SIT720 Machine Learning Assessment Task 2: Problem solving task. ©Deakin University XXXXXXXXXX1 XXXXXXXXXXSIT720 This document supplies detailed information on Assessment Task 2 for this unit. Key...

1 answer below »
Machine learning using unsupervised algorithms


SIT720 Machine Learning Assessment Task 2: Problem solving task. ©Deakin University 1 SIT720 This document supplies detailed information on Assessment Task 2 for this unit. Key information • Due: Week 7, Monday 30 August 2021 by 8.00 pm (AEST), • Weighting: 15% Learning Outcomes This assessment assesses the following Unit Learning Outcomes (ULO) and related Graduate Learning Outcomes (GLO): Unit Learning Outcome (ULO) Graduate Learning Outcome (GLO) ULO2 - Perform unsupervised learning of data such as clustering and dimensionality reduction. GLO1 - through the assessment of student ability to use data acquisition techniques to obtain, manipulate and represent data. GLO3 - through student ability to use specific programming language and modules to obtain, pre- process, transform and analyse data. GLO4 -through assessment of student ability to make decisions to obtain data, use appropriate techniques to represent and visualise complex relationships in the data. GLO5 - through assessment of student ability to solve problems relates to ill-defined data. Purpose This assessment task is for student to apply skills for data clustering and dimensionality reduction. Students will be required to demonstrate ability in data representation, and competency in applying suitable clustering/dimensionality reduction techniques in a real-world scenario. Assessment 2 Total marks = 40 Submission Instructions a) Submit your solution codes into a notebook file with “.ipynb” extension. Write discussions and explanations including outputs and figures into a separate file and submit as a PDF file. b) Submission other than the above-mentioned file formats will not be assessed and given zero for the entire submission. c) Insert your Python code responses into the cell of your submitted “.ipynb” file followed by the question i.e., copy the question by adding a cell before the solution cell. If you need multiple cells for better presentation of the code, add question only before the first solution cell. d) Your submitted code should be executable. If your code does not generate the submitted solution, then you will get zero for that part of the marks. e) Answers must be relevant and precise. f) No hard coding is allowed. Avoid using specific value that can be calculated from the data provided. g) Use topics covered till week 6 for answering this assignment. h) Submit your assignment after running each cell individually. i) The submitted notebook file name should be of this form “SIT720_A2_studentID.ipynb”. For example, if your student ID is 1234, then the submitted file name should be “SIT720_A2_1234.ipynb”. SIT720 Machine Learning Assessment Task 2: Problem solving task. ©Deakin University 2 SIT720 _____________________________________________________________________________________ Questions _____________________________________________________________________________________ Datafile: Download the dataset (.csv) from the SCADI . Data Description: This dataset contains 206 attributes of 70 children with physical and motor disability based on ICF-CY. For more information click this link. 1. Determine the number of subgroups from the dataset using attributes 3 to 205 i.e., exclude attributes 1, 2 and 206. Is this number same as number of classes presented by attribute 206? Explain and justify your findings. 4 marks 2. Is this data facing curse of dimensionality? If so, then how to solve this problem. Explain with a two- dimensional plot and report relevant loss of information. 4 marks 3. After applying principal component analysis (PCA) on a given dataset, it was found that the percentage of variance for the first N components is X%. How is this percentage of variance computed? 2 marks ___________________________________________________________________________________ Background Obesity has become a global epidemic that has doubled since 1980, with serious consequences for health in children, teenagers, and adults. Obesity levels in individuals may relate to their eating habits and physical condition. In this assessment, you will be analysing and creating ML models based on a given dataset that contains attributes of individuals with relation to obesity levels. Dataset filename: obesity_levels.csv Dataset description: This dataset include data for the estimation of obesity levels in individuals based on their eating habits and physical condition. The data contains 17 attributes and 2111 records. Features and labels: The attribute names are listed below. The description of the attributes can be found in this article (web-link). I. Gender II. Age III. Height IV. Weight V. family_history_with_overweight (family history of overweight) VI. FAVC (frequent high caloric food) VII. FCVC (vegetables per meal) VIII. NCP (number of main meals per day) IX. CAEC (any food between meals) X. SMOKE (smoking) XI. CH2O (daily water intake) XII. SCC (daily consumed calories) XIII. FAF (frequency of physical activity) XIV. TUE (technology usage) XV. CALC (consumption of alcohol) XVI. MTRANS (means of transport) XVII. NObeyesdad (obesity levels, i.e. Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity Type II and Obesity Type III) _____________________________________________________________________________________ Questions https://archive.ics.uci.edu/ml/datasets/SCADI https://www.mdpi.com/2073-8994/11/1/89/htm https://doi.org/10.1016/j.dib.2019.104344 SIT720 Machine Learning Assessment Task 2: Problem solving task. ©Deakin University 3 SIT720 _____________________________________________________________________________________ 4. Create a machine learning (ML) model for predicting “weight” using all features except “NObeyesdad” and report observed performance. Explain your results based on following criteria: 10 marks a. What model have you selected for solving this problem and why? b. Have you made any assumption for the target variable? If so, then why? c. What have you done with text variables? Explain. d. Have you optimised any model parameters? What is the benefit of this action? e. Have you applied any step for handling overfitting or underfitting issue? What is that? 5. Create a ML model for classifying subjects into two classes applying following constraints on above dataset. 12 marks • Use “NObeyesdad” as target variable and rest of them as predictor variables. • drop samples with value “Insufficient Weight” for “NObeyesdad” • Group Normal Weight, Overweight Level I,
Answered 2 days AfterAug 21, 2021

Answer To: SIT720 Machine Learning Assessment Task 2: Problem solving task. ©Deakin University XXXXXXXXXX1...

Karthi answered on Aug 23 2021
145 Votes
89946/machine_learning.ipynb
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"source": [
"import pandas as pd\n",
"import seaborn as sns\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import collections\n",
"from collections import Counter\n",
"\n",
"import sklearn\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from sklearn.preprocessing import OrdinalEncoder\n",
"from sklearn.preprocessing import OneHotEncoder\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.pipeline import Pipeline\n",
"\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.svm import SVC\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.ensemble import GradientBoostingClassifier\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.linear_model import SGDClassifier\n",
"\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.metrics import classification_report"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 3,
"source": [
"df = pd.read_csv('obesitylevels.csv')"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"df"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Gender Age Height Weight family_history_with_overweight \\\n",
"0 Female 21.000000 1.620000 64.000000 yes \n",
"1 Female 21.000000 1.520000 56.000000 yes \n",
"2 Male 23.000000 1.800000 77.000000 yes \n",
"3 Male 27.000000 1.800000 87.000000 no \n",
"4 Male 22.000000 1.780000 89.800000 no \n",
"... ... ... ... ... ... \n",
"2106 Female 20.976842 1.710730 131.408528 yes \n",
"2107 Female 21.982942 1.748584 133.742943 yes \n",
"2108 Female 22.524036 1.752206 133.689352 yes \n",
"2109 Female 24.361936 1.739450 133.346641 yes \n",
"2110 Female 23.664709 1.738836 133.472641 yes \n",
"\n",
" FAVC FCVC NCP CAEC SMOKE CH2O SCC FAF TUE \\\n",
"0 no 2.0 3.0 Sometimes no 2.000000 no 0.000000 1.000000 \n",
"1 no 3.0 3.0 Sometimes yes 3.000000 yes 3.000000 0.000000 \n",
"2 no 2.0 3.0 Sometimes no 2.000000 no 2.000000 1.000000 \n",
"3 no 3.0 3.0 Sometimes no 2.000000 no 2.000000 0.000000 \n",
"4 no 2.0 1.0 Sometimes no 2.000000 no 0.000000 0.000000 \n",
"... ... ... ... ... ... ... ... ... ... \n",
"2106 yes 3.0 3.0 Sometimes no 1.728139 no 1.676269 0.906247 \n",
"2107 yes 3.0 3.0 Sometimes no 2.005130 no 1.341390 0.599270 \n",
"2108 yes 3.0 3.0 Sometimes no 2.054193 no 1.414209 0.646288 \n",
"2109 yes 3.0 3.0 Sometimes no 2.852339 no 1.139107 0.586035 \n",
"2110 yes 3.0 3.0 Sometimes no 2.863513 no 1.026452 0.714137 \n",
"\n",
" CALC MTRANS NObeyesdad \n",
"0 no Public_Transportation Normal_Weight \n",
"1 Sometimes Public_Transportation Normal_Weight \n",
"2 Frequently Public_Transportation Normal_Weight \n",
"3 Frequently Walking Overweight_Level_I \n",
"4 Sometimes Public_Transportation Overweight_Level_II \n",
"... ... ... ... \n",
"2106 Sometimes Public_Transportation Obesity_Type_III \n",
"2107 Sometimes Public_Transportation Obesity_Type_III \n",
"2108 Sometimes Public_Transportation Obesity_Type_III \n",
"2109 Sometimes Public_Transportation Obesity_Type_III \n",
"2110 Sometimes Public_Transportation Obesity_Type_III \n",
"\n",
"[2111 rows x 17 columns]"
],
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
GenderAgeHeightWeightfamily_history_with_overweightFAVCFCVCNCPCAECSMOKECH2OSCCFAFTUECALCMTRANSNObeyesdad
0Female21.0000001.62000064.000000yesno2.03.0Sometimesno2.000000no0.0000001.000000noPublic_TransportationNormal_Weight
1Female21.0000001.52000056.000000yesno3.03.0Sometimesyes3.000000yes3.0000000.000000SometimesPublic_TransportationNormal_Weight
2Male23.0000001.80000077.000000yesno2.03.0Sometimesno2.000000no2.0000001.000000FrequentlyPublic_TransportationNormal_Weight
3Male27.0000001.80000087.000000nono3.03.0Sometimesno2.000000no2.0000000.000000FrequentlyWalkingOverweight_Level_I
4Male22.0000001.78000089.800000nono2.01.0Sometimesno2.000000no0.0000000.000000SometimesPublic_TransportationOverweight_Level_II
......................................................
2106Female20.9768421.710730131.408528yesyes3.03.0Sometimesno1.728139no1.6762690.906247SometimesPublic_TransportationObesity_Type_III
2107Female21.9829421.748584133.742943yesyes3.03.0Sometimesno2.005130no1.3413900.599270SometimesPublic_TransportationObesity_Type_III
2108Female22.5240361.752206133.689352yesyes3.03.0Sometimesno2.054193no1.4142090.646288SometimesPublic_TransportationObesity_Type_III
2109Female24.3619361.739450133.346641yesyes3.03.0Sometimesno2.852339no1.1391070.586035SometimesPublic_TransportationObesity_Type_III
2110Female23.6647091.738836133.472641yesyes3.03.0Sometimesno2.863513no1.0264520.714137SometimesPublic_TransportationObesity_Type_III
\n",
"

2111 rows × 17 columns

\n",
"
"
]
},
"metadata": {},
"execution_count": 4
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 5,
"source": [
"df.shape"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(2111, 17)"
]
},
"metadata": {},
"execution_count": 5
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 6,
"source": [
"df.info()"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"RangeIndex: 2111 entries, 0 to 2110\n",
