMsOaR0ON4fOjHNByoVvb1IutKwD5cIM9b7pFprtiBmRdBboMWtGcNKG0fijmOLZ0/u3z3uqke2duSkXXZyLxz7yPO3AF0aFx5lmmDvGsqCYCSXk+IJUKJHhedugqn++EJhp6llL5JAt2olFQFxtsEhAFMhWVwVJXgNdPtWA2/bQuSduVPFMH6MoKoxDL+NpZwX+OyFuo6eNNxC/F/RcGNUWM4KiNodOkseDodriQQnbQx8TE8DAOISIy2ECWvsc+B62b12uCmIBGWoRRbl4TH9qHlcXr3IvL/PAcQ+9regH00O3OXkXF9wNV2hy6OmPQyfZou15N9pJv0Rhqlxo3yuGa/jf170QG5cPJgX/OT+dvmY210gFporKFilpR9eYSc4v5/YEnmcEEWdbYarF21xQDeIPuEzqq3uCCsmFzjrsBOWh+2mVS7ZsURv0mZa72qALikO31q/4HiqeWQfcJVvM8tB5VnPZwCBPLCrzMeC3rOgHLT6eSHvoQht5I1PUkfpPskW6FtyBmW+DvuQ9dOIpxzEJMXgsAk+oQly8Dvd15x2Js47S1Isy6A5Pt+IJgzvjyKzlkmGA82AERa1KcmTk0qn/5k/jXETxgJOpckl/6PQMxb29KrpVqwCYQbMdJhmZbtkiBylh2rkeurldIcrF4tDj4lVaIpg1HkLgC7RndYXHmVaY8oDnArrflJBDgdsm89CfPTCLwPewPOlxClCmqOfMFE3JFpWH7qkxTzt6hGYhKyj6uudtwimbxrRBl3r2Y55j2kFS/xYCbVneqOnU/3LVCovUYHcfT7+XqgSuEJhutdW+6Do5KZcksciupd4K+5RLJnSmaHyBRsUkMLgcnhDYO5146AO6U86pm8Zx6qZx9W83Fx3/DNgX2J6i0/r2cu1RlwmKpj10O1M0xaE7DFOWV5UH42E3PmrJz4wPmto++fuygfgRaoaR4sfNJtHpMflCqEBq1jHs854sQrlYHyZVb0R0nnHEYxWqDhAQUy7aQ8/crDBoRkYcOk3FOeVy/Zd/hrHBCv7HG09T21GNH/pY8uW2bLFicOhQ51FW/WSvf+TqYRy5ehjPTsSlZjMpF8NDd9GF0jkjywO9E1mNKrIwN8rF9NA9TyjZIqdcTB26KVvk/DslKs13UHTJGnTTQ5cYwxTEwHIEnlBcFvfQbbgoFx4U5QkFru3s5atGarjxomNx4bY1hc+B69DpZ4U9BEDasxAug25Nt4sgKy2a9h9knCdBUy4VNX4KWFEWIR+beewkMUVmG31bzzzdzPPQ0x80Tv1QsDY+P+fpqHG0Q6kkazOtMLdme1nUKCjKVC5kOMjz3jPVxM6k4QKhHUnUKyJ1L0KZzaHzioAzrTCluMkCnWcWRUFjsIvJEVzOgfq3h7hA1RyComW2JZqHsjvLHM/m0D0Bp8rF1KGbssWAfQwiSWqlvmzRCZ1Y5GEEM6iIEGJwXBnlWuDlPsSuBg5uHbq5nSsoSft5+zlHYPWyeuFzqPgiHRS1PPR0GdNkHGwxjcmWmuUhq3CRrT/PpFwsDl0VwUoCfXnGmqagdM6uZ5yPabgWKMVLNacFHb9W5M0S5ZKVP2Cckx9nijYcHHpZ2aILlSCpEcKyV2eoZyorQrZj74zh+RH3aj9zYcgpl+QYLOjPqxQW5ZA7zfY41eBKlOFB2fTs1u2kdAJ9sGczqm3mQX/oylAuaQ/dZ7x64AvVc8BZy6UdIQxZHZhkPep2NJ9YsgadjEEt8GO6BYAYXJ5KZMmCr6ambBn30B0cO8Cm7j3w2PKColkeujOYm8F75iGrOBedVicdOi1fxhpAU7JM2IEfF0IoBQofPwcfEy+cVDRTtF7xMdsKDb6an58L1OqsySgXel974aFXfUop142rZ5u6tAH9bIYRfpdQGwA1RvDMe55cZ2nNIOiDx52SUpRLslqmQadgIJv9cOSpo8r2DFDbsfMoaxC5cq0oAhbb4mo37qHTvsmx5JVBG21qjqHfIWr60le5ZIB76ONJHRcklAuQT7cA+Vx0halc0hmhtP3cxk/HsT30Tjp0F+WivLMyHHoGv6hVPPkvH41vGbvOVNWQ6nzE27s8dBjSRtdLyj17fi+LUi4j9QATs+3YG/ZY445cDp0aU1NQNEol7swFSoeu6qHrQBtRLnTsf9k9rbZzeehV3wP