MBA 728 – Fall AP1 2021 Project 2 Due: Sunday, September 26, 11:59 PM CST ※ Using the R script, answer the following questions. Please show all works for full credit. ※ Please install and load the...

1 answer below »
MBA 728 – Fall AP1 2021 Project 2 Due: Sunday, September 26, 11:59 PM CST ※ Using the R script, answer the following questions. Please show all works for full credit. ※ Please install and load the following package as follows. install.packages("astsa") library(astsa) 1. Run the following code: set.seed(150) x <- arima.sim(model="list(ar" =="" c(0.4,="" 0.35),="" ma="c(0.5," 0.7)),="" mean="0," n="150)" a)="" [3="" points]="" what="" model="" is="" this="" simulation="" about?="" (that="" is,="" what="" are="" p,="" d,="" and="" q="" in="" arima(p,="" d,="" q)?="" )="" b)="" [2="" points]="" show="" the="" first="" five="" rows="" of="" ‘x’.="" c)="" [2="" points]="" plot="" the="" series="" ‘x’="" you="" obtained="" from="" the="" simulation.="" d)="" [3="" points]="" plot="" the="" sample="" autocorrelation="" function="" (acf)="" and="" the="" sample="" partial="" autocorrelation="" function="" (pacf).="" explain="" how="" they="" look="" like.="" 2.="" consider="" ‘x’="" you="" have="" obtained="" in="" previous="" question.="" suppose="" that="" you="" do="" not="" know="" what="" model="" the="" data="" ‘x’="" were="" generated="" from.="" after="" looking="" at="" acf="" and="" pacf,="" you="" decided="" to="" try="" to="" fit="" the="" following="" models="" to="" ‘x’="" :="" ar(1),="" ar(2),="" ma(1),="" ma(2),="" arma(1,="" 1),="" arma(1,="" 2),="" arma(2,="" 2),="" and="" arma(2,="" 3).="" a)="" [5="" points]="" fit="" each="" model="" you="" have="" decided="" to="" run.="" find="" the="" best="" model="" in="" terms="" of="" aic="" and="" bic="" criteria.="" b)="" [5="" points]="" explain="" about="" the="" significance="" of="" coefficients="" for="" all="" models.="" is="" the="" best="" model="" you="" selected="" in="" part="" a)="" reconciled?="" b)="" [5="" points]="" check="" the="" residual="" plots="" of="" the="" best="" model="" you="" chose="" in="" part="" a).="" explain="" all="" the="" plots.="" are="" the="" residuals="" white="" noise="" or="" not?="" this="" material="" is="" only="" for="" the="" use="" of="" students="" enrolled="" in="" mba="" 728="" for="" purposes="" associated="" with="" the="" course="" and="" may="" not="" be="" retained="" or="" further="" disseminated.="" all="" information="" in="" this="" material="" is="" proprietary="" to="" dr.="" sung="" ik="" kim.="" scanning,="" copying,="" posting="" to="" a="" website="" or="" reproducing="" and="" sharing="" in="" any="" form="" is="" strictly="" prohibited.="" 3.="" [25="" points]="" please="" use="" the="" following="" instructions.="" -="" find="" any="" stock="" you="" want="" to="" research.="" you="" can="" find="" ticker="" symbol="" from="" google,="" yahoo!="" finance,="" msn="" money,="" and="" so="" on="" (i.e.="" the="" ticker="" symbol="" of="" apple="" inc.="" is="" “aapl”).="" -="" run="" the="" following="" steps.="" 1)="" install="" package="" ‘quantmod’="" and="" load="" it.="" install.packages("quantmod")="" library(quantmod)="" 2)="" from="" yahoo!="" finance,="" download="" daily="" prices="" of="" the="" stock="" (from="" jan.="" 1,="" 2005="" to="" dec,="" 2019)="" you="" selected="" to="" research.="" you="" can="" run="" the="" following="" codes="" to="" download="" daily="" prices="" of="" the="" stock="" if="" you="" chose="" apple="" inc="" (the="" ticker="" symbol:="" aapl).="" getsymbols("aapl",="" src="yahoo" ,="" from='2005-01-01' ,="" to='2019-12-31' )="" please="" note="" that="" you="" have="" full="" length="" of="" daily="" prices.="" if="" not,="" consider="" other="" stock.="" 3)="" obtain="" monthly="" log="" stock="" returns.="" for="" instance,="" if="" you="" decide="" to="" do="" research="" on="" apple="" inc.="" whose="" ticker="" is="" “aapl”,="" then="" you="" will="" need="" to="" run="" the="" following:="" aapl.rtn=""><- monthlyreturn(aapl$aapl.adjusted,="" subset="NULL," type='log' ,="" leading="TRUE)" 4)="" change="" the="" data="" type="" to="" ts.="" again,="" for="" example,="" if="" you="" decide="" to="" do="" research="" on="" apple="" inc.,="" rtn=""><- ts(aapl.rtn, frequency = 12, start = c(2005,1)) - using monthly time series data rtn you obtained above, find a best model for the series. for example, ar(1), ar(2), ma(3), arma(2, 3), arima(2, 1, 4), or wahtever. justify your selection for a best model, using all knowledge you have learned so far in this course. ts(aapl.rtn,="" frequency="12," start="c(2005,1))" -="" using="" monthly="" time="" series="" data="" rtn="" you="" obtained="" above,="" find="" a="" best="" model="" for="" the="" series.="" for="" example,="" ar(1),="" ar(2),="" ma(3),="" arma(2,="" 3),="" arima(2,="" 1,="" 4),="" or="" wahtever.="" justify="" your="" selection="" for="" a="" best="" model,="" using="" all="" knowledge="" you="" have="" learned="" so="" far="" in="" this="">
Answered 1 days AfterSep 19, 2021

Answer To: MBA 728 – Fall AP1 2021 Project 2 Due: Sunday, September 26, 11:59 PM CST ※ Using the R script,...

Suraj answered on Sep 21 2021
153 Votes
a)
In the first model of simulated ARIMA, the code is given as follows:
set.seed(150)
x <- arima.sim (model = list (ar = c (0.
4, 0.35), ma = c (0.5, 0.7)), mean = 0, n = 150)
Here, in the above ARIMA model the value of the p, d and q are 2, 0 and 2. Thus, it is like ARIMA (2,0,2) model. Because in the model part ar has two values and same for ma there are 2 values that is 0.5 and 0.7. there is no value for d. Here d denotes the difference between the lag values.
b)
The first five rows of the x variable are given as follows. This is done by making data frame of the x values and then displaying the first 5 rows of the variable.
x
1 2.8085160
2 0.9168956
3 2.0056630
4 -0.9114965
5 -0.5833833
c)
The best suitable plot to plot these values is the line plot. Because here we have only one
Variable that is x and we can plot these values against the time. Thus, the line plot of the
obtained sample values x is given as follows:
d)
The ACF and PACF plots of the sample data are given as follows:
ACF
PACF
From the given above two plots, the ACF plot has spikes decay towards 0 slowly and for the PACF plot the spikes cut off to 0. Which is the clear indication that the data is suitable for AR (2) model. Because there are two significant lags in the PACF plot....
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here