"Data columns (total 17 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Gender 2111 non-null object \n",
" 1 Age 2111 non-null float64\n",
" 2 Height 2111 non-null float64\n",
" 3 Weight 2111 non-null float64\n",
" 4 family_history_with_overweight 2111 non-null object \n",
" 5 FAVC 2111 non-null object \n",
" 6 FCVC 2111 non-null float64\n",
" 7 NCP 2111 non-null float64\n",
" 8 CAEC 2111 non-null object \n",
" 9 SMOKE 2111 non-null object \n",
" 10 CH2O 2111 non-null float64\n",
" 11 SCC 2111 non-null object \n",
" 12 FAF 2111 non-null float64\n",
" 13 TUE 2111 non-null float64\n",
" 14 CALC 2111 non-null object \n",
" 15 MTRANS 2111 non-null object \n",
" 16 NObeyesdad 2111 non-null object \n",
"dtypes: float64(8), object(9)\n",
"memory usage: 280.5+ KB\n"
]
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"df.describe()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Age Height Weight FCVC NCP \\\n",
"count 2111.000000 2111.000000 2111.000000 2111.000000 2111.000000 \n",
"mean 24.312600 1.701677 86.586058 2.419043 2.685628 \n",
"std 6.345968 0.093305 26.191172 0.533927 0.778039 \n",
"min 14.000000 1.450000 39.000000 1.000000 1.000000 \n",
"25% 19.947192 1.630000 65.473343 2.000000 2.658738 \n",
"50% 22.777890 1.700499 83.000000 2.385502 3.000000 \n",
"75% 26.000000 1.768464 107.430682 3.000000 3.000000 \n",
"max 61.000000 1.980000 173.000000 3.000000 4.000000 \n",
"\n",
" CH2O FAF TUE \n",
"count 2111.000000 2111.000000 2111.000000 \n",
"mean 2.008011 1.010298 0.657866 \n",
"std 0.612953 0.850592 0.608927 \n",
"min 1.000000 0.000000 0.000000 \n",
"25% 1.584812 0.124505 0.000000 \n",
"50% 2.000000 1.000000 0.625350 \n",
"75% 2.477420 1.666678 1.000000 \n",
"max 3.000000 3.000000 2.000000 "
],
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
AgeHeightWeightFCVCNCPCH2OFAFTUE
count2111.0000002111.0000002111.0000002111.0000002111.0000002111.0000002111.0000002111.000000
mean24.3126001.70167786.5860582.4190432.6856282.0080111.0102980.657866
std6.3459680.09330526.1911720.5339270.7780390.6129530.8505920.608927
min14.0000001.45000039.0000001.0000001.0000001.0000000.0000000.000000
25%19.9471921.63000065.4733432.0000002.6587381.5848120.1245050.000000
50%22.7778901.70049983.0000002.3855023.0000002.0000001.0000000.625350
75%26.0000001.768464107.4306823.0000003.0000002.4774201.6666781.000000
max61.0000001.980000173.0000003.0000004.0000003.0000003.0000002.000000
\n",
"
"
]
},
"metadata": {},
"execution_count": 7
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 8,
"source": [
"df.columns"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweight',\n",
" 'FAVC', 'FCVC', 'NCP', 'CAEC', 'SMOKE', 'CH2O', 'SCC', 'FAF', 'TUE',\n",
" 'CALC', 'MTRANS', 'NObeyesdad'],\n",
" dtype='object')"
]
},
"metad
ata": {},
"execution_count": 8
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 9,
"source": [
"df.columns = ['Gender', 'Age', 'Height', 'Weight', 'Family History with Overweight',\n",
" 'Frequent consumption of high caloric food', 'Frequency of consumption of vegetables', 'Number of main meals', 'Consumption of food between meals', 'Smoke', 'Consumption of water daily', 'Calories consumption monitoring', 'Physical activity frequency', 'Time using technology devices',\n",
" 'Consumption of alcohol', 'Transportation used', 'Obesity']\n",
"\n",
"df\n"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Gender Age Height Weight Family History with Overweight \\\n",
"0 Female 21.000000 1.620000 64.000000 yes \n",
"1 Female 21.000000 1.520000 56.000000 yes \n",
"2 Male 23.000000 1.800000 77.000000 yes \n",
"3 Male 27.000000 1.800000 87.000000 no \n",
"4 Male 22.000000 1.780000 89.800000 no \n",
"... ... ... ... ... ... \n",
"2106 Female 20.976842 1.710730 131.408528 yes \n",
"2107 Female 21.982942 1.748584 133.742943 yes \n",
"2108 Female 22.524036 1.752206 133.689352 yes \n",
"2109 Female 24.361936 1.739450 133.346641 yes \n",
"2110 Female 23.664709 1.738836 133.472641 yes \n",
"\n",
" Frequent consumption of high caloric food \\\n",
"0 no \n",
"1 no \n",
"2 no \n",
"3 no \n",
"4 no \n",
"... ... \n",
"2106 yes \n",
"2107 yes \n",
"2108 yes \n",
"2109 yes \n",
"2110 yes \n",
"\n",
" Frequency of consumption of vegetables Number of main meals \\\n",
"0 2.0 3.0 \n",
"1 3.0 3.0 \n",
"2 2.0 3.0 \n",
"3 3.0 3.0 \n",
"4 2.0 1.0 \n",
"... ... ... \n",
"2106 3.0 3.0 \n",
"2107 3.0 3.0 \n",
"2108 3.0 3.0 \n",
"2109 3.0 3.0 \n",
"2110 3.0 3.0 \n",
"\n",
" Consumption of food between meals Smoke Consumption of water daily \\\n",
"0 Sometimes no 2.000000 \n",
"1 Sometimes yes 3.000000 \n",
"2 Sometimes no 2.000000 \n",
"3 Sometimes no 2.000000 \n",
"4 Sometimes no 2.000000 \n",
"... ... ... ... \n",
"2106 Sometimes no 1.728139 \n",
"2107 Sometimes no 2.005130 \n",
"2108 Sometimes no 2.054193 \n",
"2109 Sometimes no 2.852339 \n",
"2110 Sometimes no 2.863513 \n",
"\n",
" Calories consumption monitoring Physical activity frequency \\\n",
"0 no 0.000000 \n",
"1 yes 3.000000 \n",
"2 no 2.000000 \n",
"3 no 2.000000 \n",
"4 no 0.000000 \n",
"... ... ... \n",
"2106 no 1.676269 \n",
"2107 no 1.341390 \n",
"2108 no 1.414209 \n",
"2109 no 1.139107 \n",
"2110 no 1.026452 \n",
"\n",
" Time using technology devices Consumption of alcohol \\\n",
"0 1.000000 no \n",
"1 0.000000 Sometimes \n",
"2 1.000000 Frequently \n",
"3 0.000000 Frequently \n",
"4 0.000000 Sometimes \n",
"... ... ... \n",
"2106 0.906247 Sometimes \n",
"2107 0.599270 Sometimes \n",
"2108 0.646288 Sometimes \n",
"2109 0.586035 Sometimes \n",
"2110 0.714137 Sometimes \n",
"\n",
" Transportation used Obesity \n",
"0 Public_Transportation Normal_Weight \n",
"1 Public_Transportation Normal_Weight \n",
"2 Public_Transportation Normal_Weight \n",
"3 Walking Overweight_Level_I \n",
"4 Public_Transportation Overweight_Level_II \n",
"... ... ... \n",
"2106 Public_Transportation Obesity_Type_III \n",
"2107 Public_Transportation Obesity_Type_III \n",
"2108 Public_Transportation Obesity_Type_III \n",
"2109 Public_Transportation Obesity_Type_III \n",
"2110 Public_Transportation Obesity_Type_III \n",
"\n",
"[2111 rows x 17 columns]"
],
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
GenderAgeHeightWeightFamily History with OverweightFrequent consumption of high caloric foodFrequency of consumption of vegetablesNumber of main mealsConsumption of food between mealsSmokeConsumption of water dailyCalories consumption monitoringPhysical activity frequencyTime using technology devicesConsumption of alcoholTransportation usedObesity
0Female21.0000001.62000064.000000yesno2.03.0Sometimesno2.000000no0.0000001.000000noPublic_TransportationNormal_Weight
1Female21.0000001.52000056.000000yesno3.03.0Sometimesyes3.000000yes3.0000000.000000SometimesPublic_TransportationNormal_Weight
2Male23.0000001.80000077.000000yesno2.03.0Sometimesno2.000000no2.0000001.000000FrequentlyPublic_TransportationNormal_Weight
3Male27.0000001.80000087.000000nono3.03.0Sometimesno2.000000no2.0000000.000000FrequentlyWalkingOverweight_Level_I
4Male22.0000001.78000089.800000nono2.01.0Sometimesno2.000000no0.0000000.000000SometimesPublic_TransportationOverweight_Level_II
......................................................
2106Female20.9768421.710730131.408528yesyes3.03.0Sometimesno1.728139no1.6762690.906247SometimesPublic_TransportationObesity_Type_III
2107Female21.9829421.748584133.742943yesyes3.03.0Sometimesno2.005130no1.3413900.599270SometimesPublic_TransportationObesity_Type_III
2108Female22.5240361.752206133.689352yesyes3.03.0Sometimesno2.054193no1.4142090.646288SometimesPublic_TransportationObesity_Type_III
2109Female24.3619361.739450133.346641yesyes3.03.0Sometimesno2.852339no1.1391070.586035SometimesPublic_TransportationObesity_Type_III
2110Female23.6647091.738836133.472641yesyes3.03.0Sometimesno2.863513no1.0264520.714137SometimesPublic_TransportationObesity_Type_III
\n",
"

2111 rows × 17 columns

\n",
"
"
]
},
"metadata": {},
"execution_count": 9
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 10,
"source": [
"df['Obesity'] = df['Obesity'].apply(lambda x: x.replace('_', ' '))\n",
"df['Transportation used'] = df['Transportation used'].apply(lambda x: x.replace('_', ' '))\n",
"df['Height'] = df['Height']*100\n",
"df['Height'] = df['Height'].round(1)\n",
"df['Weight'] = df['Weight'].round(1)\n",
"df['Age'] = df['Age'].round(1)\n",
"df"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Gender Age Height Weight Family History with Overweight \\\n",
"0 Female 21.0 162.0 64.0 yes \n",
"1 Female 21.0 152.0 56.0 yes \n",
"2 Male 23.0 180.0 77.0 yes \n",
"3 Male 27.0 180.0 87.0 no \n",
"4 Male 22.0 178.0 89.8 no \n",
"... ... ... ... ... ... \n",
"2106 Female 21.0 171.1 131.4 yes \n",
"2107 Female 22.0 174.9 133.7 yes \n",
"2108 Female 22.5 175.2 133.7 yes \n",
"2109 Female 24.4 173.9 133.3 yes \n",
"2110 Female 23.7 173.9 133.5 yes \n",
"\n",
" Frequent consumption of high caloric food \\\n",
"0 no \n",
"1 no \n",
"2 no \n",
"3 no \n",
"4 no \n",
"... ... \n",
"2106 yes \n",
"2107 yes \n",
"2108 yes \n",
"2109 yes \n",
"2110 yes \n",
"\n",
" Frequency of consumption of vegetables Number of main meals \\\n",
"0 2.0 3.0 \n",
"1 3.0 3.0 \n",
"2 2.0 3.0 \n",
"3 3.0 3.0 \n",
"4 2.0 1.0 \n",
"... ... ... \n",
"2106 3.0 3.0 \n",
"2107 3.0 3.0 \n",
"2108 3.0 3.0 \n",
"2109 3.0 3.0 \n",
"2110 3.0 3.0 \n",
"\n",
" Consumption of food between meals Smoke Consumption of water daily \\\n",
"0 Sometimes no 2.000000 \n",
"1 Sometimes yes 3.000000 \n",
"2 Sometimes no 2.000000 \n",
"3 Sometimes no 2.000000 \n",
"4 Sometimes no 2.000000 \n",
"... ... ... ... \n",
"2106 Sometimes no 1.728139 \n",
"2107 Sometimes no 2.005130 \n",
"2108 Sometimes no 2.054193 \n",
"2109 Sometimes no 2.852339 \n",
"2110 Sometimes no 2.863513 \n",
"\n",
" Calories consumption monitoring Physical activity frequency \\\n",
"0 no 0.000000 \n",
"1 yes 3.000000 \n",
"2 no 2.000000 \n",
"3 no 2.000000 \n",
"4 no 0.000000 \n",
"... ... ... \n",
"2106 no 1.676269 \n",
"2107 no 1.341390 \n",
"2108 no 1.414209 \n",
"2109 no 1.139107 \n",
"2110 no 1.026452 \n",
"\n",
" Time using technology devices Consumption of alcohol \\\n",
"0 1.000000 no \n",
"1 0.000000 Sometimes \n",
"2 1.000000 Frequently \n",
"3 0.000000 Frequently \n",
"4 0.000000 Sometimes \n",
"... ... ... \n",
"2106 0.906247 Sometimes \n",
"2107 0.599270 Sometimes \n",
"2108 0.646288 Sometimes \n",
"2109 0.586035 Sometimes \n",
"2110 0.714137 Sometimes \n",
"\n",
" Transportation used Obesity \n",
"0 Public Transportation Normal Weight \n",
"1 Public Transportation Normal Weight \n",
"2 Public Transportation Normal Weight \n",
"3 Walking Overweight Level I \n",
"4 Public Transportation Overweight Level II \n",
"... ... ... \n",
"2106 Public Transportation Obesity Type III \n",
"2107 Public Transportation Obesity Type III \n",
"2108 Public Transportation Obesity Type III \n",
"2109 Public Transportation Obesity Type III \n",
"2110 Public Transportation Obesity Type III \n",
"\n",
"[2111 rows x 17 columns]"
],
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
GenderAgeHeightWeightFamily History with OverweightFrequent consumption of high caloric foodFrequency of consumption of vegetablesNumber of main mealsConsumption of food between mealsSmokeConsumption of water dailyCalories consumption monitoringPhysical activity frequencyTime using technology devicesConsumption of alcoholTransportation usedObesity
0Female21.0162.064.0yesno2.03.0Sometimesno2.000000no0.0000001.000000noPublic TransportationNormal Weight
1Female21.0152.056.0yesno3.03.0Sometimesyes3.000000yes3.0000000.000000SometimesPublic TransportationNormal Weight
2Male23.0180.077.0yesno2.03.0Sometimesno2.000000no2.0000001.000000FrequentlyPublic TransportationNormal Weight
3Male27.0180.087.0nono3.03.0Sometimesno2.000000no2.0000000.000000FrequentlyWalkingOverweight Level I
4Male22.0178.089.8nono2.01.0Sometimesno2.000000no0.0000000.000000SometimesPublic TransportationOverweight Level II
......................................................