19eTnxVUuZHy7UblkGUAag5TpOvGAvm8uw6V6BpSkHVRiUbsc5RIf09xHEZg1aLSXTR93cpx4TGO6wXsDmxw6754130HRJWvQFYde8TGWeOgUFAVMz9GFfNmi9tCzZIs9k7HZQVGlQ097nQD/EKXPpXsPnXPo5j6z3h9PfTj1dRaKctH3x+V9U7Gi3KBoUMagp1UuZNCllViUq0NXQUrNofdctqiqLcb7nHF46ADw5N4ZtV07iuLiXNygB56z2iLPNKZrX8ZDV7O9TMol/hlK6WypRjMElyNgz/6Kgn9EylIu3cxeDemln37fA+Z00TM8xfIDmmGEFiuVy9VJ/fK5GSCVS9XnHvq49hw7US7q65leZtdy4fDYV3eu4CqXVqaHblM+9DM9syijcuHDd0nNslQ+9nrc2MaUC9XpTgyNw/smHXpeT1H+4HPKxfViHr12BMetW4bDVw2pZcvqFTTDCDNJ4wI943CeDoBEtmhz6D2ULZIOPWSUy0zTDIqSQf+XPR08dMuga9mifn64h140vqIzTvM5dApq2x9s5aE7trclsUXBczvKUi5lO4kB5vhc1KtBuSTXnySLw7UAs60IUmrvnitk+rLFDJAHWPEFVviacvG83wKYK+WSo0MX5vZzQcX3kuh3lMmhpzJFHePqNE12oSPl0sFD3zA+gPHBCsaZXtoTmtvN89CFSLJJc7xfIyjKZgGuFO7DxgZwu1UIi6igqWaoApBZxyIo2WIrLVvsGYfejl92SiyabmkPPYqkMuw7mEGnBB5+LYlyseMQVeWhe8b6hQ16skmnoKjqWGQZyjwOPatSaSfwY5Sla+b6brjeA065kONCAdGxwQr2J3kwhkKGPPR+UNSNMJKoo4GBO/8c68XueOHAuA6KdqJcHFMpnm2XZdCyUv+7gW5LJhmHbnKQWan/nuOhK+ehu18Sm3LJevkuPWEd7rr5xRiq6g8nlUngxjpr6s09dCeHzpZ1olxc4FQQFQSjMWbBJ9liqBOLbBXJXFANdIcqCtRyyoUnDbk8dG7LapW4MmSebJFfw9Iqlw4cepjUcsnqWOTywrsJUAKw+pR2R9eUOaarYiR/jjnlQo4LqbDGB6vqI83fIZp59cIxyMOS9tCf7z2E2vduwetFDZMYxLAfpBJesuDiormsKsvTEI7tugU9ZFTMh47Nj5vd4IKPO/5ZSraYoXKxg6FZBlAIYaSX0z6V/jvMfoBTtVwcx+AGZaQD5eKCQQV5PPaRvU2FKBemQ5e95NB9D7PJi+2J+Lx5+WSaGQDAk3ttD90zrmXV94wSxC7ZYjc1fjrLFuOfdOxUPfQcR0DPkgoNRcFlTIuiG9mi20NPz2gp0xfQHvr4UDXVrcvk3/tBUSfCSGIQsbRrUDSwHyMAtHGYS1CUq1yyWs31ZApOfSbDSDe4UCoBd1DUpdbw2LiLoqjKpdNpmvw7VFYclRzJNOiOSoEcXI/PO0h166Er/X6uh27KFmeboa4I2YP7XQm0qsmzDC4ATDTiqfqqkRp+d6ChvHnloVsUSjtKyxY5h87HXDqxKMOgU7JOJCXCUDrqoeerXFz69E7gRrB0ULQrlQvj7B12QtFaTLZIHPr4IJPxOmxFPyiagVYYYQBN9e8DIjHoinLp4KHnGHTq38iX5W3XLajUaSuMUkFRrbjprHLpNE12gW/vKs7VqdqiGo/loQtFp+R76FKm2+5x0PGrgWcYl6Ke1oghpxSFZlaBb8sWe5z6b304bTqYvLwjV8WVPXckSpd2qCtZ8rFGDtmiEAKDVR8D1aBLD73z+moW5giK2tVMje28dHJUEbiClEXRDYduHM9PPzf83aDrP8UoF3s/5rZ9D92JMJIYFHGK9Oe8V+KbwYsBMINeUOXCn0dTh+42ADbHPBdwysVWfOhMUfM4Tg69G5WLNa1Unr/lyXb6cJmSR92xiB50p6cmYNAFrmOQ8asFnmEIi2rtbfVNUdkioFudzbTCXGllWdg9T+1naHI2NuhbVsat657Zn9RNYeVzaZy+F9NDepaj9/OFq7fjyjM2p1QxRcDLX+StQzGQrKBoVoZwN4k13OEoaxA1hVSCcunAofOPFjku2kNnBp1RM3rb+fXQlzSHPuTFHvoXq69EOxjCDdAvZUeVi8MDX7usjnrFw7KBSqbKpdtsNxd0UDRiDS5Ih+72LFwqF5s/LQI705Qq4XnMaMT7Lu6h+x4gJdVQIa7YPfWOJFjykcNDZ1N/boyKc+iccinG35LhIE+ZZ4r2ikPXY3JRLvFxV4/E5SP2z8QUTDsxnPyZ5Q087PE9d/Py+Hwszr0IVBmJnEYp6oPsCoo6DCDfrpv3hssWyxpELkXu5niuWBKfRRO1ONVoQwgzdqful4MFmC8saQ99KPHQI7+uX1hFuXTw0B0e6PnHrcadN78YowOVbB268vTmfg5kgBtJ/WSAVW3MoFxchqkblYvdqcn+UBRJlY/PwaRcKFCUxz0TB2v3UTX2G5CH7hsfqqIfLa5d99hUv5NsEYCzHnovP+A0jpRBTzz01ctqAIB9M7HDYuvQfU8ozXxeE2ujRHKPEotoHSVbtK6L8tBd+QdClObAAaLMkv2XlC12o3IxqC3LKPMYgCe0UzLVCDFUDYzr5qJt+8W5MtAOJYZEEwjqEH6gp0YUFC2aWMSeOyGEboqRwaF71g2eC7iH3g6zdOjuGYLZ4CLxqroszkXqFL68U7VFNR5D8pg0bTA8dMexhVCJKfExHQad6sEzD72Mh+d7Qhl1LlvMD4qa16/XskW7CFoW5UIe+r7pFqSUSuXCa/HH2bZQTaJd96kbHTptkmfQeaZvlkHvJYcO6OehrMpFn0/x7VyJdq4SAhREB2IPfajmO3sLuLz7+cKSNehhFMUcemXAyIpzZTC6oG+U+wJrlYu5nFbvVaIJEOvQW4kXpsvXesY66vgOQ1uE97SRolwyPPROlItR90Jx6LrOh2v7eMqOXNkivbg1ZtDLend2H9P4fLLXt69fTLnMl4ee/tgRD7usHqBe8bB/pqUMts2hU/9TlSnquDT8+1SmNWGnD6eqTeKQLSrD65yZdceh07j4/gtvZ71PxY7FvGwrX8U09p6aZU412w4P3XQy4/31PXQn2pHEoGgClSGr9kpByqXDFHxBVC4kW0yConYNcMBFuZgeAwBVKKwU5cLOKy6qZe7fFaF3wVTI6A+Bq84HPwdDh+5sK8c8dN/9cesEMuic3sgzVHYQcbYVpVQkc4HZ89RFubTUemMDVeybbhoZxHz2FheGyq9Y2V2mqOj4HPmeDoqmqpEm43R76O57XQTK8++SQy9TuM6VWORSy/ievv4HZtsYGagY11nfL7bvPofuRhhJDCgP3ZyO+l4s3cpDlopF/d2RScr/3UuVSyxbjAzvY9PyQRy+aghHJc2p9bjNcfDfqzmBLBu2use+HkWDv9zz4XXHG+0ok64RwuxYlFc+N/bQy7+UgA6M8g9NnmHm139sIK4FQ7V2eilTpf3Z15aCorXAx9hgBfumW0aSCn/2yEPP++B0q3Lp9OH0hJba1h369ngGkd6HL9zLi0BlTpd87+aaWGQ7doZBF5py2T/dxNhAxerYlGYB+h56BtqRjHXo1cGUbnykHnRWZ3TgVLM81CIZh0VBDxkFRbm3u2qkhv/3R+dgy8ohYxuX/E5RLmWkWVbknaSLut6G6ZlkwexQo6mvvA7ntFjXTM/20GuBrz5UZflHF+WSd9/4OMaSBBGiQXpxv+2OSva1JQ69GngYHahg30zLuEZkC6hsgKFycbzJhkEv+LH3RGfj7wndFWygml6Xy345hOMjVhQq0aysbDFZvWyTaAI5dkpJFpjvHV3//TMtjA5UTMrFWV7kIPDQhRAXCSEeFkI8IoR4n+PvrxdC/Dz5/0dCiJN6P1QTcaZoA6gMYnyoirEkCOqzwGYeOlEnWX9XHnIPbkyNB0WjqNDDqjM5+bL4Z5mH1k4IslUXtKtOjqlvUy5CG/TM+ESyTl59C1diUXkOnTz0gjp0di5jA7GemGp09CZmoo2qEOlniFQutcBTRZ5Cpn5Stbl98tBlbmkCI1O0Ulzl0tlDF5hOPnQDFYeH7ru5cppZdAOt+ipJuRCF2G35XCtmZVR+9IRSp+2baWFssGJcOxeHvug6dCGED+CTAH4PwA4Adwkhvi6l/CVb7TcAzpZS7hVCXAzgUwCeNx8DJrST4lyorMZHLj8B1AjqyDXDRqp4FuzotY0sHbryYHswBeeUS9xvsPM+ba4b0OdSRuViqmTI6Om/F/XQ+QMeq0l0j9RMD514duKHHcfgiUWqgUVJg75McehuuacNTgeQSoo06T1pQWfFSOx