Mining for Lies Driven by advancements in Web-based information technologies and increasing globalization, computer-mediated communication continues to filter into everyday life, bringing with it new...


Mining for Lies


Driven by advancements in Web-based information technologies and increasing globalization, computer-mediated communication continues to filter into everyday life, bringing with it new venues for deception. The volume of text-based chat, instant messaging, text messaging, and text generated by online communities of practice is increasing rapidly. Even e-mail continues to grow in use. With the massive growth of text-based communication, the potential for people to deceive others through computer-mediated communication has also grown, and such deception can have disastrous results.


Unfortunately, in general, humans tend to perform poorly at deception-detection tasks. This phenomenon is exacerbated in text-based communications. A large part of the research on deception detection (also known as credibility assessment) has involved face-to-face meetings and interviews. Yet, with the growth of text-based communication, text-based deception-detection techniques are essential.


Techniques for successfully detecting deception— that is, lies—have wide applicability. Law enforcement can use decision support tools and techniques to investigate crimes, conduct security screening in airports, and monitor communications of suspected terrorists. Human resources professionals might use deceptiondetection tools to screen applicants. These tools and techniques also have the potential to screen e-mails to uncover fraud or other wrongdoings committed by corporate officers. Although some people believe that they can readily identify those who are not being truthful, a summary of deception research showed that, on average, people are only 54 percent accurate in making veracity determinations (Bond and DePaulo, 2006). This figure may actually be worse when humans try to detect deception in text.


Using a combination of text mining and data mining techniques, Fuller et al. (2008) analyzed person-of-interest statements completed by people involved in crimes on military bases. In these statements, suspects and witnesses are required to write their recollection of the event in their own words. Military law enforcement personnel searched archival data for statements that they could conclusively identify as being truthful or deceptive. These decisions were made on the basis of corroborating evidence and case resolution. Once labeled as truthful or deceptive, the law enforcement personnel removed identifying information and gave the statements to the research team. In total, 371 usable statements were received for analysis. The text-based deception detection method used by Fuller et al. (2008) was based on a process known as message feature mining, which relies on elements of data and text mining techniques. A simplified depiction of the process is provided in Figure 5.3.


First, the researchers prepared the data for processing. The original handwritten statements had to be transcribed into a word processing file. Second, features (i.e., cues) were identified. The researchers identified 31 features representing categories or types of language that are relatively independent of the text content and that can be readily analyzed by automated means. For example, first-person pronouns such as I or me can be identified without analysis of the surrounding text. Table 5.1 lists the categories and an example list of features used in this study.


The features were extracted from the textual statements and input into a flat file for further processing. Using several feature-selection methods along with 10-fold cross-validation, the researchers compared the prediction accuracy of three popular data mining methods. Their results indicated that neural network models performed the best, with 73.46 percent prediction accuracy on test data


samples; decision trees performed second best, with 71.60 percent accuracy; and logistic regression was last, with 65.28 percent accuracy.


The results indicate that automated text-based deception detection has the potential to aid those who must try to detect lies in text and can be successfully applied to real-world data. The accuracy of these techniques exceeded the accuracy of most other deception-detection techniques even though it was limited to textual cues.


1. Why is it difficult to detect deception?


2. How can text/data mining be used to detect deception in text?


3. What do you think are the main challenges for such an automated system?

May 24, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here