Name: Name: University ID: Thomas Edison State University Calculus II (MAT-232) Section no.: Semester and year: Written Assignment 2 Answer all assigned exercises, and show all work. Each exercise is...

1 answer below »
MATH 232 WRITTEN ASSIGNMENT 2Answer all assigned exercises, and show all work. Please write out problem question and make sure to list what section and must be in order. Also answer clearly and neatly written if hand typed. thank you


Name: Name: University ID: Thomas Edison State University Calculus II (MAT-232) Section no.: Semester and year: Written Assignment 2 Answer all assigned exercises, and show all work. Each exercise is worth 4 points. Section 6.2 4. Evaluate the integral. 6. Evaluate the integral. 18. Evaluate the integral. 22. Evaluate the integral. 24. Evaluate the integral. 46. Evaluate the integral using integration by parts and substitution. Section 6.3 8. Evaluate the integral. 10. Evaluate the integral. 18. Evaluate the integral. 28. Evaluate the integral. 30. Evaluate the integral. Section 6.4 2. Find the partial fractions decomposition and an antiderivative. 12. Find the partial fractions decomposition and an antiderivative. 16. Find the partial fractions decomposition and an antiderivative. 22. Evaluate the integral. 24. Evaluate the integral. Section 6.6 8. Determine whether the integral converges or diverges. Find the value of the integral if it converges. (a) (b) 10. Determine whether the integral converges or diverges. Find the value of the integral if it converges. (a) (b) 16(a). Determine whether the integral converges or diverges. Find the value of the integral if it converges. Section 3.2 2. Find the indicated limit. 12. Find the indicated limit. 14. Find the indicated limit. 22. Find the indicated limit. 30. Find the indicated limit. 38. Find the indicated limit. WA 2, p. 2 2 sin xxdx ò 1 23 0 x xedx ò 2 1 ln xxdx ò 2 ln(4) xxdx + ò 4 sin(3) xdx - ò 4 cotcsc xxdx ò 22 (cossin) xxdx + ò 32 1 xxdx - ò 2 4 x dx x - ò 2 52 4 x x - - 3 1 4 xx + 2 2 69 x xx -+ 2 2 1 56 x dx xx + -- ò 3 1 1 dx x - ò 1 23 x xedx -¥ ò 0 4 x xedx - -¥ ò 0 cos xdx ¥ ò sin 0 cos x xedx ¥ - ò 2 2 0 1 x dx x - ò 2 2 2 4 lim 32 x x xx ® - -+ 3 0 tan lim x xx x ® - 1 ln lim 1 t t t ® - ln lim x x x ®¥ 0 lim ln x x x ®+ 1/ 0 lim(cos) x x x ®+ ln xxdx ò ln x dx x ò
Answered 5 days AfterJun 17, 2021

Answer To: Name: Name: University ID: Thomas Edison State University Calculus II (MAT-232) Section no.:...

Joice G answered on Jun 22 2021
140 Votes
CamScanner 06-22-2021 17.23.13
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here