3e7LBDPpAFftm9mkP3ffURzZIKimGMp0pyuFKV+8EUZBDp/rfNce7luWhe6K8QSbQdmWDot0IBszcCtMO2GUywqSZy4HEQ684OHSDcpln2WKRxKLtAB6RUj4GAEKIrwB4GQBl0KWUP2Lr/wTAhl4O0oUwijCAmENfMVxTy2+6+LhC23f20D1jPbW8hxw6D4q2o3R/Rve40p6mcDxsRfdDv5MUTi9Lr9dpP0IAAtr7zvLQ6TC6p6jLQ0/LFrv10Pm5darlQiDKhZpT95pysQO1YSSVQa8mHrrNofOyD74nEIYytzRBNxx6veJhsJpvFjxPz1xcHnrFE5k6dFcHqyLQdda789DLfAicQVEHrVkNPEzMtjHRaCOSiCkX7qFTIJcNedE9dACHAXiS/XsH8r3vqwHc7vqDEOIaANcAwKZNmwoO0Y12KFFDA6gOdV7ZgaIql5RsUVERvfXQ7aBoFjTHrZd1lfrPKRtPqPZxap8Zsk0bgfVhoMzKZi6HTrRMthdPy2uBr2YeZWIEAFO5FDToFYNyIQ+9h5SLrXJJ9jlSD7BvuqVULrXAx+hgBY12pIy8z9anBixhouXnsQ+Obgz6DRcco46ZBU8IFVtwzYYrgec03IEvUInmRrl00ySaX7si8I1Zp/mTe9grhqp4fPcUDiQZvaMZKpeFDIoWMeiuKyEdyyCEOBexQX+h6+9Syk8hpmNw2mmnOfdRFGEkMSBngcpAV9t3VLlY0W2Ci8PuFnamaBkP3VS5xD+7rYdOiUUG5eKgdpz7SQKOkUzWTVZvhVHmth5fJ+MGVBjlooOi3VIugn2Is9d3eugqKNoDg24pJOhDPFyLDbrhoScc/q7JOBva8NCTGRUFRbPoP4NDL/hs2EF4536FwFQj20P/owuOwbrRemr5decepWYUZaFT+MvdB88r7xXzbmF2Uw5+D1cO17Broom903FG79hg1a1yYfdnvptEFzHoOwBsZP/eAOApeyUhxIkAPgPgYinl7t4MLxvtKPHQK1166IVVLhblkmHou4EOiso4KFrAQ3dx6HMtn0uqCaNgFysR2gmBH5eF9QSUxWyFUeYHisbejrKljaRMqQWe8sy7plxEUQ9d7380KbJEao6e69CFnu1RRuvkbFvRX/RB2T0ZGwuu7Q6YQQ+jHNqQc+glJZ95EEL30Kw7gq2XnbTeud0ZR6zo+pi6+XW58/C98uUGXDkoikNns8SVIzXMtEI8tS8uojY2aKpcXLai2xhCURQ507sAHCWE2CqEqAJ4LYCv8xWEEJsAfA3AG6WUv+r9MNMIwwg12Zi7h56lxOigQ++FysUIihbk0F21ZLqjXPgHIS2js0sB5IHrbWm7VjvbcySvp9nODwRf9YKtOO/Y1XNPLDIol+z1+Ys3agVFexHLykosIlXWVFP3/iTKZ/cUeejpXAuqh541NsNDL5Gj0Am+JxSHXkSA0KtjAt2Vzy373LgqRuqEO71sVRK7e3Rn3ALTli1WHE7RogdFpZRtIcR1AP4egA/gs1LKXwghrk3+fhuADwBYAeC/Jy9rW0p52vwNG0DUgI8IqA52tXknyqWTDr0XKhd6MZvtMiqXbO+h1mU9dMUzsmVFqy3ydT0hFD/XTGp45x07j3IBgPe/ZBsAnUFZXofOEosKeOj8+pNBffiZAwCANSNpCqEsbIWEq0wFGYTRxEPfxT10du+pQFbEKmTa6KY4VxF4QifUDHRI4OsVVOOOLjoWld3GVTKXfuX3cOVIbNAfeTY26HZikRYw6H0fDEFRSCm/BeBb1rLb2O9vBfDW3g4tH0E7nuagMleDnjXld6tcXJTHXFDxhQqKFplOOjl0FYEvJ1sUAnF38sQ7N8sBdPZoCarus9AfgFauQWeUS4ED9LaWS45BZ/snyuNXv5uMG2KzZtjdwq6HTtdhsBaoe6E89ITy2c05dO6h+7GHvhiUCz/eQnnoqoNXF9UWu6Vc7IA/YBb5Wjkc3yMy6HZBQGe1xX6mqBt+2COD3kFlkdWCrheUCxAbqUYiWyzy9RbC/Al0l1gEIBVk4+datNoiX5dXbWy2i3jo2fVeOOglLpv6f9TqYbz9nCPwwiNXOtVBNkwPXRvwEzeMljpuFvj9EYzi4k08qhbl8tPf7AEArB2tmxy6iLMUZ9uhk8cGNE1kt6ObK/i+XEHR+