Microsoft Word - ELEC321 Assignment XXXXXXXXXXSemester 2 Page 1 Department of Engineering ELEC321/621 Communications Systems, Semester 2, 2018 Assignment 1 ...

File attached


Microsoft Word - ELEC321 Assignment 1 2018 Semester 2 Page 1      Department of Engineering        ELEC321/621      Communications Systems, Semester 2, 2018             Assignment 1      Completion of Assignment 1 is worth 10% of your total marks for this unit.       Your Assignment 1 must be submitted on the ELEC321 iLearn website by 11:55 p.m. on Sunday,          9 September 2018.    The  submission  should  be  made  using  the  Assignments  drop  box  feature  in  iLearn.  The  Assignments button  can be  found on  the  left‐hand  side of  the webpage after  logging  into  the  ELEC321 Electronic ilearn unit.     The  report  should  be  submitted  in  the  PDF  format  (scanned  hand‐written  solutions  are  also  acceptable but the hand writing must be  legible). The following file naming format should be  used: FamilyName_GivenName_Assignment1.pdf     Late  submissions  will  incur  a  penalty  of  10%  for  each  working  day  or  part  of  beyond  the  submission deadline.  A late submission of more than 7 days will receive a mark of 0.     A completed and signed cover sheet available on the unit website must be submitted with the  report. A scanned version of the completed cover sheet may be attached in front of the report  (forming a single pdf document).     Plagiarism will result in 0 marks in the assignment for all parties concerned and can lead to failure  in  the unit  and  reference  to  the University Discipline Committee.  For  the University’s honesty  policy see www.student.mq.edu.au/plagiarism            Page 2      Question 1  (20 Marks=2.5 +2.5 +10+2.5+2.5)      is a periodic function which is given by,x t          , 12 4 , - 0, 2 1where, 2 4 , 0 , 2 0, elsewhere. k x t g t k t t g t t t                      A.        What is the period of the periodic function,    ?x t    B.        Use Matlab to plot    as a function of for -6 6.x t t t     C.           is the complex Fourier Series representation of FSx t x t  ?             Find a mathematical expression for  FSx t .  D.       Use Matlab to plot        and   for ‐1 1 on the same graph.FSx t x t t    Use Fourier Series Coefficients for -101 k 101 for the evaluation of Fourier Series.     E.        Parseval’s Theorem States that,                                       2 22 2 2  2 1 , where   is the period of  ,   is the average power of  ,  and the complex Fourier Series representation of  given by  ˆUse Matlab to plot  T k av T av ktj T k m av k k m x t dt c P T T x t P x t x t x t c e P m c      as a function of   for 1 12. ˆOn the same plot, plot   to compare to  .av av m m P P m     Page 3    Question 2 (20 Marks =7+6+7)                 2  is a modulated real bandpass signal.     is a message signal.  can be expressed by an complex envelope representation given by, Re , where   is the complex envelope of c BP BP j f t BP BP x t m t x t x t x t e x t x                          2  and   is the centre frequency of  . Re  is the real part. A.      1   cos 2   .         What is the complex envelope,  , such that   Re  . B.       = Re 2 c c BP BP AM c j f t BP AM BP USB t f x x t A m t f t x t x t x t e Ax t m                                     2   2 0 ˆ ˆ     ,  where   is the Hilbert transform of  .         What is the complex envelope,  , such that   Re  . C.       cos 2 2 .  c c j f t j f t BP USB t BP FM c o t jm t e m t m t x t x t x t e x t A f t K m t dt                                     2        What is the complex envelope,  , such that   Re cj f tBP FMx t x t x t e                  Page 4    Question 3 (20 Marks=5+5+5+5)    The function in Matlab is useful to plotting functions which are defined at discrete points. stem •HINT :                     is defined by, 10 cos 2 400 t +5 cos 2 1000 t +2 cos 2 3000 A. Plot the amplitude spectrum as a function of for the message signal . For parts B, C, and D it is only required to plot m t m t t M f f m t Hint :                  5 the amplitude spectrum for 0. B. is the input to a DSB-FC modulator which is characterized by, 1 ( ) 20 1+ cos 2 10 t 17 Use Matlab to plot the amplitude spectrum, , w DSB FC DSB FC f m t s t m t S f                        5 here ( ) and is the Fourier Transform. C. is the input to a DSB-SC modulator which is characterized by, 20 ( ) cos 2 10 t 17 Use Matlab to plot the am DSB FC DSB FC DSB SC S f s t m t s t m t F F                         5 plitude spectrum, , where ( ) and is the Fourier Transform. D. is the input to a SSB-USB modulator which is characterized by, 10 ˆ ( ) cos 2 10 t 17 DSB SC DSB SC DSB SCS f S f s t m t s t m t jm t F F               ˆ, where is the Hilbert Transform of . Use Matlab to plot the amplitude spectrum, , where ( ) and is the Fourier Transform. m t m t S f S f s tF F          Page 5    Question 4 (20 Marks=5+5+5+5)  A modulated bandpass signal can be characterized in terms of its complex envelope.  Therefore,               2 cos 2 f t + Re e , where is the complex envelope of ( ), is the envelope of , cf t cs t A t t s t s t s t A t s t                              1 and is the phase angle of . A. Prove that Im B. Prove that tan Re C. If is received at a cha t s t E t A t s t s t t s t s t                               nnel output, indicate the signal processing required to obtain at the receiver. Assume that cos 2 f t and sin 2 f t are available at the receiver. D. If , cos 2 f t , and sin 2 f t are availa c c c c s t s t         ble at the modulator, indicate the signal processing required to obtain .s t          Page 6    Question 5 (20 Marks=5+3+5+3+2+2)                    2 2 The autocorrelation function of a periodic signal with period is given by 1 The power spectral density of is given by , where is the Fourier Transform. A. For T x T X X x t T R x t x t dt T x t S f R            F F                 9 sin 2 , find . B. Use Matlab to plot . Plot the case of 1 volt, 1. 10 Hz, and - , 2 2 1 where . C. For sin 2 , find . D. Use Matlab to plot . Pl c x x c c c x x x t A f t R t T TR A f T f x t A f t S f S f                       9 9 9 2 2 2 ot the case of 1 volt, 1. 10 Hz, and -2 10 Hz 2 10 Hz. 1E. What is the relationship between and the signal power, ? F. What is the relationship between an c T x x T X A f f S f P x t dt T R            d ?xP
Aug 30, 2020
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here