Microsoft Word - finc_3330_final_project.docx FINC 3330: Final Assignment Due: May 22, 2020, 11:59 P.M Note: Use Blackboard to submit this project (as we have been doing). DO NOT send me it via email....

1 answer below »
excel only


Microsoft Word - finc_3330_final_project.docx FINC 3330: Final Assignment Due: May 22, 2020, 11:59 P.M Note: Use Blackboard to submit this project (as we have been doing). DO NOT send me it via email. Please submit your project in a single EXCEL file. ONLY an EXCEL FILE will be accepted. Use Slides for chapters 6 and 7 to assist your work. Do your best! Part 1: Portfolio Return and Risk Compute the portfolio returns and risk measures of a portfolio you create. You can pick any two companies to download stock data for (daily or monthly). For the data you will need to attain about 50 observations (prices and returns for each stock). Task 1: Compute the respective average, standard deviation, and covariance of monthly or daily stock returns. Covariance table will be in the form: Var(stock1, stock1) Cov(stock1, stock2) Cov(stock1, stock2) Var(stock2, stock2) Note: Use STDEV.P in Excel for the standard deviation Task 2: Using the obtained statistics fromQ1, calculate an equal weighted portfolio return and portfolio variance for the first portfolio using the below equations: Equal weighted portfolio return: E(RP) = w1(avg(r1)) + w2(avg(r2)); where w is the weight of each stock in the portfolio. And avg(r1) is the mean return for stock 1 and avg(r2) is the mean return for stock 2. Portfolio variance: σ2p = w12( σ2s1) + w22( σ2s2) + 2*w1 w2 * σs1 σs2 Task 3: Select two different stocks and repeat task 1 and 2 Again: you can pick any two companies (except the ones you used for part 1) to download stock data for (daily or monthly). For the data you will need to attain about 50 observations (prices and returns for each stock). Task 4: Now using a matrix multiplication (i.e. MMULT in Excel.), compute two portfolio returns and portfolio variances. Use the formula: portfolio return: E(RP) = w * rT portfolio variance: σP2 =w·Σ·wT Task 5: With either portfolio, create a table that shows the benefit of diversification using Data Table in Excel. (Note that the table shows portfolio returns and portfolio standard deviation with respect to scenarios of weights on one of the stocks – of your choosing – from the portfolio) Task 6: Using the table obtained from task 5, Plot expected returns against portfolio risk (standard deviations) displaying efficient portfolios. Task 7: Using the first portfolio, find out optimal weights that minimizes the portfolio standard deviation (Minimum Variance Portfolio). Use the formula (from Slides 6 and 7): σP2=w*Σ*wTsubject to w*rT =E(RP)
Answered Same DayDec 09, 2021

Answer To: Microsoft Word - finc_3330_final_project.docx FINC 3330: Final Assignment Due: May 22, 2020, 11:59...

Tanmoy answered on Dec 13 2021
156 Votes
Sheet1
            Coca Cola    Pepsi
        Date    KO Close    PEP Close    KO Returns    PEP Returns    Portfolio Return        KO    PEP    Mean    Variance    Standard Deviation
        12/2/19    51.971497    131.113968                    0%    100%    0.06%    0.00053223    2.31%
        12/3/19    52.01984    130.708694    0.09%    -0.31%    -0.11%        2%    98%    0.06%    0
.0005113429    2.26%
        12/4/19    52.493633    132.484177    0.91%    1.36%    1.13%        4%    96%    0.06%    0.00049126    2.22%
        12/5/19    52.396938    132.479294    -0.18%    -0.00%    -0.09%        6%    94%    0.06%    0.0004719814    2.17%
        12/6/19    52.619328    133.470413    0.42%    0.75%    0.59%        8%    92%    0.06%    0.0004535069    2.13%
        12/9/19    52.280907    133.276077    -0.64%    -0.15%    -0.39%        10%    90%    0.06%    0.0004358366    2.09%
        12/10/19    51.990837    132.411285    -0.55%    -0.65%    -0.60%        12%    88%    0.06%    0.0004189706    2.05%
        12/11/19    52.164883    133.217789    0.33%    0.61%    0.47%        14%    86%    0.06%    0.0004029087    2.01%
        12/12/19    52.348595    133.295502    0.35%    0.06%    0.21%        16%    84%    0.06%    0.0003876511    1.97%
        12/13/19    52.619328    134.033997    0.52%    0.55%    0.54%        18%    82%    0.06%    0.0003731977    1.93%
        12/16/19    52.619328    133.178894    0.00%    -0.64%    -0.32%        20%    80%    0.06%    0.0003595485    1.90%
        12/17/19    52.619328    132.314102    0.00%    -0.65%    -0.32%        22%    78%    0.05%    0.0003467035    1.86%
        12/18/19    52.126205    132.119766    -0.94%    -0.15%    -0.54%        24%    76%    0.05%    0.0003346627    1.83%
        12/19/19    52.522636    132.605606    0.76%    0.37%    0.56%        26%    74%    0.05%    0.0003234261    1.80%
        12/20/19    53.151134    134.014557    1.20%    1.06%    1.13%        28%    72%    0.05%    0.0003129937    1.77%
        12/23/19    53.093117    133.15947    -0.11%    -0.64%    -0.37%        30%    70%    0.05%    0.0003033655    1.74%
        12/24/19    52.899734    133.013718    -0.36%    -0.11%    -0.24%        32%    68%    0.05%    0.0002945415    1.72%
        12/26/19    53.199478    132.819397    0.57%    -0.15%    0.21%        34%    66%    0.05%    0.0002865218    1.69%
        12/27/19    53.518559    133.645325    0.60%    0.62%    0.61%        36%    64%    0.05%    0.0002793062    1.67%
        12/30/19    53.441204    132.935989    -0.14%    -0.53%    -0.34%        38%    62%    0.05%    0.0002728949    1.65%
        12/31/19    53.518559    132.799957    0.14%    -0.10%    0.02%        40%    60%    0.05%    0.0002672878    1.63%    Results
        1/2/20    53.170471    131.974045    -0.65%    -0.62%    -0.64%        42%    58%    0.05%    0.0002624848    1.62%
        1/3/20    52.880394    131.789413    -0.55%    -0.14%    -0.34%        44%    56%    0.05%    0.0002584861    1.61%    As per the minimum variance portfolio the optimal weight that minimizes the portfolio standard deviation (risk) and maximizes the return is at 0.06% where the standard deviation is 2.17%. At the same point of standard deviation (risk) of 2.17%, the minimum return that can be achieved is 0.03%. Hence, the minimum variance of the portfolio is achieved at SD 2.17% with a return of 0.06%. In this case, we can also observe that the maximum return of 0.06% can be achieved only when we invest 6% of our investment in Coca Cola (KO) and 94% in Pepsi (PEP)....
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here