2106Female21.0171.1131.4yesyes3.03.0Sometimesno1.728139no1.6762690.906247SometimesPublic TransportationObesity Type III
2107Female22.0174.9133.7yesyes3.03.0Sometimesno2.005130no1.3413900.599270SometimesPublic TransportationObesity Type III
2108Female22.5175.2133.7yesyes3.03.0Sometimesno2.054193no1.4142090.646288SometimesPublic TransportationObesity Type III
2109Female24.4173.9133.3yesyes3.03.0Sometimesno2.852339no1.1391070.586035SometimesPublic TransportationObesity Type III
2110Female23.7173.9133.5yesyes3.03.0Sometimesno2.863513no1.0264520.714137SometimesPublic TransportationObesity Type III
\n",
"

2111 rows × 17 columns

\n",
"
"
]
},
"metadata": {},
"execution_count": 10
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 11,
"source": [
"for x in ['Frequency of consumption of vegetables', 'Number of main meals', 'Consumption of water daily', 'Physical activity frequency', 'Time using technology devices']:\n",
" value = np.array(df[x])\n",
" print(x,':', 'min:', np.min(value), 'max:', np.max(value))\n"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Frequency of consumption of vegetables : min: 1.0 max: 3.0\n",
"Number of main meals : min: 1.0 max: 4.0\n",
"Consumption of water daily : min: 1.0 max: 3.0\n",
"Physical activity frequency : min: 0.0 max: 3.0\n",
"Time using technology devices : min: 0.0 max: 2.0\n"
]
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"## Exploratory Data Analysis"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 12,
"source": [
"for x in ['Frequency of consumption of vegetables', 'Number of main meals', 'Consumption of water daily', 'Physical activity frequency', 'Time using technology devices']:\n",
" df[x] = df[x].apply(round)\n",
" value = np.array(df[x])\n",
" print(x,':', 'min:', np.min(value), 'max:', np.max(value), df[x].dtype)\n",
" print(df[x].unique())\n",
" "
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Frequency of consumption of vegetables : min: 1 max: 3 int64\n",
"[2 3 1]\n",
"Number of main meals : min: 1 max: 4 int64\n",
"[3 1 4 2]\n",
"Consumption of water daily : min: 1 max: 3 int64\n",
"[2 3 1]\n",
"Physical activity frequency : min: 0 max: 3 int64\n",
"[0 3 2 1]\n",
"Time using technology devices : min: 0 max: 2 int64\n",
"[1 0 2]\n"
]
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 13,
"source": [
"df1 = df.copy()"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 14,
"source": [
"mapping0 = {1:'Never', 2:'Sometimes', 3:'Always'}\n",
"mapping1 = {1: '1', 2:'2' , 3: '3', 4: '3+'}\n",
"mapping2 = {1: 'Less than a liter', 2:'Between 1 and 2 L', 3:'More than 2 L'}\n",
"mapping3 = {0: 'I do not have', 1: '1 or 2 days', 2: '2 or 4 days', 3: '4 or 5 days'}\n",
"mapping4 = {0: '0–2 hours', 1: '3–5 hours', 2: 'More than 5 hours'}"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 15,
"source": [
"df['Frequency of consumption of vegetables'] = df['Frequency of consumption of vegetables'].replace(mapping0)\n",
"df['Number of main meals'] = df['Number of main meals'].replace(mapping1)\n",
"df['Consumption of water daily'] = df['Consumption of water daily'].replace(mapping2)\n",
"df['Physical activity frequency'] = df['Physical activity frequency'].replace(mapping3)\n",
"df['Time using technology devices'] = df['Time using technology devices'].replace(mapping4)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 16,
"source": [
"df"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Gender Age Height Weight Family History with Overweight \\\n",
"0 Female 21.0 162.0 64.0 yes \n",
"1 Female 21.0 152.0 56.0 yes \n",
"2 Male 23.0 180.0 77.0 yes \n",
"3 Male 27.0 180.0 87.0 no \n",
"4 Male 22.0 178.0 89.8 no \n",
"... ... ... ... ... ... \n",
"2106 Female 21.0 171.1 131.4 yes \n",
"2107 Female 22.0 174.9 133.7 yes \n",
"2108 Female 22.5 175.2 133.7 yes \n",
"2109 Female 24.4 173.9 133.3 yes \n",
"2110 Female 23.7 173.9 133.5 yes \n",
"\n",
" Frequent consumption of high caloric food \\\n",
"0 no \n",
"1 no \n",
"2 no \n",
"3 no \n",
"4 no \n",
"... ... \n",
"2106 yes \n",
"2107 yes \n",
"2108 yes \n",
"2109 yes \n",
"2110 yes \n",
"\n",
" Frequency of consumption of vegetables Number of main meals \\\n",
"0 Sometimes 3 \n",
"1 Always 3 \n",
"2 Sometimes 3 \n",
"3 Always 3 \n",
"4 Sometimes 1 \n",
"... ... ... \n",
"2106 Always 3 \n",
"2107 Always 3 \n",
"2108 Always 3 \n",
"2109 Always 3 \n",
"2110 Always 3 \n",
"\n",
" Consumption of food between meals Smoke Consumption of water daily \\\n",
"0 Sometimes no Between 1 and 2 L \n",
"1 Sometimes yes More than 2 L \n",
"2 Sometimes no Between 1 and 2 L \n",
"3 Sometimes no Between 1 and 2 L \n",
"4 Sometimes no Between 1 and 2 L \n",
"... ... ... ... \n",
"2106 Sometimes no Between 1 and 2 L \n",
"2107 Sometimes no Between 1 and 2 L \n",
"2108 Sometimes no Between 1 and 2 L \n",
"2109 Sometimes no More than 2 L \n",
"2110 Sometimes no More than 2 L \n",
"\n",
" Calories consumption monitoring Physical activity frequency \\\n",
"0 no I do not have \n",
"1 yes 4 or 5 days \n",
"2 no 2 or 4 days \n",
"3 no 2 or 4 days \n",
"4 no I do not have \n",
"... ... ... \n",
"2106 no 2 or 4 days \n",
"2107 no 1 or 2 days \n",
"2108 no 1 or 2 days \n",
"2109 no 1 or 2 days \n",
"2110 no 1 or 2 days \n",
"\n",
" Time using technology devices Consumption of alcohol \\\n",
"0 3–5 hours no \n",
"1 0–2 hours Sometimes \n",
"2 3–5 hours Frequently \n",
"3 0–2 hours Frequently \n",
"4 0–2 hours Sometimes \n",
"... ... ... \n",
"2106 3–5 hours Sometimes \n",
"2107 3–5 hours Sometimes \n",
"2108 3–5 hours Sometimes \n",
"2109 3–5 hours Sometimes \n",
"2110 3–5 hours Sometimes \n",
"\n",
" Transportation used Obesity \n",
"0 Public Transportation Normal Weight \n",
"1 Public Transportation Normal Weight \n",
"2 Public Transportation Normal Weight \n",
"3 Walking Overweight Level I \n",
"4 Public Transportation Overweight Level II \n",
"... ... ... \n",
"2106 Public Transportation Obesity Type III \n",
"2107 Public Transportation Obesity Type III \n",
"2108 Public Transportation Obesity Type III \n",
"2109 Public Transportation Obesity Type III \n",
"2110 Public Transportation Obesity Type III \n",
"\n",
"[2111 rows x 17 columns]"
],
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
GenderAgeHeightWeightFamily History with OverweightFrequent consumption of high caloric foodFrequency of consumption of vegetablesNumber of main mealsConsumption of food between mealsSmokeConsumption of water dailyCalories consumption monitoringPhysical activity frequencyTime using technology devicesConsumption of alcoholTransportation usedObesity
0Female21.0162.064.0yesnoSometimes3SometimesnoBetween 1 and 2 LnoI do not have3–5 hoursnoPublic TransportationNormal Weight
1Female21.0152.056.0yesnoAlways3SometimesyesMore than 2 Lyes4 or 5 days0–2 hoursSometimesPublic TransportationNormal Weight
2Male23.0180.077.0yesnoSometimes3SometimesnoBetween 1 and 2 Lno2 or 4 days3–5 hoursFrequentlyPublic TransportationNormal Weight
3Male27.0180.087.0nonoAlways3SometimesnoBetween 1 and 2 Lno2 or 4 days0–2 hoursFrequentlyWalkingOverweight Level I
4Male22.0178.089.8nonoSometimes1SometimesnoBetween 1 and 2 LnoI do not have0–2 hoursSometimesPublic TransportationOverweight Level II
......................................................
2106Female21.0171.1131.4yesyesAlways3SometimesnoBetween 1 and 2 Lno2 or 4 days3–5 hoursSometimesPublic TransportationObesity Type III
2107Female22.0174.9133.7yesyesAlways3SometimesnoBetween 1 and 2 Lno1 or 2 days3–5 hoursSometimesPublic TransportationObesity Type III
2108Female22.5175.2133.7yesyesAlways3SometimesnoBetween 1 and 2 Lno1 or 2 days3–5 hoursSometimesPublic TransportationObesity Type III
2109Female24.4173.9133.3yesyesAlways3SometimesnoMore than 2 Lno1 or 2 days3–5 hoursSometimesPublic TransportationObesity Type III