UBeWd48dEO5uLhvu2geEGdzAzHlUq94qFfc1RZdpQTmC0vWoFeimeSX+fLQ0zeDr9+rD20t8BSHXkSj6xq39h7KJ12oGYdFuRSttgiYBp1OIddD95gXX2D/nidQ8bvhQj3ceNGxWDFc63i/4/UZh856Qz7nsN4b9LjCZfy7YdCTn4NVHxVf4JFnJ3HY2ACOX7/MeCap4/x0o52pG1cVO3vonQOmM5P1Mek1svoDdMJg1cdQrVwfHzqGXYjLXrZ8sAohYk0+xVyob2o8Zpq5LpxBX7Idi9BKuqJ3yaF3qiaYyaEXMAxlUPFjg95sR4UMlovDd2WxFYEn2IdL2MGb4uepAsiMRsjzvr0CXryNqu/NiX8sRLmwsQxVfWU0T+iRQfeYIfYMD92PjW5DN3MWQmB0oIpdkw1cePxaw6MnXbWUcdA2qxBdN8HyQufBLqGrONd8wFeUS7ln4L0XHYOZJIBbFLkqF6sd3vLBKnZPNY0ZXcX30I7CXOdrvrBkPXRBBr1LlUunIFlmLZcCwbUyqCad4A/MtIz2VVnQKpv0sjKp/0BazudqmlHkG1Fhnghdt9lWmOl90zM92WgbnYXyMFAN5jS9L6Zy0XGTwPfU8Z6zvjcGHdAfXc/TzkGtorNhufElHv+i56xNxpWMU2gv8MBsO9MD7aYwVRH47HnrFfXYCTooWu5cNowP4qg1I6W20SqXzk4T0S6jjD+ne6g/DEi2dfcH6CWWrIcum0S5dKdDd02HjL9nyhbjn7360sYeusT+mZbxlc+Cy9NUHHpZykVYlAvbvJSHztY9Onl5dk81caRV+pdAY5+YbWN8sHMhNQD48ytOwYbx7j7e8TGhxpgFnZ0aX4h6Nc7Y7EVAlFANPMwkHzvlQfvaoPOP8thABSuHq3ju5nFj7Dzz8cBMC6uXuRU43VJxnUDjWKiAKMBki/OsEgGyVC5ug75yuAZgwqDolEG3bMh8SxaBJWrQpZSxh15B9x56cm2z7HKmyqXHlEvV9zDVbGOy0VYeWR5ccktaVppy8QTolUzp0Mtw6L7+OB69ZgTb1i3DL58+0JFymZhtFTbSc0lKATrLVAH9ApJRXTFUVR+oXkG102Mxi1olHRQFgHeedyRajJbiRo0+PhOzbWxd6Tas3c7cOoHeHZrBtFot7NixA7Ozsz09DscVR/t42ZZ1GGs8i4cemt+8xVYY4dOXrUPFF3jooYcAAGesaGHbZeswUm+rZQDw9pPruHLbOgxVfbX8lvNXoB1JPPnYryGEwKowxKcvWwdPwNi2E+r1OjZs2IBKpZjTAyxRg94MI1Rl8vDMUy2X49cvw3M3j2P9mOn9uHTgc0El8FR692iHPqiA/qBwOoOMbnkPHaDSGlznTP+mdTrBjje84tTD8Mtv5hn0+OeBmeKUy1xRqHyuR15ybKg+/abTSgfUOqHKPn6KcmGNsLnxPfeY1db49DNL53NgtpUZFNUeem89adovBUR37NiBkZERbNmyZd4ohSf3TGPvdBOHrxqe92em0Q6BZyYwUPEVXfPsgVk8c2AWq0fqWMvKGjy9bwY7JxtYOVzD+rHYOfGemUCjHeLYw0bhCYEDMy34u6cQeALHFaTvpJTYvXs3duzYga1btxYe+5Lk0KcaYdxPFJi3TNEjVg3jb95+pkpO0duZP+eKqi+wa4JqQRQw6A7DRGPpRp7FrwN/F8uUOFBTy2Tdy05abwRcs86hGUYLZtDLUC70Ydy4fBDLe0i38H17wuSiNeWSbXx1cS7TQx+qLXRQ1KRcZmdnsWLFinnlh5Vcd96OwI6ljilSC+1TdPHt9lhF6pcCYxACK1asKD3rWZIe+lSjHXcrArqXLRYIkrmweiTWA6/J4C3LolrSQ3cFZat+rMgoqwKJdeO0XytZqYBHS7D59tXL6njzmVudBZriferfe+0BZ6FIUNSmXOYD9NHlPDg36HnGV2eKmvXGszx0+kiXySAuArqWPEt0voN9XdjE7o9Fz77r+Na6Lr7d+UFwbFt0HGWwNA16sx3XQge6NuidgqJZ2Lh8EA988IKONaOLIpY4xWnUhSgXRZHoZVds34gTN4yWfgA8IUzKhT2UOqDTeT/6WuplH3jpttzjEhbKQy+SEKYoZnlqWAAAEwhJREFUl3nUVlNxJ06bVANPfUTyZlm6louO8QDAcIaHDsQfgV6fD13ChZIsAm4jO/8HTf/DfsdUzXPDQzfVLAv5MVqaBr3RxoBoIBIBvKC7KbGnqJPyV7lXxhwwX2BK986DKyi7elk9U+mQB98TkEkl5FM2jRuzjjI1a2zKpRMMg15fKA89/pl3Or7ymOfPUHEOXScW6QzDPONreuh6ed7zWKTpc1nQdVqoOi4c8z0TANzeeJZRrld81ALfkNQKYX8L6GM0/2NfkgZ9shFiEA1EwUDXQQDyxhbiq5mHiiVT64QyVEgnCMbjvvPcI42/uTqWZ6GMxDFeT/++UJRLkdaBtmxxPmDo0IlD5zr0HOPrZ3joWRw6EJ/v/HHoCxeCW8j3VLjesQwOv+J7OGatqYQSKPYxmA8sSYM+3WijjgZklwFRgMsWF9ei8xfYLu7jgmpS3YNh+57uMOT6G1DsIfQdlEse+Ecijy7oJYpUWyQpYa8NIAftm8tE476pnT10s2ORXp7noQfefBr09L37D//nF/jlUwd6erxt65fhD846AoD7ebzrrrtw9dVX484770QYhti+fTtuu+023HzzzThw4ADa7TZuvfVWvOhFLyp0vHwPvfND7qVc9PT+5gtL0qBPNtqxyqVL/hzoPijaa5BBH6kHhegfu4PKXOALAZnxrhepfUIoU8jL3udQD+mrPBS934HvzauHTvsWQjCKh3vo2R84npJe1EOfV8plAROLtHIkfQNPP/10XHbZZXj/+9+PmZkZvOENb8Cdd96JCy+8EDfffDPCMMT09HTpY5X9G1+Hj1ONve+huzHVaGMdmhBdatCB3ldN7BYUJCsiWQS0YeoZ5ZJx/n4JI00cetEx8UMuFIeuX6r8MQaemFcOvcJVLslQVC0X5M8OeA6EX/CjODpQ6bn0kt4Zl4f+7196fE+PRXj2QCzfy7p9H/jAB3D66aejXq/jE5/4BH74wx/iqquuQqvVwstf/nKcfPLJpY9pHCuDcnFvJzLGOf+2Zmnq0JshBtCAV51LKnj8Qi0+5RK/FEUULkAx+V1R+F7Wg1eOculU6MzGYqhcilAuQHze8ypb5JQL99AdiUWusdFP/iHOi0N88a3Pw3XnHZn5925Ah15ID72TQd2zZw8mJycxMTGB2dlZnHXWWbjjjjtw2GGH4Y1vfCM+//nPFz+UEKD/9OGLOy31wJzlLSSHvjQNeqONQTE3Dx0ArjxzC84+elWPRtUdlIdeoI4L0Fvun9cvt1GmCFnAvM4iWBQdesHYw+hAb2u32CDDzQPStcDXssVcgx7/tOubZ1VbBGKZrZ0cN1fQuBcyKFr1vWRW476B11xzDT784Q/j9a9/PW688UY88cQTWL16Nd72trfh6quvxr333lvqeEK4DXCRJ3z1sjoOX8XrGInC284VS5ZyGfFm52zQ52t6WAaU9DFakHLpZekBT4jMT3qpTNESdV/UcRMsmA6dPlAdzud/Xv28eTXopGryPYHTty7HS09aj7WjdUXFFKFcPCGMzMSF+igShDLoC+ehjw5UsKxecd6/z3/+8wiCAK973esQhiHOPPNMfO9738NHP/pRVCoVDA8Pl/LQgbTxnYuXXZTu6wWWpkFvhliNvcDw6s4rH+SgF7ko5VKGCimyLxnlH6dQYlGJJKR4vYU36FqKlr/elpVzcxI6gevQj1g1jD+/4pR4uaPaog3escgr6KHPB2imsJAGPZuXBt70pjfhTW96EwDA93389Kc/BQBceeWVczhgFofe/Yu3EB76kqRcZmZnMY4DwMi6xR7KnEEeWxENOqCNZm8ol+yaNINVH54olkRVNuuWJ/kslDHq5XWbC8hg25VUCxl0NssIDIO+sH7ZYqhcFhqB5xnlbufkoc9h27JYkh66P70z/mV4zeIOpAcgj62oyqWXQVHPE0CGhz42WMXfvuMFOHZd5/Kxrg4veSBveagaLMg0FOjtdZsLKr7746eDosWKc6l6KhV/3rvg2KB7thiZoguFI1YNOT/+XT2uJRQyc8WSNOgDjcSgj6xd3IH0AOShl1e59IZDlzm7OWnjWKH9+Eq2WPS48c+FoluAcrr6+QRXubiW53Ho/MNJNFeeBn2+sBhB0YWG3RlpLu+d9tD7HLoTh5JBV0HRgiqXXhomPycoWgaVkpQLncNCGqOFDEzloZOHnhsUZQadtl9ougVgxbkOYcrFxnA9wOYVg11KWhfumVuSBn2ouSv+ZXjpG/SyiUVeiWBlJ9QqHsIoI/e/BMooYgBtVBfSQ9fFxhbskE6ctHEU27csT33MynDovB76QgdEgfzEokMVnhCFnS4bfQ69A0bbuxFBwBtaXA15L7As0QivTprNdoIunzv3p+PmS49DlMGhl0H5xKL450LK7XRz7cW16GcesRJnHrEytXz1SA2eQG5Wp/5w6nroC/lRVONg/H0fBdADhUxRLEkSbCzcg+nKcsBfkt8jA+ccsxr/69ozrESEbNDUvGz/UBeOXbsM29Yvm/N+ApUsU06H/q+RQ8/CGUeswB3vPRcbxrPrE+kcBH0+g4tg0Omj+K/RoD/++OP40pe+pP79uc99Dtddd13uNgvpoS85g94KI6yQezFdTXs5SxG+J3D6luWF118xXMOtrz8Vl5548Eg2uy3OtZAGfdVIDf/hsuNx0XMOTppOCJFrzAG3hz60GJTLIiQWHSywDXoZ9CkXB6YbIdaIvWjUNyz2UBYNF59w8BhzgCcWFeXQ458LneF45ZlbFvR4vQbvZ3swBEWdHvrt7wOeeaC3B1x7AnDxRzL/PDU1hVe/+tXYsWMHwjDEH//xH+M1r3kNtmzZgte97nX47ne/i1arhU996lO46aab8Mgjj+A973kPrr32Wkgp8d73vhe33347hBB4//vfj9e85jWZy9/3vvfhoYcewsknn4wrr7wS4+PjeOqpp3DRRRfh0UcfxeWXX45bbrnFGN/+A/tx2dnb8YWv/jXWnXYSrrjiCpx33nm46qqrcPXVV+Puu++GEAJXXXUV3vWud83pUi05gz7ZbGO12IeJwecu9lD6SKBT/4utrzz0Baq0eKhg0/IhvPLUDdi+dQVa7Tj4sSiyRSoqdpDIFr/97W9j/fr1+OY3vwkA2L9/v/rbxo0b8eMf/xjvete78OY3vxk//OEPMTs7i+OPPx7XXnstvva1r+G+++7D/fffj127duH000/HWWedhR/96EfO5R/5yEfwsY99DN/4xjcAxJTLfffdh5/97Geo1Wo45phjcP3112Pjxo1qDGOjY7jpw7fgXe+4Bje8+13Yu3cv3va2t+Gee+7Bb3/7Wzz44IMAgH379s35Wiy5N2pqZhZHYD/2DS39tP9DBaTQCApKSCgBbzECeksZ1cDDx199EgDgyT1xfe+FnuUAwOGrhnDU6mG3IifHk54vnHDCCbjhhhtw44034iUveYnRyOKyyy5T60xOTmJkZAQjIyOo1+vYt28ffvCDH+CKK66A7/tYs2YNzj77bNx1112Zy5ctS8eczj//fIyOjgIAtm3bhieeeMIw6ALAGWedix/8wzfwzne+E/fffz8A4PDDD8djjz2G66+/HpdeeikuuOCCOV+Lg+MTWwKN/b+DLyTkIZAleqjg97atxQdfug1rC/Y1JQ99MfjfQwWLyaFffsoG/OO7z150TT/h6KOPxj333IMTTjgBN910Ez70oQ+pv9VqsXrM8zz1O/273W5DZrTsylruAt+v7/tot9vG3+PKmsAjv34YAwMD2LNnDwBgfHwc999/P8455xx88pOfxFvf+tbCx8xCIYMuhLhICPGwEOIRIcT7HH8XQohPJH//uRDi1DmPLAPtfU/HxzwE6rgcKlg+VMWbX7C1dIOLxfAuDxUolcsicOgHG5566ikMDg7iDW94A2644YZSpXLPOussfPWrX0UYhti5cyfuuOMObN++PXP5yMgIJiYmSo1PCIFvf+UvcMLx2/DlL39ZNd7YtWsXoijCK1/5Snz4wx8uXeLXhY5PgxDCB/BJAL8HYAeAu4QQX5dS/pKtdjGAo5L/nwfg1uRnzxEdeAYAEIz2DfpSxeYVQ3jTGZtx1iLXol/KWDVcwxufvxnnHNO/hg888ADe8573wPM8VCoV3HrrrYW3vfzyy/HjH/8YJ510EoQQuOWWW7B27drM5StWrEAQBDjppJPw5je/GePj4x2P8atf/Qqf+cxncOedd2JkZARnnXUW/uRP/gSveMUr8Ja3vAVRkgzyp3/6p11fA4LoNLUQQpwB4INSyguTf98EAFLKP2Xr/A8A35NSfjn598MAzpFSPp2139NOO03efffdpQf8z3f+A2a+/1+x4Q23YtW6TaW376OPPnqLhx56CMcdd9xiD+OQhOvaCiHukVKe5lq/yHztMABPsn/vQNr7dq1zGADDoAshrgFwDQBs2tSdMT52+wXA9rkHD/roo48+DjUU4dBdxKjt1hdZB1LKT0kpT5NSnrZqVX+q2EcfffTRSxQx6DsAbGT/3gDgqS7W6aOPPg5RlFGF9FEM3VzTIgb9LgBHCSG2CiGqAF4L4OvWOl8H8KZE7fJ8APvz+PM++ujj0EG9Xsfu3bv7Rr2HkFJi9+7dqNeLSYEJHTl0KWVbCHEdgL8H4AP4rJTyF0KIa5O/3wbgWwAuAfAIgGkAbyk5/j766GOJYsOGDdixYwd27ty52EM5pFCv17FhQ7kSJx1VLvOFblUuffTRRx//mpGncllymaJ99NFHH3240TfoffTRRx+HCPoGvY8++ujjEMGicehCiJ0Anuhy85UAdvVwOL3EwTq2/rjK4WAdF3Dwjq0/rnLodlybpZTORJ5FM+hzgRDi7qygwGLjYB1bf1zlcLCOCzh4x9YfVznMx7j6lEsfffTRxyGCvkHvo48++jhEsFQN+qcWewA5OFjH1h9XORys4wIO3rH1x1UOPR/XkuTQ++ijjz76SGOpeuh99NFHH31Y6Bv0Pvroo49DBEvOoHfqb7qA49gohPiuEOIhIcQvhBD/Nln+QSHEb4UQ9yX/X7IIY3tcCPFAcvy7k2XLhRD/KIT4dfKzc++s3o/rGHZd7hNCHBBC/OFiXDMhxGeFEM8KIR5kyzKvkRDipuSZe1gIceECj+ujQoh/Tvr1/q0QYixZvkUIMcOu220LPK7M+7ZQ1ytnbF9l43pcCHFfsnxBrlmOfZjfZ0xKuWT+R1zt8VEAhwOoArgfwLZFGss6AKcmv48A+BWAbQA+COCGRb5OjwNYaS27BcD7kt/fB+DPDoJ7+QyAzYtxzQCcBeBUAA92ukbJfb0fQA3A1uQZ9BdwXBcACJLf/4yNawtfbxGul/O+LeT1yhqb9fePA/jAQl6zHPswr8/YUvPQtwN4REr5mJSyCeArAF62GAORUj4tpbw3+X0CwEOI2+4drHgZgL9Mfv9LAC9fxLEAwPkAHpVSdpstPCdIKe8AsMdanHWNXgbgK1LKhpTyN4jLRG9fqHFJKf9BStlO/vkTxA1kFhQZ1ysLC3a9Oo1NCCEAvBrAl+fr+BljyrIP8/qMLTWDntW7dFEhhNgC4BQAP00WXZdMjz+7GNQG4vZ//yCEuCfp4woAa2TSdCT5uXoRxsXxWpgv2WJfMyD7Gh1Mz91VAG5n/94qhPiZEOL7QogXLcJ4XPftYLpeLwLwOynlr9myBb1mln2Y12dsqRn0Qr1LFxJCiGEAfwPgD6WUBwDcCuAIACcjbpL98UUY1guklKcCuBjAO4UQZy3CGDIh4s5XlwH4X8mig+Ga5eGgeO6EEDcDaAP4YrLoaQCbpJSnAHg3gC8JIZYt4JCy7ttBcb0SXAHTcVjQa+awD5mrOpaVvmZLzaAfVL1LhRAVxDfri1LKrwGAlPJ3UspQShkB+DTmcaqZBSnlU8nPZwH8bTKG3wkh1iXjXgfg2YUeF8PFAO6VUv4OODiuWYKsa7Toz50Q4koALwHwepmQrsn0fHfy+z2IedejF2pMOfdt0a8XAAghAgCvAPBVWraQ18xlHzDPz9hSM+hF+psuCBJu7i8APCSl/M9s+Tq22uUAHrS3nedxDQkhRuh3xAG1BxFfpyuT1a4E8L8XclwWDK9psa8ZQ9Y1+jqA1wohakKIrQCOAnDnQg1KCHERgBsBXCalnGbLVwkh/OT3w5NxPbaA48q6b4t6vRheDOCfpZQ7aMFCXbMs+4D5fsbmO9o7D9HjSxBHjB8FcPMijuOFiKdEPwdwX/L/JQC+AOCBZPnXAaxb4HEdjjhafj+AX9A1ArACwHcA/Dr5uXyRrtsggN0ARtmyBb9miD8oTwNoIfaOrs67RgBuTp65hwFcvMDjegQxv0rP2W3Juq9M7vH9AO4F8NIFHlfmfVuo65U1tmT55wBca627INcsxz7M6zPWT/3vo48++jhEsNQolz766KOPPjLQN+h99NFHH4cI+ga9jz766OMQQd+g99FHH30cIugb9D766KOPQwR9g95HH330cYigb9D76KOPPg4R/H9XnSV71j/jJQAAAABJRU5ErkJggg==\n",
"text/plain": [
"