2110Female23.7173.9133.5yesyesAlways3SometimesnoMore than 2 Lno1 or 2 days3–5 hoursSometimesPublic TransportationObesity Type III
\n",
"

2111 rows × 17 columns

\n",
"
"
]
},
"metadata": {},
"execution_count": 16
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Age, Height and Weight"
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"In terms of height, male and female are similarly distributed according to the box plot below. While male are generally taller than female, both male and female share a similar average in weight, with female having a much larger range of weight (as well as BMI) compared to male. This is further illustrated by the steeper line plot between weight and height of female than male."
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 18,
"source": [
"sns.set()\n",
"fig = plt.figure(figsize=(20,10))\n",
"plt.subplot(1, 2, 1)\n",
"sns.boxplot(x='Gender', y='Height', data=df)\n",
"plt.subplot(1, 2, 2)\n",
"sns.boxplot(x='Gender', y='Weight', data=df)"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
"metadata": {},
"execution_count": 18
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAAJPCAYAAAAqg46TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA8n0lEQVR4nO3dfZyWBYHv/+89D6A2LijOmCHR5smITDknT+qBQK0EETKHMsWVbCuz9ZhZmiYgabKK4UPWcas9raclfeUsx/AhdtySfiRo+VCLRyOzEhRQGFDIAQeZh98frrMShlzKzD0P7/fr1evF3HNzzZdg8OIz13VPqaOjoyMAAAAAsIsqyj0AAAAAgN5FUAIAAACgEEEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAAACAQqrKPWB3ee65zWlv7yj3DACgC1RUlLLPPm8q9wxehXMwAOibXuv8q0uD0re+9a3867/+a5Jk3Lhx+fKXv5x77703V1xxRbZu3Zrjjz8+5513XpJk+fLlmTFjRpqbm3P44Yfn0ksvTVXVrs9rb+9wMgMA0M2cgwFA/9Rlt7zde++9WbJkSX70ox9lwYIFefTRR3PnnXfm4osvzg033JCFCxfmkUceyeLFi5MkF1xwQWbOnJm77rorHR0daWho6KppAAAAALwBXRaUamtrc9FFF2XAgAGprq7OQQcdlBUrVmT48OEZNmxYqqqqMnny5DQ2Nmb16tVpaWnJqFGjkiT19fVpbGzsqmkAAAAAvAFdFpTe8Y53dAaiFStWZOHChSmVSqmtre18Tl1dXdauXZt169Zt93htbW3Wrl3bVdMAAAAAeAO6/EW5H3/88Xz2s5/NhRdemKqqqjzxxBPbvb9UKqWjY8f77kulUqGPM2RIzRvaCQAAAMCu6dKg9NBDD+Xzn/98Lr744pxwwgm5//77s379+s73r1u3LnV1ddl///23e7ypqSl1dXWFPtaGDc1eEBIA+qiKipIvHgEA9CBddsvb008/nbPPPjtz587NCSeckCQ57LDD8sQTT2TlypVpa2vLnXfembFjx2bo0KEZOHBgHnrooSTJggULMnbs2K6aBgAAAMAb0GVXKH3ve9/L1q1bc+WVV3Y+dsopp+TKK6/MOeeck61bt2bcuHGZMGFCkmTu3LmZMWNGNm/enJEjR2batGldNQ0AAACAN6DU8WovYNQLueUNAPout7z1XM7BAKBveq3zry675Q0AAACAvklQAgAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoRFACAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAAChEUAKg19i48blceeVl2bRpY7mnAAD0C86/+EsEJQB6jTvu+FEef/yx3H77reWeAgDQLzj/4i8RlADoFTZufC5LlixOR0dHliz5ua+SAQB0Medf7IygBECvcMcdP0p7e0eSpL293VfJAAC6mPMvdkZQAqBXuO++pWlra02StLW15r77lpZ5EQBA3+b8i50RlADoFY46anSS0n+8VfqPtwEA6CpHHTU6lZVVSZLKyirnX2xHUAKgVxg37tgkHf/xVkeOPvoD5ZwDANDnTZ58UioqXvqCXkVFRT784foyL6InEZQA6BUWL16UUumlE5pSqZT/7/+7u8yLAAD6tsGD98mYMeNSKpUyZszYDBo0uNyT6EEEJQB6hfvuW5qOjpeuUOro6HAPPwBAN5g8+aS84x3vdHUSOxCUAOgV3MMPAND9Bg/eJxdddImrk9iBoARAr+AefgAA6DkEJQB6BffwAwBAz1FV7gEAsKsmTz4pq1evcnUSAACUWanj5Vc47eU2bGhOe3uf+KUAAH+moqKUIUNqyj2DV+EcDAD6ptc6/3LLGwAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUEhVuQcAAEBft3Tpz7NkyeJyz9gtNm3amCQZNGhwWXfsLmPGjMvo0WPLPQOg1xGUAPo4/4jpmfwDBuitNm3alKRv/F0MwOsnKAHQa/hHDNBbjR49ts9E5DlzvpYkufDCmWVeAkA5CUoAfZx/xAAAALubF+UGAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgEEEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoRFACAOhjmpubM2nSpKxatSpJ8utf/zonn3xyTjjhhHzxi1/Miy++mCRZvnx5pkyZkvHjx2f69OlpbW0t52wAoBcRlAAA+pBly5bl1FNPzYoVK5K8FJfOOeecXHbZZfnxj3+cJJk/f36S5IILLsjMmTNz1113paOjIw0NDeWaDQD0MoISAEAf0tDQkFmzZqWuri5JsnTp0owaNSojRoxIksyYMSMf+tCHsnr16rS0tGTUqFFJkvr6+jQ2NpZrNgDQy1SVewAAALvP7Nmzt3t75cqV2WuvvXL22WfnySefzOGHH56LLroov/nNb1JbW9v5vNra2qxdu7bwxxsypOYNb6Z3qa6uTJLU1u5d5iUAlJOgBADQh7W1tWXJkiW55ZZb8pa3vCXTp0/Pd7/73YwePXqH55ZKpcLH37ChOe3tHbtjKr3Etm1tSZKmpufLvASArlRRUdrpF47c8gYA0Iftt99+OeywwzJs2LBUVlbm+OOPz8MPP5z9998/69ev73xeU1NT521yAACvRVACAOjDxowZk0cffTRPP/10kuRnP/tZ3v3ud2fo0KEZOHBgHnrooSTJggULMnbs2HJOBQB6Ebe8AQD0YQcccEAuu+yynHXWWdm6dWve9a535cILL0ySzJ07NzNmzMjmzZszcuTITJs2rcxrAYDeQlACAOiDFi1a1Pnjo48+OkcfffQOzxkxYkTmz5/fjasAgL7CLW8AAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUEiXBqXm5uZMmjQpq1atSpLceuutmThxYiZPnpzLL788ra2tSZI1a9bktNNOy4QJE/K5z30umzdv7spZAAAAALwBXRaUli1bllNPPTUrVqxIkvzxj3/Mddddl//zf/5P7rjjjrS2tmbevHlJkksvvTRTp05NY2NjDjnkkNxwww1dNQsAAACAN6jLglJDQ0NmzZqVurq6JMljjz2WUaNGdb59zDHH5Kc//Wm2bduWBx54IOPHj0+S1NfXp7GxsatmAQAAAPAGVXXVgWfPnr3d2yNGjMiVV16Zp59+OnV1dWlsbMz69evz3HPPpaamJlVVL02pra3N2rVrC3+8IUNqdstuAHqu6urKJElt7d5lXgIAAP1blwWlP/fXf/3X+dKXvpTPfe5z2WOPPTJhwoT8v//3/9LR0bHDc0ulUuHjb9jQnPb2HY8FQN+xbVtbkqSp6fkyL6G7VVSUfPEIAKAH6bagtHXr1hx66KFZsGBBkuTf/u3fMmzYsOy7775pbm5OW1tbKisr09TU1HlbHAAAAAA9T5d+l7dX2rJlSz7xiU+kubk5L774YubNm5eJEyemuro6hx9+eBYuXJgkWbBgQcaOHdtdswAAAAAoqNuuUNpnn33yP//n/8zHP/7xtLa2ZtKkSZk8eXKSZNasWbnooovyD//wDznggANyzTXXdNcsAAAAAArq8qC0aNGizh9/7GMfy8c+9rEdnjN06NDMmzevq6cAAAAAsBt02y1vAAAAAPQNghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAB9THNzcyZNmpRVq1Zt9/hNN92U008/vfPtNWvW5LTTTsuECRPyuc99Lps3b+7uqQBALyUoAQD0IcuWLcupp56aFStWbPf473//+3znO9/Z7rFLL700U6dOTWNjYw455JDccMMN3bgUAOjNBCUAgD6koaEhs2bNSl1dXedjL774Yi655JKce+65nY9t27YtDzzwQMaPH58kqa+vT2NjY7fvBQB6p6pyDwAAYPeZPXv2Do9dffXVmTJlSg488MDOx5577rnU1NSkquql08Ha2tqsXbu28McbMqTm9Y+lV6qurkyS1NbuXeYlAJSToAQA0IctXbo0Tz/9dL7yla/kl7/8ZefjHR0dOzy3VCoVPv6GDc1pb9/xWPRd27a1JUmamp4v8xIAulJFRWmnXzgSlAAA+rA777wzjz/+eE488cRs2bIl69evzxe+8IV8/etfT3Nzc9ra2lJZWZmmpqbtbpMDANgZQQkAoA+74oorOn/8y1/+Mt/61rdy3XXXJUkOP/zwLFy4MJMnT86CBQsyduzYMq0EAHobL8oNANBPzZo1Kw0NDZk4cWIefPDBfOELXyj3JACgl3CFUj+zdOnPs2TJ4nLP2C02bdqYJBk0aHBZd+wuY8aMy+jRvjIMwO6xaNGiHR474ogjcsQRR3S+PXTo0MybN687ZwEAfYQrlOi1Nm3alE2bNpV7BgAAAPQ7rlDqZ0aPHttnroKZM+drSZILL5xZ5iUAAADQv7hCCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgEEEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoRFACAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgEEEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoRFACAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgkKpyDwAAAIC+ZunSn2fJksXlnvGGbdq0MUkyaNDgsu7YXcaMGZfRo8eWe0af4AolAAAA4FVt2rQpmzZtKvcMeiBXKAG8iptv/uc89dTKcs/gzzz55Eu/J3PmfK3MS3ilYcOGZ+rUaeWeAQA9yujRY/vElTAvn3ddeOHMMi+hpxGUAF7FU0+tzIrf/zZvrvHXZE+yV9qTJC3P/L7MS3jZM82t5Z4AAEAZ+JcSwF/w5pqqfPLQfcs9A3q0Gx9+ttwTAAAoA6+hBAAAAEAhghIAAAAAhXRpUGpubs6kSZOyatWqJMmSJUvy4Q9/OJMmTcqXv/zlvPjii0mSNWvW5LTTTsuECRPyuc99Lps3b+7KWQAAAAC8AV0WlJYtW5ZTTz01K1as6Hxs+vTpufbaa3PnnXempaUlt912W5Lk0ksvzdSpU9PY2JhDDjkkN9xwQ1fNAgAAAOAN6rKg1NDQkFmzZqWurq7zsba2tjQ3N6etrS1bt27NwIEDs23btjzwwAMZP358kqS+vj6NjY1dNQsAAACAN6jLvsvb7Nmzd3jsq1/9ak4//fTU1NTkwAMPzIQJE/Lcc8+lpqYmVVUvTamtrc3atWsLf7whQ2re8GZ6l+rqyiRJbe3eZV5CX1RdXZmWco+AXqK6utLfxQAA/UyXBaU/19TUlLlz5+bOO+/MgQcemCuuuCJXXHFFzjrrrB2eWyqVCh9/w4bmtLd37I6p9BLbtrUlSZqani/zEvqil/98Aa9t27a2Lv+7uKKi5ItHAAA9SLd9l7cHH3wwBx98cN761remoqIiJ598cu6///7su+++nbfBJS+Fp1feJgcAAABAz9JtQenggw/Oww8/nPXr1ydJ7r777rznPe9JdXV1Dj/88CxcuDBJsmDBgowdO7a7ZgEAAABQULfd8nbQQQfl3HPPzbRp01JZWZnhw4fnsssuS5LMmjUrF110Uf7hH/4hBxxwQK655prumgUAAABAQV0elBYtWtT545NOOiknnXTSDs8ZOnRo5s2b19VTAAAAANgNuu2WNwAAAAD6BkEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoRFACAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgEEEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAAACAQgQlAIA+prm5OZMmTcqqVauSJLfccksmTZqUyZMn5ytf+UpefPHFJMny5cszZcqUjB8/PtOnT09ra2s5ZwMAvYigBADQhyxbtiynnnpqVqxYkSR54okn8r3vfS8//OEPc/vtt6e9vT0333xzkuSCCy7IzJkzc9ddd6WjoyMNDQ1lXA4A9CaCEgBAH9LQ0JBZs2alrq4uSTJgwIB89atfTU1NTUqlUg4++OCsWbMmq1evTktLS0aNGpUkqa+vT2NjYxmXAwC9SVW5BwAAsPvMnj17u7eHDh2aoUOHJkmeffbZ3HTTTbniiiuybt261NbWdj6vtrY2a9eu7datAEDvJSgBAPQDa9euzac//elMmTIlRxxxRH71q1/t8JxSqVT4uEOG1OyOefQi1dWVSZLa2r3LvAToDj7n+UsEJQCAPu4Pf/hDPvOZz+Rv/uZv8rd/+7dJkv333z/r16/vfE5TU1PnbXJFbNjQnPb2jt22lZ5v27a2JElT0/NlXgJ0B5/z/VdFRWmnXzjyGkoAAH1Yc3NzPvWpT+Xcc8/tjEnJS7fCDRw4MA899FCSZMGCBRk7dmy5ZgIAvYwrlAAA+rD58+dn/fr1+ad/+qf80z/9U5Lk2GOPzbnnnpu5c+dmxowZ2bx5c0aOHJlp06aVeS0A0FsISgAAfdCiRYuSJGeccUbOOOOMV33OiBEjMn/+/G5cBQD0FW55AwAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoxItyA7yKTZs25rnm1tz48LPlngI92jPNrdln08ZyzwAAoJu5QgkAAACAQlyhBPAqBg0anIEvrM8nD9233FOgR7vx4Wezx6DB5Z4BAEA3c4USAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIbsUlH7605/u8NiCBQt29xYAAP7Dpz/96R0eO/nkk8uwBABgR1U7e+eiRYvS2tqaq666Ku3t7Z2Pt7a25tprr81HPvKRrt4HANCvfP7zn88TTzyRp556KpMnT+58vLW1NRUVLi4HAHqGnQal5cuX5xe/+EU2bNiQefPm/edPqqrKpz71qS4fBwDQ33z5y1/O6tWrM3PmzMycObPz8crKyrzjHe8o4zIAgP+006B09tln5+yzz85NN92U0047rbs2AQD0WwceeGAOPPDANDY2uiIJAOixdhqUXjZlypTcfvvtefbZZ9PR0dH5+Cc/+ckuGwYA0J/dfffdueqqqzrPvzo6OlIqlfKrX/2q3NMAAHYtKH3pS1/K008/nYMPPjilUqmrNwEA9HtXXXVVLrzwwowYMcL5F9Bv3HzzP+epp1aWewav8OSTL/1+zJnztTIv4c8NGzY8U6dOK9vH36Wg9Lvf/S533XWXy64BALrJ3nvvnQ9+8IPlngHQrZ56amVW/P63eXPNLv1TlW6wV176Bl0tz/y+zEt4pWeaW8s9YdeC0pAhQ9La2poBAwZ09R4AAJK85z3vyU9/+lNRCeh33lxTlU8eum+5Z0CPduPDz5Z7ws6D0o033pgkqa2tzemnn54PfOADqa6u7ny/11ACANi9/ut//a8plUppa2vLLbfckgEDBqSqqsprKAEAPcpOg9Lvfve7JElNTU1qamryxBNPdMsoAID+6s477yz3BACA17TToHTFFVd01w4AAJIMHTo0SbJgwYId3rfnnnumpaUlBx10UDevAgDY3i69htKxxx673XcXKZVK2XPPPfOOd7wjF110Uerq6rpsIABAf3Tbbbfl3//933PkkUemsrIy9913X4YNG5Y//elP+exnP5uPf/zj5Z4IAPRjuxSUPvjBD2bz5s057bTTUlFRkfnz52fz5s155zvfmUsuuSTf/va3u3onAEC/UiqVMn/+/M6rkZ566qlcfvnl+cEPfpCpU6cKSgBAWVXsypMefPDBzJ49OyNHjsyIESMyY8aMPP744znjjDOyevXqrt4IANDvNDU1bXdr27Bhw7J27drU1NSksrKyjMsAAHYxKG3evDnNzc2dbzc3N6elpaXLRgEA9HeDBg3KLbfckra2trS2tuaWW27J4MGD88QTT6S9vb3c8wCAfm6XbnmbMmVKTj755EyYMCEdHR35t3/7t3zsYx/LvHnz8va3v72rNwIA9DuzZ8/OhRdemEsvvTSlUin/7b/9t1x55ZW544478rnPfa7c8wCAfm6XgtKZZ56ZkSNHZvHixamqqsrMmTNz5JFH5pFHHslJJ53U1RsBAPqd4cOH54c//GH+9Kc/paKiIjU1NUmSs846q8zLAABeIyj94Q9/yEEHHZRHH300++yzTz7ykY90vu/RRx/NIYcc0tX7AAD6ldmzZ2f69Ol/MRz5ZigAQE+w06B01VVX5Tvf+U7OOeecHd5XKpVy9913d9kwAID+6KijjkqSjB8/vsxLyu/mm/85Tz21stwz+DNPPvnS78mcOV8r8xJeadiw4Zk6dVq5ZwD9yE6D0ne+850kyaJFi7plDABAf3fssccmSU466aQ888wzeeyxxzJmzJisW7cuBxxwQJnXda+nnlqZxx7/fSr3GFzuKbxCe9tL32Xw90+tL/MSXtbWsrHcE4B+aJdeQ2nz5s25+uqr84c//CHf+MY3cs011+TCCy/Mm970pq7eBwDQLy1evDizZs1KRUVFfvjDH2bixIn5+te/ng9+8IPlntatKvcYnL2Gf6DcM6BH27LSnSNA96vYlSddfvnl2XvvvbNhw4YMHDgwzc3NueSSS7p6GwBAv/XNb34zDQ0N+au/+qvU1dXl5ptvzvXXX1/uWQAASXYxKC1fvjznnXdeqqqqsueee2bu3LlZvnx5V28DAOi32tvbU1dX1/n2u971rpRKpTIuAgD4T7sUlCoqtn9aW1vbDo8BALD77LnnnlmzZk1nRHrwwQczcODAMq8CAHjJLr2G0n//7/89X//619PS0pJ77rknN910U4444oiu3gZQVs80t+bGh58t9wxeofnF9iRJzQBf1OgpnmluzdvKPaKPaW5uTk1NTc4///z87d/+bZqamvLxj388K1asyDe/+c1yzwMASLKLQen888/Pd7/73ey999659tpr8/73vz9/93d/19XbAMpm2LDh5Z7Aq1j3H9+qer83+/3pKd4Wny+725FHHpn3vve9OfroozNnzpxs3Lgx7e3tOeyww7LvvvuWex4AQJJdDErV1dU5++yzc/bZZxf+AM3NzTnllFPy7W9/O3/4wx9yzTXXdL5v7dq1Oeyww/Kd73wny5cvz4wZM9Lc3JzDDz88l156aaqqdmkewG43deq0ck/gVcyZ87UkyYUXzizzEug6P//5z/OLX/wi9913X2666aaUSqWMGzcu1dXVed/73pcBAwaUeyIAwM6D0llnnbXTn/ztb397p+9ftmxZZsyYkRUrViRJxo0bl3HjxiVJmpqacuqpp+YrX/lKkuSCCy7I5ZdfnlGjRuXiiy9OQ0NDpk6duqu/DgCAPmHffffNxIkTM3HixCTJ6tWrc++992bu3LlZuXJlfv3rX5d5IQDAawSl8ePHd/74+uuvz+c///lCB29oaMisWbPy5S9/eYf3XXXVVTnllFPytre9LatXr05LS0tGjRqVJKmvr8/1118vKAEA/daqVaty9913Z+nSpfnNb36Td7/73Tn55JPLPQsAIMlrBKWTTjqp88ff//73t3t7V8yePftVH1+xYkXuv//+zvevW7cutbW1ne+vra3N2rVrC32sIUNqCj2/qH/8x3/MH//4xy79GBTz1FMvvZbKNdf8fZmX8Ofe/va35zOf+Uy5Z9AHVVdXJklqa/cu8xLoOtdee20WLVqUzZs35/3vf3+mTp2aI488MnvssUe5pwEAdNrlFyl6+VvW7g633HJLpk6d2vkaAB0dHW/4423Y0Jz29h2Ps7s89tjjeezx36dyj8Fd9jEopr31pX9YLv9jsfhI12pr2Zht29rS1PR8uafQB23b1pYk/nz1QxUVpS7/4lFP8Z3vfCfHHntszjzzzM6rtwEAepqyvOr13Xffne9973udb++///5Zv35959tNTU2pq6srx7SdqtxjcPYa/oFyz4AebcvKu8s9AaBXa2xszM9+9rNcffXVWbFiRUaPHp2jjz46Y8aMSU1N/4hqAEDPV7Gzd27cuLHzf21tbdm0adN2j70ezz77bFpaWjJs2LDOx4YOHZqBAwfmoYceSpIsWLAgY8eOfV3HBwDozd72trflk5/8ZObNm5cf//jHGTNmTH7yk5/khBNOyCc/+clyzwMASPIaVygdeeSRKZVKnbekHXHEEZ3vK5VKWb58eeEPuGrVqrz5zW/e4fG5c+dmxowZ2bx5c0aOHJlp03zLbgCgf1uzZk2effbZvPjii6murk5lZWW5JwEAJHmNoPTb3/52t3yQRYsWdf740EMPTUNDww7PGTFiRObPn79bPh4AQG/1z//8z7n//vvzwAMPZPDgwXn/+9+fj370oznyyCMzcODAXTpGc3NzTjnllHz729/OgQcemHvvvTdXXHFFtm7dmuOPPz7nnXdekmT58uWZMWNGmpubc/jhh+fSSy9NVVVZXhEBAOhldnrLGwAA3euee+7JEUcckYaGhtx1112ZMWNGxo0bt8sxadmyZTn11FOzYsWKJElLS0suvvji3HDDDVm4cGEeeeSRLF68OElywQUXZObMmbnrrrvS0dHxql/0AwB4NYISAEAP8o//+I85/fTTM3z48Nf18xsaGjJr1qzOb3Dy8MMPZ/jw4Rk2bFiqqqoyefLkNDY2ZvXq1Wlpaen8TnL19fVpbGzcXb8MAKCPc00zAEAfMnv27O3eXrduXWprazvfrqury9q1a3d4vLa2NmvXru22nQBA7yYoAQD0YS9/c5VXeuU3Xfnzx4saMqTmde3aFdXVXoQcdlV1dWVqa/cu94w3rLq6Mi3lHgG9RLk/7wUlAIA+bP/998/69es73163bl3q6up2eLypqanzNrkiNmxoTnv7jnFqd9i2ra1Ljgt90bZtbWlqer7cM94wn/ew67r6876iorTTLxx5DSUAgD7ssMMOyxNPPJGVK1emra0td955Z8aOHZuhQ4dm4MCBeeihh5IkCxYsyNixY8u8FgDoLVyhBADQhw0cODBXXnllzjnnnGzdujXjxo3LhAkTkiRz587NjBkzsnnz5owcOTLTpk0r81oAoLcQlAAA+qBFixZ1/vioo47K7bffvsNzRowYkfnz53fnLACgj3DLGwAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUEhVuQcAAABAkmzatDHPNbfmxoefLfcU6NGeaW7NPps2lnWDK5QAAAAAKMQVSgAAAPQIgwYNzsAX1ueTh+5b7inQo9348LPZY9Dgsm5whRIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFBIVbkH9BabNm1MW8vGbFl5d7mnQI/W1rIxmzb5qwUAAKAvc4USAAAAAIW4jGAXDRo0OE1/as1ewz9Q7inQo21ZeXcGDRpc7hkAAAB0IVcoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEANBP3HbbbTnhhBNywgknZM6cOUmS5cuXZ8qUKRk/fnymT5+e1tbWMq8EAHoDQQkAoB944YUXMnv27MybNy+33XZbHnzwwdx777254IILMnPmzNx1113p6OhIQ0NDuacCAL2AoAQA0A+0tbWlvb09L7zwQlpbW9Pa2pqqqqq0tLRk1KhRSZL6+vo0NjaWdygA0CtUlXsAAABdr6amJueee26OP/747LHHHnnf+96X6urq1NbWdj6ntrY2a9euLXTcIUNqdvfUTtXVlV12bOhrqqsrU1u7d7lnvGHV1ZVpKfcI6CXK/XkvKAEA9AO//e1v83//7//Nz372s+y99945//zzs3Tp0h2eVyqVCh13w4bmtLd37K6Z29m2ra1Ljgt90bZtbWlqer7cM94wn/ew67r6876iorTTLxy55Q0AoB9YsmRJjjrqqAwZMiQDBgxIfX19fvnLX2b9+vWdz2lqakpdXV0ZVwIAvYWgBADQD4wYMSL33ntvtmzZko6OjixatCjve9/7MnDgwDz00ENJkgULFmTs2LFlXgoA9AZueQMA6AfGjBmT3/zmN6mvr091dXXe85735Mwzz8yHPvShzJgxI5s3b87IkSMzbdq0ck8FAHoBQQkAoJ8488wzc+aZZ2732IgRIzJ//vwyLQIAeiu3vAEAAABQiCuUAADokTZt2pi2lo3ZsvLuck+BHq2tZWM2bfJPO6B7dfkVSs3NzZk0aVJWrVqVJPn1r3+dk08+OSeccEK++MUv5sUXX0ySLF++PFOmTMn48eMzffr0tLa2dvU0AAAAAF6HLs3Yy5Yty4wZM7JixYokL8Wlc845J//7f//vjBgxIl/84hczf/78TJ06NRdccEEuv/zyjBo1KhdffHEaGhoyderUrpwHAEAPNmjQ4DT9qTV7Df9AuadAj7Zl5d0ZNGhwuWcA/UyXXqHU0NCQWbNmpa6uLkmydOnSjBo1KiNGjEiSzJgxIx/60IeyevXqtLS0ZNSoUUmS+vr6NDY2duU0AAAAAF6nLr1Cafbs2du9vXLlyuy11145++yz8+STT+bwww/PRRddlN/85jepra3tfF5tbW3Wrl3bldMAAAAAeJ269ZXb2trasmTJktxyyy15y1vekunTp+e73/1uRo8evcNzS6VSoWMPGVKzu2a+qurqyi49PvQl1dWVqa3du9wz6INe/rvYny8AACivbg1K++23Xw477LAMGzYsSXL88cfnBz/4Qerr67N+/frO5zU1NXXeJrerNmxoTnt7x27d+0rbtrV12bGhr9m2rS1NTc+XewZ90Mt/F/vz1f9UVJS6/ItHAADsum4NSmPGjMk3v/nNPP300znggAPys5/9LO9+97szdOjQDBw4MA899FDe+973ZsGCBRk7dmx3Ttslvm1tz9Le2pIkqajao8xLeKW2lo1J9iv3DAAAALpQtwalAw44IJdddlnOOuusbN26Ne9617ty4YUXJknmzp2bGTNmZPPmzRk5cmSmTZvWndNe07Bhw8s9gT/z5JMrkyRvHSZe9Cz7+XwBAADo47olKC1atKjzx0cffXSOPvroHZ4zYsSIzJ8/vzvmvC5Tp/aswEUyZ87XkiQXXjizzEsAAACgf6ko9wAAAAAAepduveUNAAAAduaZ5tbc+PCz5Z7Bf2h+sT1JUjPA9Sg9yTPNrXlbmTcISgAAAPQIXouz51n3H69du9+b/d70JG9L+T9fBCUAAAB6BK9d2/N47Vr+EtesAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIVUlXsAAF1r6dKfZ8mSxeWesVs8+eTKJMmcOV8r85I3bsyYcRk9emy5ZwAAwOsiKAHQawwaNKjcEwAAgAhKAH3e6NFjXQkDAADsVl5DCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgEEEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoRFACAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgEEEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAoJ9YtGhR6uvrM2HChFx++eVJknvvvTeTJ0/Occcdl2uvvbbMCwGA3kJQAgDoB5566qnMmjUrN9xwQ+6444785je/yeLFi3PxxRfnhhtuyMKFC/PII49k8eLF5Z4KAPQCghIAQD/wk5/8JBMnTsyb3/zmVFdX59prr82ee+6Z4cOHZ9iwYamqqsrkyZPT2NhY7qkAQC9QVe4BAAB0vZUrV6a6ujqf+tSn0tTUlGOOOSbveMc7Ultb2/mcurq6rF27ttBxhwyp2d1TO1VXV3bZsaGvqa6uTG3t3uWeQR/08t/F/nzx5wQlAIB+oK2tLQ8++GDmzZuXvfbaK3/3d3+XPffcc4fnlUqlQsfdsKE57e0du2vmdrZta+uS40JftG1bW5qani/3DPqgl/8u9uer/6moKO30C0eCEgBAP7DffvvlqKOOyr777psk+cAHPpDGxsZUVv7nVUDr1q1LXV1duSYCAL2I11ACAOgHjjnmmCxZsiR/+tOf0tbWlnvuuScTJkzIE088kZUrV6atrS133nlnxo4dW+6pAEAv4AolAIB+4LDDDsunP/3pTJ06Ndu2bcvo0aNz6qmn5u1vf3vOOeecbN26NePGjcuECRPKPRUA6AUEJQCAfuKjH/1oPvrRj2732FFHHZXbb7+9TIsAgN7KLW8AAAAAFOIKJQAAeqy2lo3ZsvLucs/gFdpbW5IkFVV7lHkJL2tr2Zhkv3LPAPoZQQkAgB5p2LDh5Z7Aq3jyyZVJkrcOEzB6jv18vgDdTlACAKBHmjp1Wrkn8CrmzPlakuTCC2eWeQkA5eQ1lAAAAAAoRFACAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgEEEJAAAAgEIEJQAAAAAKEZQAAAAAKERQAgAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoRFACAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAACiky4NSc3NzJk2alFWrViVJvvKVr+S4447LiSeemBNPPDE/+clPkiT33ntvJk+enOOOOy7XXnttV88CAAAA4HWq6sqDL1u2LDNmzMiKFSs6H3vkkUfygx/8IHV1dZ2PtbS05OKLL868efNywAEH5LOf/WwWL16ccePGdeU8AAAAAF6HLr1CqaGhIbNmzeqMR1u2bMmaNWsyc+bMTJ48Oddff33a29vz8MMPZ/jw4Rk2bFiqqqoyefLkNDY2duU0AAAAAF6nLr1Cafbs2du9vWHDhhx55JG57LLLstdee+Wzn/1s5s+fn7322iu1tbWdz6urq8vatWu7choAAAAAr1OXBqU/N2zYsPyv//W/Ot8+/fTTs2DBgkyYMGGH55ZKpULHHjKk5g3vo3eprq5MktTW7l3mJQAAANC/dGtQeuyxx7JixYqMHz8+SdLR0ZGqqqrsv//+Wb9+fefz1q1bt91rLO2KDRua097esVv30rNt29aWJGlqer7MSwDoahUVJV88AgDoQbr8u7y9UkdHR/7+7/8+mzZtyrZt23LLLbfkQx/6UA477LA88cQTWblyZdra2nLnnXdm7Nix3TkNAAAAgF3UrVcojRgxImeeeWZOPfXUtLa25rjjjsukSZOSJFdeeWXOOeecbN26NePGjXvV2+AAAAAAKL9uCUqLFi3q/PFpp52W0047bYfnHHXUUbn99tu7Yw4AAAAAb0C33vIGAAAAQO8nKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFBIVbkHAAAAQF+zdOnPs2TJ4nLPeMOefHJlkmTOnK+VecnuMWbMuIwePbbcM/oEQQkAAAB4VYMGDSr3BHooQQkAAAB2s9Gjx7oShj7NaygBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBADQj8yZMycXXXRRkmT58uWZMmVKxo8fn+nTp6e1tbXM6wCA3kJQAgDoJ+6777786Ec/6nz7ggsuyMyZM3PXXXelo6MjDQ0NZVwHAPQmghIAQD+wcePGXHvttTnrrLOSJKtXr05LS0tGjRqVJKmvr09jY2MZFwIAvYmgBADQD1xyySU577zz8ld/9VdJknXr1qW2trbz/bW1tVm7dm255gEAvUxVuQcAANC1/uVf/iUHHHBAjjrqqNx6661Jko6Ojh2eVyqVCh97yJCaN7yP3qW6ujJJUlu7d5mXAFBOghIAQB+3cOHCNDU15cQTT8ymTZuyZcuWlEqlrF+/vvM5TU1NqaurK3zsDRua096+Y5yi79q2rS1J0tT0fJmXANCVKipKO/3CkaAEANDH3XjjjZ0/vvXWW3P//ffniiuuyKRJk/LQQw/lve99bxYsWJCxY8eWcSUA0JsISv3M0qU/z5Ili8s9Y7d48smVSZI5c75W5iW7x5gx4zJ6tBN5ALrP3LlzM2PGjGzevDkjR47MtGnTyj2pz3IO1nM5BwN4fQQleq1BgwaVewIA9Dr19fWpr69PkowYMSLz588v8yJ6G+dgACRJqePVXpGxF3L/PgD0Xa91Dz/l4xwMAPqm1zr/qujGLQAAAAD0AYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCGCEgAAAACFCEoAAAAAFCIoAQAAAFCIoAQAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCFV5R6wu1RUlMo9AQDoIv4733P5vQGAvum1/htf6ujo6OimLQAAAAD0AW55AwAAAKAQQQkAAACAQgQlAAAAAAoRlAAAAAAoRFACAAAAoBBBCQAAAIBCBCUAAAAAChGUAAAAAChEUAIAAACgEEGJslm1alUOOeSQnHjiidv97+mnn+6Sj3Xsscfu9uMCu8eqVavyzne+M5dccsl2jy9fvjzvfOc7c+utt/7Fn3vsscdm1apVXT0RoE9w/gW8zPkXb1RVuQfQv9XV1eW2224r9wygBxg8eHDuueeetLW1pbKyMkmycOHC7LvvvmVeBtC3OP8CXub8izdCUKLHWb9+fS655JI888wzKZVK+dKXvpT/8T/+R775zW9mzZo1eeyxx7Jhw4Z84QtfyC9+8YssW7YsI0aMyLXXXpu2trZ89atfzeOPP57169fnr//6r/Otb31rl44PlNeb3vSmjBgxIg888ECOPPLIJMnSpUs7Pz9/8IMf5LbbbssLL7yQUqmU6667LgcddFDnz29ra8tVV12V+++/P21tbamvr88ZZ5xRjl8KQK/j/Av6J+dfvBGCEmW1bt26nHjiiZ1vT548OY8++mimTJmSD3zgA1m3bl2mTp2aBQsWJEl+97vfpaGhIb/61a/yiU98InfccUfe9ra3ZeLEiXnsscfy/PPPp7q6Orfcckva29vziU98IosXL8673/3uzo8xe/bsVz1+TU1Nd//ygT9z/PHH56677sqRRx6Zhx9+OO985zvT0dGR5ubmLFq0KPPmzcsee+yRb3zjG7n55pszc+bMzp/b0NCQJPnRj36UF198MZ/61KdyyCGH5PDDDy/XLwegR3L+BbyS8y9eL0GJsnq1S66POOKI/PGPf8z111+fJGltbc1TTz2VJBk9enSqqqrylre8JbW1tfkv/+W/JEn233//bNq0KUcccUQGDx6cm266KX/84x+zYsWKbNmyZbvj33vvva96/He9611d/csFXsMxxxyT6667Lu3t7fnXf/3XHH/88Vm4cGFqampy9dVX58c//nFWrFiRe+65Z4fP2fvuuy/Lly/PL37xiyTJli1b8thjjzmhAfgzzr+AV3L+xeslKNHjtLe35/vf/34GDx6cJFm7dm3222+//PSnP011dXXn86qqdvzje/fdd+f666/PtGnTUl9fn+eeey4dHR27dHyg/GpqajJixIg89NBD+cUvfpEvfelLWbhwYZ5++ul8/OMfz9/8zd9k7Nix2W+//bJ8+fLtfm5bW1suuOCCHHfccUmSZ599NnvttVc5fhkAvY7zL+i/nH/xevkub/Q4Rx55ZG6++eYkye9///t8+MMfzgsvvLBLP/e+++7L8ccfnylTpmS//fbLAw88kLa2tt12fKDrHX/88bn66qtzyCGHdP7DZa+99srw4cNzxhln5LDDDsvPf/7zV/3cbmhoyLZt27J58+ZMnTo1y5YtK8cvAaDXcf4F/ZvzL14PVyjR48yYMSOXXHJJJk+enCS56qqrdvn++o997GM5//zz09jYmAEDBmTUqFE7fDvLN3J8oOsdc8wxmT59es4999zOx6qrq9Pe3p6JEydmwIABOfTQQ/P4449v9/NOOeWUrFy5MieddFJaW1tTX1+fI444orvnA/RKzr+gf3P+xetR6vjz61EBAAAAYCfc8gYAAABAIYISAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhVeUeAPQv//Iv/5KGhoY0Nzdn27ZtGTZsWL7whS/ksMMO2y3Hv+yyy7LPPvvknHPO2S3HAwDoC5yDAbuboAR0m2uuuSYPPPBArrvuugwdOjRJct999+Wzn/1sbr311rzlLW8p80IAgL7HORjQFQQloFusX78+3//+9/OTn/wkdXV1nY8fddRRueiii/LCCy9k7dq1ueyyy/L0009n27ZtOeGEE3LWWWdl1apVOeOMMzJu3LgsW7YsmzZtynnnnZeJEyemubk506dPz29/+9vU1dWlsrIy733ve5Nkp8c77bTTctBBB2X16tWZN2/edpsAAPoK52BAVxGUgG7x7//+7znooINe9aThIx/5SJJk2rRpOeOMM3Lsscdm69at+cxnPpO3vvWtOfTQQ/PUU09lzJgxmTlzZu66665ceeWVmThxYq6//vrsscceaWxszHPPPZeTTjqp82Tmggsu+IvHe+aZZ3L11Vfn8MMP787/GwAAupVzMKCrCEpAt+jo6Nju7ebm5px22mlJki1btuSYY47JAw88kE2bNuUb3/hG5+O//e1vc+ihh6a6ujrjxo1LkowcOTIbN25M8tLl2hdffHFKpVL23XfffOhDH+r8uTs7XlVVVUaNGtUNv3IAgPJxDgZ0FUEJ6BaHHnponnjiiTz33HPZZ599UlNTk9tuuy1J8s1vfjNr1qxJR0dHfvjDH2bPPfdMkjz77LMZOHBgnnvuuVRXV6ei4qVvTFkqlbY79itPlCorK5Mk7e3tOz3egAEDUlXlr0AAoG9zDgZ0lYpyDwD6h/333z/Tpk3LueeemzVr1nQ+vmbNmvzqV7/Km970powaNSo33nhjkuRPf/pTTj311Nx99907Pe773//+zJ8/P+3t7dm0aVPn82tqal7X8QAA+hLnYEBXkYaBbnPeeefl9ttvz/nnn58tW7aktbU1AwYMyMSJE3Paaadlw4YN+drXvpbJkyfnxRdfzKRJk/LhD384q1at+ovHPOecczJr1qwcf/zx2XfffXPwwQd3vm/u3LmFjwcA0Nc4BwO6Qqnjz2+qBQAAAICdcMsbAAAAAIUISgAAAAAUIigBAAAAUIigBAAAAEAhghIAAAAAhQhKAAAAABQiKAEAAABQiKAEAAAAQCH/Pyz9w9jEmJqqAAAAAElFTkSuQmCC"
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 760,
"source": [
"sns.set()\n",
"g = sns.jointplot(\"Height\", \"Weight\", data=df,\n",
" kind=\"reg\", truncate=False,\n",
" xlim=(125, 200), ylim=(35, 180),\n",
" color=\"m\", height=10)\n",
"g.set_axis_labels(\"Height (cm)\", \"Weight (kg)\")"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
"metadata": {},
"execution_count": 760
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAALECAYAAAAPVSaDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXRb93kn/O/vLthBcKckUqQoSrI2W5YtWXKsyHISJ87SuHUy7dRt8+addt42nSWdOadNp0nGTU48ndO0s7dpezqdeSeJ38ZxHTtNHMeOY0fxItmyaNmyFkvUQlKUKO7EenGX3/vHJSCAJECQIgmA/H7OcRiBwMUPF5T44LnP73mElFKCiIiIiGiVUsq9ACIiIiKicmJATERERESrGgNiIiIiIlrVGBATERER0arGgJiIiIiIVjUGxERERES0qmnlXsBiGBqKlnsJeerqAhgbS5R7GRWL56c4np/ieH6K4/kpjuenOJ6fuTU1hcu9BFoCzBAvAU1Ty72EisbzUxzPT3E8P8Xx/BTH81Mczw+tVgyIiYiIiGhVY0BMRERERKvaiqghJiKiCuMApmkv6KG6rjJdQ0TLigExEREtOtO0ce704IIeu3lbC3Qva1mJaPnwMzgRERERrWoMiImIiIhoVWNATERERESrGgNiIiIiIlrVGBATERER0arGgJiIiIiIVjUGxERERES0qjEgJiIiIqJVjQExEREREa1qDIiJiIiIaFVjQExEREREqxoDYiIiIiJa1RgQExEREdGqxoCYiIiIiFY1BsREREREtKoxICYiIiKiVY0BMRERERGtalq5F0BEREU4gGnaJd99fDQB07hxf11XmfogIpoDA2IiWh3mGVhOV67A0jRtnDs9WPL9QyEfYrFU9s+bt7VA96pLsbQ5SSmRiJtIJUwoqoCqKlBVAUVV4PWpUBRG6kRUGRgQE9GqMN/AcrpyBpbVwrYdDPSO49qVSVzrm8C1K5OwLGfW+6qqgsaWIJrXhlHXEIBQxDKvlojoBgbERES0YFJKXOufxHunBnHhzBBSSQsAUNcYQNOaEGpqfQiEPHAcCduWcGwHtuVgYiyFocEYBgei0D0qmtaE0NpRi0DQU+ZXRESrEQNiIqISKIrIq82dj5VWxyulxPBgDD1nhnD+1HVEJw1ouoINmxuxeXsz1q2PQEAUzcivaYtg844mjA4lcP1qFNf6J3G1bxLrN9ahc3Mjs/FEtKwYEBMRlcAyHfS8d31Bj10J5RZSSly/GkXPmSFcODuM6EQKQgBtnXW462AnOrc0QvfceI2lfHhQFAWNLSE0toSQNiz0nBlGb88o/uH/PY4DH96MDZsalvIlERFlMSAmIloBHEciGU8jGTcxOZFE2rCRNixcvxqDx6tC0xSomgJNV+H1avD6NHj9Gnw+HR6f+6tAOhLO1H9GysLoUBwj12MYuR7HyFAMacOGogi0ddZhzz0d2LC5AT6/vijr93g1bNu1BmvbanC5Zww/euIkNmxqwL0f3cIyCiJacgyIiYiqkJm2MTmexMR4CpNjKUQnUnAcmXcfRRHQPTHYtgPLnH1z21x0j4qG5iA272hBy7oabNjUAK9v6X511DYEcMfdHTj9zjUc+/klfPd/vYn7H9yGdetrl+w5iYgYEBPRqiSlmwWNx9JIxNKIRw0k4mk3cBSAcP8HQrjZy8ErUaTTFnx+Hf6gjkDQA2UZOyNIKZGIpTEyFMfI9Tgmx93WakIAoRov1q6PoCbiQ21dAJZjw+NRoWoKtmxfA92rQkoJx5awLBtpw0YqacJIWVP/mQAEFMX9TygCuq6gvimIcMQHIZa3A4SqKti9bz3aO+vw4++dwvcfO4F9hzbi9rvaln0tRLQ6MCAmolUlbVgYHIji2pVJJGLp7O0er4pAyAN/QIeUgJQAICEdwDAsXHhvGGnDyt5fCIFQ2INQxItwjQ+hGi+CYe+iBslpw0JvzyjOn7qOkaEEUkkTgBsAd3TVo7bBj3DEB1W9sWNveh/i3PWqmoCqKfD6dIQjvkVb51JpaA7h05+9Ay8+cxZHXryAa/0T+MDHty5phpqIVif+q0JEK56UEn0XR/Fu9wBGrschJVBT68OmbU0I1XgRCHryNoTNpmtLM868exWphIlkwkR00kBsIoXrV2O42jcJIDdI9iFc40Uw7IHPr0NKWfTYgFsDHJtMYXw0iesDk+i7NIbrA1E4joSiCNQ2+LG+sw4NzcFVFRB6vBo+/Ivb8c6xK3jtxQt44n+/iY9+aifqm4LlXhoRrSCr519VIqp+zszRxHMZH03glRd6cLV/ArpHRWtHLda01SAY8s776XVdhR5REY740Lw2DMANtlNTAfKNIDmKq30T2ce98fJl1NT6Ea7xQtNvBN5CAJblYGIsicmxJGz7RuDctCaEXXe1YW1rBNHJJBR1BfVtmychBG7b24bmtWH8+Hun8OQ3u/GhT25jFwoiWjQMiImoapimjd4Lo7OWBEznOA56L4yht2cMqirwvvu6oOpi0et+hRDwBz3wBz15QXIyYSIZTyOVtODz6YjFDEQnUjeC3qmssVAEIrV+tG+sR21DALV1ftQ3BbPdG0zDxrnTxoLXt5L6J69pi+BT/9cdePbJk/jREyex/1Anbt+3nnXFRHTTGBAT0YozPprEe+8OIhk30bw2hK6tTdh665oF9xGeLyEEAkFPtl1YOfsQV2P/5GJBvNer4eOfvhWHnzuHIy9dxPC1GA7cvxmadiNyr7RAnogqHwNiIloxpJS4cnkCPWeG4PNruPXOdaw1rUKlBPFtnbVwpMT5M0MYvDqJHbvXZWurV8IgFCJaXvwMTUQrgnQkzp8eQs+ZITQ0B7Hnng4GwyuYEAIdXfXYsXstErE0jr/Wi8nxZLmXRURVihliIqp6lmnj1IlrGBtOYH1nHTq3NFRUXenN1PFi7gYVq1pjSwi796/HyeNX8dbRK9iyowmbt7WUe1lEVGUYEBNRVUslTLxzfADJeBpbdjRj7fpIuZc0w83U8XZtaV7k1aw8wbAXd9y9HqdOXMXZk9eh6RoO3L9pWQenEFF1Y8kEEVWtZCKNt17vh5GycOue1ooMhml56B4Vt93ZitaOWrzbPYB//P9O5A1eISIqhgExEVWlZMLEidevwLYd3H5XG+oaAuVeEpWZUAQ2bWvCvR/ZgutXo/ju/3oTA73j5V4WEVUBBsREVHVSCRMnXu+HbTvYtbcNoZr5D9mglWvz9mY89Jnd0D0qvv//ncBbR/tKmhZIRKsXA2IiqiqJeBon3uiHbTm4bU8rg2GaVUNzCJ/+7B3o3NKI1168gB8/+S6MlFnuZRFRhWJATERVIx41cPTwRZimg9v2tiIc8ZV7SVTBPF4NH/7F7XjfB7twuWcUj//dm7jUM1LuZRFRBWKXCSKqCol4Gs/8w0mkDQu37WEwvBxWQrs4IQR27W3D2rYa/OT7Z/B/vvEa7tjfjj0HOqCqzAkRkYsBMRFVPCNl4YePv4PYpIG7DmyAx88pZMuhWtvFzRbI19UH8YsP3443Xr6E46/1ou/iKA599BZEav159+PYZ6LViQExEVU007TxzBPvYHQojvs/uQ2apiIWS5V7WVTBigXynZsbASHx3snr+If/cxwbtzRiXXskO8iFY5+JVid+DiaiimXbDp773ilc65/EB39hK9Z31pd7SbQCNK0J48572hGp8+P86SGceP0KknH2LCZazRgQE1FFchyJn/7gDHovjOLeB7Zg0zZObKPF4/PruPXOdbhlZwtiUQPHXulF/6UxOE6FFD8T0bJiyQQRVRzHkXjxmbM4f3oI+w91Yvvta8u9JFqBhBBY01aDusYAzr17HT1nhjE5nsK9D2xB05pwuZdHRMuIGWIiqihSSrz0o7N47+Qg9h7owO797eVeEq1wXp+GHXesxbbb1iA2aeCJ/30ch587x77FRKsIM8REVDHcYPg9nH1nEHfe04E9BzaUe0m0Sggh0LwujL0HNqD7aB9OHr+CnjNDuPvQRtxya0t20x0RrUzMEBNRRZBS4vCPz+HM29dwx/vasfdAR7mXRKuQx6vhwP2b8OnP3olInR8vPnMWT/6fblztmyj30ohoCTEgJqKycxyJw8+dw6m3rmL33etx1/s3MCNHZdXYEsIv/frtuO/jtyAeM/DUt9/Cj7/3LibGkuVeGhEtAZZMEFFZmWkbP/n+aVw6P4Ld+9dj38FOBsNUNtOHenRtaUJHZz3eefMKThzrx6VzI9h++1rcftd6+Px63mM51IOoejEgJqKyiccM/OiJkxgejOHA/Ztw652t5V4SrXKFhnqEIl7suacDl86P4OTxAZx++xrWd9ahraMWquZGwRzqQVS9GBATUVmMDMXxzHffQSpp4oFP7cSGTQ3lXhJRUV6fhlt2tqCtoxYXz43g0rkRXLk8jo6ueqxdHyn38ojoJjAgJqJld/n8CH7yj6eh6yp+8dduZ89XqirBsBc771iHyfEkLpwdwfnTQ+i/NAZFKNi6aw0UhSU/RNWGATERLRsjZeHVn/bgzNvX0NAcxMc+fStCNd5yL4toQWpq/dh1VyvGhhO4eG4EP/vxe3j7zX7sO9iJDZsbWAtPVEUYEBPRsui9MIqXfvQeEjEDu+9ej733bMjWXhJVKyEE6puCqGsMQNM0vPnaZTz75LtoWRfG/kMbsa69ttxLJKISMCAmoiWVSpo48tIFnD5xDXUNAXzkN3ajZV1NuZdFtKiEENi4pRGbdzTjzDvXcOzlS3j6sRPYsKkB++/biLqGQLmXSERFMCAmoiWRiKdx4vV+vNs9AMu0sXv/euw5sAEas8K0gimKwPZda7FlezPePnYFx1/rxXf+9g1sv30d9hzoQCDoKfcSiWgWDIiJaFHFowbeOtqHU29dhW076NrWjDvvbkd9U7DcSyNaUtN7GN96Rys2bW1G99FenDpxFe+dHMTt+9Zj5x3roKr5HwzZw5iovBgQE9FNs20HvT2jOHtyEJfPj0BKiS07WnDH+9pRW89LxbQ6FOph3LQmhGC4HRfODOONly/h5PEr2LStKe9DInsYE5UXA2IiWhApJa5fjeLcu9dx7tR1pJIm/AEdO+9ch1vvbEVNrb/cSySqGIGgBzvvXIeRoTh6Tg/hnTcH0NAcRNfWJvgD+twHIKIlxYCYiEpm2w6u9k3g4tlhXDg3jEQsDVUV6OhqwObtzWjtqMv2YM29dJyLl4ZpNWtoCqKuwY/+S+O43DOKYy9fRsemenRtaQLADDFRuTAgJqKiLMtB38VRXDw7jEvnR2CkLKiagroGP9o769DQHISmq0ilTPScnXm5eDpeGqbVTlEUtG+sR8u6MM6fHsLF90YwPvoW7vvYLezAQlQmDIiJaAYzbeNyzwgunB3G5Z4RWKYDj1fDhk316NzShLWtNbh4fnhBx56+8Whe5MIeRlSJvD4dO3avw/BgDBfPjeDJ/9ONnXesw757O+Hx8tcz0XLi3zgiAuCWQ/RfGsO5U9dx8b1hWKYDf1DHlh0t2HhLI9a112Z3xi84oEXhjUel6NrSvODnJapUjS0h3Hl3B7qP9uGdN6/g4rkR3PvAZnR0NZR7aUSrBgNiolVu6FoUZ96+hvOnh5BKmvD6NGzZ0YLN25uxpi2SrQkmoqXj8Wo4cP8mbNrejJd+dBbPfPcktuxoxj0f2gSfn5vuiJYaA2KiVchIWTh36jpOn7iK4cEYVE3Bhk0N2LyjGe0b62f0SCWi5bGmtQb/5LN34s1XL6P7SB/6Lo7h/R/ejI23NEIIfjglWioMiIlWketXJ3Hy+AB6Tg/BshzUNwXxvvs2omtrM7w+958Dx5JwrDlKIljLS7RkVE3BXQc7sfGWJrz0o7N47qlT6NzcgAMf3oxQ2Fvu5RGtSAyIiVY4y3Jw/vR1vHt8ANevRqHpCjZta0YgpCNU44UQAr0XR+Z1TNbyEi29xpYQHvrMHTjxeh/eePkyvvO3b2D/oY3YfvtaZouJFhkDYqIVKjaZwsnjAzh94ipSSQu1DQEcuH8TbtnZAgGBc6cHy71EIppSrPvKzt2tWN9Zj1d+ch6Hf3wOZ98ZxIEPbUJdw40pkOzvTXRzGBATVSsHMM38X6BSSgwOTOLd7gFcOu9mfdu7GrBj11qsXR+5kVViyQNRRSml+8qm7U0IR7zoOTuMJ7/ZjfWdtW7Nv6awvzfRTWJATFSlTNPOZnkdx8H1qzFcuTyO2KQBTVPQuqEOre0R+Pw64nED58/c+GXLkgei6iOEwJq2COqbgug5O4zeC2O4diWKrq2N2LSVf6eJbgYDYqIqljYsDPRNYKB3AmbaRiDkwebtzWhZF4aq8fop0Urk8WrYdtsarFsfwfnTQzh94hrGhhN4/4c3o7ElVO7lEVUlBsREVWh4MIa3jvbh/OkhSClR3xRAa0ct6hoC3GxDtEpE6vy44+71uNo3id4Lo/ju/3oTm7c3Y8+BDtTWB+Y+ABFlMSAmqhKOI3Hp3AjePtaPq30T0DQFa9fXoLW9FoGQp9zLI6IyEEJgXXsE++7txLvdA3jnzSs4f/o6tuxowZ4DHaip9Zd7iURVgQExUYUzUhbOvH0V77w5gOhECuEaL+6+byM2bW2ed7s0IlqZfD4d+w9txG1729B9pBfvdl/FuVPXsXl7M3be2YrmteFyL5GoojEgJqpQo8NxvPPmFbx3chCW6WBtWwTv+8BGbNjcWLRFExGtXoGgB/d8cBNuv2s9uo/04fTbV3H25CCa14ax84516NrWDI37C4hmYEBMVE7TWqc5jsSbr11G9+t9GOgdh6oKdG1txo7b16Kh2d0sY5sObICt04iooGDYiwP3b8Le92/A2ZPX8O7xAfz0h2fx6k8vYPP2Zmzc2oi1bRHuOSCawoCYqIwyrdPShoWr/ZO42jcBI2XB69PQubkBa9dHoHtUjI7EMToSz3ssW6cR0Vy8Pg237WnDrXe24srlcbzbPYBTb7m1xoGQBxu3NKJraxNaWmugqswc0+rFgJioTKSU6L88hlNvXcXwYAxSAnUNAezcvQ7BsAdCYeaGiBaHEAJtG+rQtqEOacPC5Z5R9JwZwum3r+Hk8QHoHhXr1kdwy841qG0MoL6RHWtodWFATLTMJsdTOPPONZx955o7RENXsK69FuvaIwgEPQiFfIjFUuVeJhFVkfnsKxAQ2NDVgA1dDTDTNq72TaD30igGesfx3NOnAAA+v47mteHsf00tYeiemZPwODKaVgoGxETLIJlI4+J7wzh3aggDveMAgPWdddh7YAMs04LCS5VEdBNKGf1cSNeWZhhpEy3rwlCEgit9Y5gYTWJoMIreC6PZ+wVDHoRqvAjV+BCOeBEKe7H11rUcGU0rAgNioiWSTJi4dG4Y508P4crlMUjpNtLfe6ADt9y6BuGID6ZxY/wyEVG5BYIerG2LYG1bBABgpm1EJ1KYHE8hOpnC6HACgwPR7P3feXMATWtCaGgOobElhMbmEPuiU1ViQEy0SGzbweDAJPoujqHvwhiGrrm/NGpqfbh9/3ps2tqMhuYg6/KIqGroHhX1TUHUNwWztxkpC7HJFKKTBiCBwYEozp8eyn7fH9DR0BxEQ1MI9c1BNDQFUdcQgKYzk0yViwEx0QIlE2lcH4hicGAS16+6X9OGDSGAlnU12HugAx2bGtDYEmIQTEQrhtenwetzs8Kbt7VA96owUiZGrscxNBjD6FAcI9fjONk9ANtyso+rqfWhrjGI+sYAahsCqK3zI1IfgM+v8d9IKjsGxERF2LaDZDyNibEkxkeTGB9JYHw0ibGRBKIT7sY3IYD6xiA2bWvO7uL2+vhXi4hWvsxmPkUoaGpxN99lOI7E5HgSo8MJjI8kMDb1X++FUUjnRiN1j1dDbb0f4YhvqkbZi3CN+//9AQ/8AR0qh4nQEuNvbVqxpJRwHAnbcmBZjvvVtGGaNsy0DdN0kDYspFMWjJz/kok04rE04jEDybiZd0xNV1BbF0DLOnfqU/PaMJqaw8C05EbJU+Q4XIOIqlipm/nCtV6Ea71o76qD40ikkiaScROhsBfRqIGJ0SRGrsdw+fwIrJyscobHq8If8MAX0OHxqvB6NXgy/3lUaLoCTVehae5XVRVQNQWqqkBRhftVEVBUBaoq3P+vuN8TQkDJ3iaYrV6lVkRArFRgv9ZKXNNyeev1PkyMFmobJqF7VJhp240F5VRMKGXm25BTN0opIWd8db/nOIAzFfBKR0LaDmwp4djun+2pQHg+NE2B7lXh9eloaglhfWcd/AEdgYAXwbD7j3kg4Jn5j6UELvYMzX7QOXR0Ns7IJnu8KrzW3H81VVVZcCb6Zh5bzudWVaXk87OYz3uzj1/Ox04/P9Wy7sV67FyPn+vnZyW+5vk8dr5/vxb6vP6AjroGoGtLE5ycf6qllEgbFuKxNJLxNFIpC6mkiVTShJG0YBgmzLSDVMLE5EQKZtqGYy9uZkEIZANmIQSEAjdgFm6w/JufP7Coz0eVQUgpmaMiIiIiolWLRTlEREREtKoxICYiIiKiVY0BMRERERGtagyIiYiIiGhVY0BMRERERKsaA2IiIiIiWtUYEBMRERHRqsaAmIiIiIhWNQbERERERLSqMSAmIiIiolWNATERERERrWoMiImIiIhoVWNATERERESrGgNiIiIiIlrVljQgjsVi+MQnPoH+/n4AwMsvv4xPfvKT+MQnPoE/+IM/QDqdBgAMDAzg137t1/DAAw/gc5/7HOLx+FIui4iIiIgoa8kC4hMnTuBXf/VXcenSpextX/ziF/Gf//N/xg9+8AOkUik8/fTTAICvfOUrePjhh/Hss89i586d+Mu//MulWhYRERERUZ4lC4gff/xxPPLII2hubs7eZts2YrEYbNuGYRjwer0wTRNvvPEGPvKRjwAAHnroITz77LNLtSwiIiIiojzaUh340UcfnXHbH//xH+M3fuM3EAqF0NbWhgceeABjY2MIhULQNHcpTU1NGBwcXKplERERERHlWbZNdUNDQ/izP/sz/OAHP8DLL7+MXbt24U/+5E8gpZxxXyHEci2LiIiIiFa5JcsQT3fs2DFs2bIF7e3tAIBf/uVfxu/93u/hj/7oj7JlFKqqYmhoKK/MolQjIzE4zszguhyamsIYGoqWexkVi+enOJ6f4nh+iuP5KY7npzien7k1NYUX7ViVFLusBsXeu2XLEG/ZsgVvv/02hoeHAQAvvPACbr31Vui6jj179uCZZ54BADz11FM4ePDgci2LiIiIiFa5ZcsQd3V14fOf/zw+85nPQFVVdHR04Ktf/SoA4JFHHsEf/uEf4hvf+AbWrl2L//Sf/tNyLYuIiIiIVjkhZyvirUKVdNmBl5yK4/kpjuenOJ6f4nh+iuP5KY7nZ24smaheFVEyQURERERUiRgQExEREdGqxoCYiIiIiFY1BsREREREtKoxICYiIiIqgxXS12BFYEBMRERERKsaA2IiIiKiMmCCuHIwICYiIiKiVY0BMREREVFZMEVcKRgQExEREZUD4+GKwYCYiIiIqAxYQ1w5GBATERERlQHj4crBgJiIiIioHBgRVwwGxERERERlwMEclYMBMREREVEZMB6uHAyIiYiIiMqCEXGlYEBMREREVAbMEFcOBsREREREZcCAuHJo5V4AERERla63ZwTdR/sRnUgiHPFj9742tHc1lHtZtACSJRMVgxliIiKiKtHbM4LDz59HIm7A69OQiBs4/Px59PaMlHtptBCMhysGA2IiIqIq0X20H6oqoOsqhHC/qqpA99H+ci+NFoQRcaVgQExERFQlohNJaFr+r25NUxCdSJZpRXQzpFPuFVAGA2IiIqIqEY74YVn5UZRlOQhH/GVaEd0cZogrBQNiIiKiKrF7XxtsW8I0bUjpfrVtid372sq9NFoAdpmoHOwyQUREVCXauxpwEGCXiRWCo5srBwNiIiKiKtLe1cAAeIVgPFw5WDJBREREVAbMEFcOBsREREREZcBwuHIwICYiIiIqAyaIKwcDYiIiIqJyYEBcMRgQExEREZWBdBgRVwoGxERERERlwE11lYMBMREREVEZMB6uHAyIiYiIiMqAGeLKwYCYiIiIqAwYEFcOBsREREREZeAwIK4YDIiJiIiIysEp9wIogwExERERURmwZKJyMCAmIiIiKgOHfYgrBgNiIiIiojJgOFw5GBATERERlYFjMySuFAyIiYiIiMqAo5srBwNiIiIiojJgDXHlYEBMREREVAbsQ1w5GBATERERlQFLJioHA2IiIiKiMnAsTuaoFAyIiYiIiMrAYkBcMRgQExEREZWBzZKJiqGVewFEREQrWW/PCLqP9iM6kUQ44sfufW1o72oo97KoAkibGeJKwQwxERHREuntGcHh588jETfg9WlIxA0cfv48entGyr00qgA2B3NUDAbERERES6T7aD9UVUDXVQjhflVVge6j/eVeGlUAlkxUDgbERERESyQ6kYSm5f+q1TQF0YlkmVZElcRhyUTFYEBMRES0RMIR/4xOApblIBzxl2lFVEkclkxUDAbERERES2T3vjbYtoRp2pDS/WrbErv3tZV7aVQBbGaIKwa7TBARES2R9q4GHATYZYJmZbMPccVgQExERLSE2rsaGADTrCxmiCsGSyaIiIiIyoAZ4srBgJiIiIioDDi6uXIwICYiIiIqA2aIKwcDYiIiIqIyYIa4cjAgJiIiIioD27LLvQSawoCYiIiIqAwskxniSsGAmIiIiKgMMgNbqPwYEBMRERGVgZSsI64UHMxBREQrTm/PCKfDUVUw0zZ0XS33MlY9BsRERLSi9PaM4PDz56GqAl6fhkTcwOHnz+MggKamMINlqihm2gaC5V4FMSAmIqIVpftoP1RVZLNu7lcb3Uf7EYkECgbLDIqpHNKGVe4lEJahhjgWi+ETn/gE+vv7AQDd3d345V/+ZXz84x/Hv/23/xbpdBoAcPr0aXzqU5/CRz7yEXzxi1+EZfEHhIiI5i86kYSm5f960zQF0YkkXn2pJxssC+F+VVWB7qP9ZVotrXYMiCvDkgbEJ06cwK/+6q/i0qVLANzg+F/9q3+Fr371q/jhD38IAHjiiScAAL//+7+PL3/5y/jxj38MKSUef/zxpVwaERGtUOGIf8ZGJctyEI74MT6aKBgsE5VD2mAv4kqwpAHx448/jkceeQTNzc0AgFdeeQW33347tm7dCgD40pe+hPvvvx9XrlxBKpXC7bffDgB46KGH8Oyzzy7l0oiIaIXava8Nti2zLa1M04ZtS+ze14ba+kDBYJmoHIwUM8SVYElriB999NG8P1++fBmBQAD/4l/8C/T29mLPnj34wz/8Q5w6dQpNTU3Z+zU1NWFwcHBez9XQEFqUNS+WpqZwuZdQ0Xh+iuP5KY7np7jVfn6amsKIRAJ49aUejI8mUFsfwPsOdWHTtmZEIgE88+RJOI6ErqswTRuQAoc+vGXVn7cMnofl5dFVnvMKsKyb6mzbxssvv4zvfOc7WLduHb74xS/ib/7mb3DPPffMuK8QYl7HHhmJwXEqo7l1U1MYQ0PRci+jYvH8FMfzUxzPT3E8P65Iox8f/fTOvNuGhqLYtK0Z93xw44wuE5FGP88b+PNTisUOXkdG4jzny6TYe7esAXFjYyN27dqF9evXAwA++tGP4lvf+hYeeughDA8PZ+83NDSULbMgIiJaTO1dDewoQRVB11WkWTJREZZ1Ut2BAwfw7rvv4urVqwCAF198ETt27EBrayu8Xi/efPNNAMBTTz2FgwcPLufSiIiIiJaV7lVZQ1whljVDvHbtWnz1q1/F7/zO78AwDGzbtg1f+MIXAAB/9md/hi996UuIx+PYvn07PvOZzyzn0oiIiIiWlcfDgLhSLEtA/NOf/jT7/w8dOoRDhw7NuM/WrVuzLdiIiIiIVjrdqyI+mS73MgjLXDJBRERERC6PV4fBwRwVgQExERERURl4PSqMlFnuZRAYEBMRERGVhcerwUgyQ1wJGBATERERlYHuUWFZDuxp0xNp+TEgJiIiIioDj9ftbcBOE+XHgJiIiIioDDweFQBYR1wBGBATERERlYHODHHFWNbBHERERJWit2cE3Uf7EZ1IIhzxY/e+No50pmXlzWaIGRCXGzPERES06vT2jODw8+eRiBvw+jQk4gYOP38evT0j5V4arSKsIa4cDIiJiGjV6T7aD1UV0HUVQrhfVVWg+2h/uZdGq4ieyRBzOEfZsWSCiIhWvEx5RCJmIBDyYnQ4hlDYm3cfTVMQnUiWaYW0GmUC4jQD4rJjhpiIiFa03PIIn19HIm7ANBwk4um8+1mWg3DEX6ZV0mqkqgpUVSBt2OVeyqrHDDEREVWd+WyIm608whfQkEpa8HhtaJriDkewJXbva1vmV0Krne7VkE4zQ1xuzBATEVFVme+GuOhEEpqW/+vOH9Dh8agIBL0wUhYCQS8O3r+JXSZo2Xm9GjPEFYAZYiIiqiq5GV8AU19tdB/tnzWgDUf8SMSN7P0BtzyirjGIBx/eVfB52JaNloPuUWGyhrjsmCEmIqKqMlvGt9iGuN372mDbEqZpQ0r361zlEWzLRsvF41XZZaICMCAmIqKqEo74YVlO3m3FNsS1dzXg4P2bEAh6kUqaJZVHsC0bLRddV2GZztx3pCXFkgkiIqoqu/e14fDz5wGUviGuvasB7V0NaGoKY2goCqB4SUR0IgmvL/9XJNuy0VLQdBWmyRricmOGmIiIqkpuxnehG+LmKomYbxaaaCEUBVBVASttwzRsgInismGGmIiIqk4m47tQmZII6UhMjKVg2w6EEDjy0kW0dzWUlIXmpju6WT3vDSEWNWAYFs6dHsTmbS3QvercD6RFx4CYiIhWlNxANVMDnE5bCEf8OPThLYg0+hGdSEIIIBZNQ0w9zrYcjAzF8Z2/fQN337cRW3e24MQbV2CmLegeDbv2tmYD3kyGWVVFXob5IMCgmOZFVRXYtiz3MlY9BsRERFRQtWVBcwNVABgfTUACCNd4kYgbeObJk7jngxsRjvgxODCZDYadnIBkbCSB554+BV1XEQjp0DQvLMvBmZODaF4bRntXw7xbvxEVokxdqZCSQXE5MSAmIqJZVUsWNDdoN1I2dI8Cn8+DeDQNIQQEgGTCQm29H44j0X20H7v3teGZJ05CUcSM7JyUgJl2SySCYS+AmQEvN93RYlEU92OZwyxxWXFTHRERzaoaWo9N3xxnmjYS8TTShgV7alOcEAK27f5/XVcRnUiivasBdQ0BCCFmHDNz0/QAJTfg5aY7WizZgNhhQFxODIiJiGhW8x2AUQ7Tg3ZNUyAAJOIm1Km1SymhqgrShoXh6zEkYmk8/dgJdG1tgj/kmXFMoeQHyUbKxPhoEiNDCRgpG709Iwsa9kE0m0xAzJKJ8mJATEREs6qGLOj0oN0f0AAhYFk2fH4NUko4UkLTFUxOpODYEoGQB4m4gTMnB7F1Zws0/cbjFVVk64oVRSAeMxCLpmFbNgAJ3aNMdZ/ATbd+IwKYIa4UrCEmIqJZLWQAxnILR/xIxI3s5javT4dlObBMN7iorXfLIsZHE1AVBeGILycAtnGldwIf+cXtePGZszAMG47jQCgKAkENO3avw4k3rkBKCU1TEQjq8Hjdsozuo/148OFdDIDppgkGxBWBATEREc2qvasBB4GK7jIxW9Cuairu+2h+tvZb3zgCr0+DrmuwLHcqmKYpGB2OoftoP6R021/pHgX1jaHs6zzzzjXU1Hrzao0rrWyEqlu2ZIIBcVkxICYiooIKDcColHZspQbtNzLJN25LxNMwDQeJuIFg2JOXAc88fnoGGqi8shGqbswQVwYGxERENC+V1o6tlKl1mUxyOm1BCDeoNVI2fAGtaC/haigboeqmCG6qqwTcVEdERPNSDe3YpmvvasDB+zdBUxWMDScQHU9BOjI7wCNjejlE5nHcPEdL5UaGuMwLWeWYISYionmp5qEUhmEjXOuDpikYH0kiOmlACAGP1309s5VDlJKBJloowQxxRWBATERE81JqXW2l1BlndB/th6oJKIp7cTQQ0hGbdNuq1XlUlkNQWWT2a3JTXXmxZIKIiOallKEU0yfIZeqMe3tGyrbu6EQyL4j3+nR3NLOULIegssn2IWaGuKyYISYionkppbNDbp0xMPuGteUWjvhhpMxsAAIAqqagpTWCBx/eVZY1EQm2XasIDIiJiGje5qqrrcQ649372vDKCxdgC4cdI6hiZLpMsO1aebFkgoiIFl0ljn1u72rAxx7ayY4RVFEUlQFxJWCGmIiIFl2l9u/dtK0ZkUYO1aDKoXAwR0VgQExERIuuGsY+E1WCbIbYZkBcTgyIiYhoUU1vt3bww5sZCBMVkGkDyAxxebGGmIiIFk0ltlsjqmSZPsSOzVF15cSAmIiIFk01jnUmKichBFRVwGbJRFkxICYiokUTnUhC0/J/tZS73RpRperobETXlmb4Ah4Egp68wTG0vFhDTEREi6bUsc5EBFy+OAwjZcHrVWGmbaYpy4innoiIFk0pY52JKJ/Hp8FIWeVexqrGgJiIiBZNe1cDDt6/icMviObB69ORSpnlXsaqxpIJIiJaVHONdSaifF6vhjQzxGXFDDERERFRGXl9GlJJE1Ky00S5MCAmIiIiKqNgyAPblkglmSUuFwbERERERGUUqvEBAKITqTKvZPViQExERERURuEaLwAGxOXETXVERLRoentG0H20H9GJJMIRP3bva+MGO6I5MENcfswQExHRoujtGcHh588jETfg9WlIxA0cfv48entGyr00oorm9WnweFUGxGXEgJiIiBZF99F+qKqArqsQwv2qqgLdR/vLvTSiiheO+BgQlxEDYiIiWhTRiSQ0Lf/XiqYpiE4ky7QiouoRqfNjbCRR7mWsWgyIiYhoUYQjfliWk3ebZTkIR/xlWhFR9WhsCWFyPMURzmXCgJiIiBbF7n1tsG0J07QhpfvVtiV272sr99KIKl7TmjAAYOR6rMwrWZ3YZYKIiBZFe1cDDgLZLhO6rkLVFRx+7hzCkf6q6zjBjhm0nBpbQgCAoWsxrGuvLe9iViFmiImIaNG0dzXgwYd34eCHN8O0HNiOU5UdJ9gxg5ZbIOhBMOzB8GC03EtZlRgQExHRoqv2jhPT1y8diUQsjWeffBdPP3aCgTEticaWMIYGWTJRDiyZICKiRRedSMLry/8VU2kdJ4qVREQnkhACGI+mYVkOpCMhBCCEyGaLDwIsoaBF1dQSQm/PCNKGBY+XIdpyYoaYiIgWXaV3nJirJMLj0RCdNODYDqSUAAApAaGg6rLdVD3WtddCSmCgd7zcS1l1GBATEdGiq9SOE+dPX8fTj53As0++i0QsPZX5nVnSIaWEyDxI3nj8VGxccdluWhnWtNZA0xT0Xxov91JWHebjiYho0U3vOFEJXRp6e0bwygsXACHdwFY6iE4aCNcAHq+WF+Sapo1g2ItU0oJt2wAAIZANjisp200rh6opWLs+gv5LY+VeyqrDgJiIiJZEe1dDRdXYdh/th6oJKIoCVVPg2G5JRyJuwuPV8oLccMSPRNxAbb0facNCdNIApISqiorJdtPK1LahDq+9eAGxqIFQ2Fvu5awaLJkgIqJVIdMbGQD8AS1bCWFZ9owgN7fkQ/eo8Ad0CKFA1RUEgl4cvH9TRQX7tHK0bagDAGaJl9mSBsSxWAyf+MQn0N+fv/Hg29/+Nn7jN34j++eBgQH82q/9Gh544AF87nOfQzweX8plERHRKhSO+GGabvmD16cjFPZACAEBgUTMhJm20H20H709I27Jx/2bEAh6YaQsROoCeOCh7fi///U9ePDhXQyGaVF0dDaia0szFEXANGyYho2GxiD8AZ0B8TJbspKJEydO4Etf+hIuXbqUd/v58+fx13/91+jo6Mje9pWvfAUPP/wwPv7xj+Mv/uIv8Jd/+Zf4/d///aVaGhERrUK797XhlRcuwBYONE2BoirQPCoUAXh8bg3x9JZqDHxpKV2+OAwjZeXdtnlbC9ZvrMfl8yOwbQeqyov5y2HJzvLjjz+ORx55BM3Nzdnb0uk0/v2///f4/Oc/n73NNE288cYb+MhHPgIAeOihh/Dss88u1bKIiGiVau9qwMce2pnN+gaCXgSDHnh8WtUOEKGVaeOWRhgpi+3XltGSZYgfffTRGbf9+Z//OT71qU+hre3GRoSxsTGEQiFomruUpqYmDA4OLtWyiIhoFdu0rRmRxhvdIb71jSMVP0CEVp/1nXXQdAUXzg5jfWd9uZezKixbl4lXXnkFV69exb/7d/8OR48ezd6eaXieSwgx47a5NDSEbmp9i62pKVzuJVQ0np/ieH6K4/kpjuenuNzz09AUQnQyld1sBwDptIWGptCqPY+r9XWXQzDoha7lh2KBgAe19QFs2d6Cy+dH0NAQgqLMPy6i+Vm2gPgHP/gBzp07hwcffBCJRALDw8P4vd/7PXz9619HLBaDbdtQVRVDQ0N5ZRalGhmJwXFmBtfl0NQUxtBQtNzLqFg8P8Xx/BTH81Mcz09x08/Pjt1rcfj587Btt67YshzYtsSO3WtX5Xnkz8/cFvMDQzxuzKghTiTSMG0brRtqcerEVbzT3Y917bWL9pyrWbH3btkC4j/5kz/J/v+jR4/if/yP/4H/8l/+CwBgz549eOaZZ/ALv/ALeOqpp3Dw4MHlWhYREa1i0weIeDwaFCFx+LlzCEf6yz5MhFavjq4GqJpbNsGAeOlVxNbFRx55BI8//jg+9rGP4dixY/i93/u9ci+JiIhWifauBjz48C4c/PBmpE0bjpTw+rRsx4nenpFyL5FWId2jYn1nHS6cHaqYK+Ar2ZJniH/605/OuG3fvn3Yt29f9s+tra345je/udRLISKiKtPbM1Ly+OdS7nv+9HW89Nx7s96n+2g/VFVk64ndrza6j/YzS0xlsXl7My6dG8HVvgm0dtSWezkrGkc3ExHRssgErKPDMTg2oKoCdY3BgkFub88IDj9/Hqoq4PVpmBhL4NknT0FRASEUKCpQ3xjC7n1tuH41ijdf7c1m0qITBgZ6x6HpCnbvW489Bzagt2cEr7xwARD5GeBMz+HoRJIdJ6iidGxqgKYrOHfqOgPiJcaAmIiIllwmuLUtG2nDBqSEaQITY4m8oDRXbsY2bVhIJkxIR8K2AUVxAEtgfDSOF354FkbSxCxNi2CZDo69ehkAcKV3AqomoChuteD0DHA44kcibuR1nLAsB+GIf+aBiZaBrqvYuKURF84O4f33b4KqVUSl64rEM0tEREsuE9yaaQcCgKIoUIRA2rALDsKITiShTQUAibgJAWSDXkVRIACYaQdW2p41GM4QAE68cQXRiWResAvkZ4B372uDbUuYpg0p3a+2LbF7X9ssRyVaHpu2N8NIWei9OFrupaxoDIiJiGjJZYJb23Kytwkhsu3Oppcl9PaMwEjZGBmKY3w0Cctysj3qc1vV25Yz54YjIQTMtIVwxA/TtPO+l5sBbu9qwMH7N+VNsjt4/ybWD1NZtW2og8+v4/yp6+VeyorGkgkiIlpymXIEVVPg2G5QLKWEqiozyhIy5RWaLmBZArZlQzqAPUsaWNUUSEcWDYqllNA9Gnbva8MrL1yALfJ7DudmgNu7GhgAU0VRVQVdW5tw9p1rMNM2dI8694No3pghJiKiRdPbM4KnHzuBb33jCJ5+7ES2ZVmmHEH3KJAAHMeBIyU8XnVGUJoprwiGvAiFPVA1FUK45RJenwoI9/ESgO5RoHlUeLyzBwlCABLArr2taO9qwMce2skMMFWdTdubYFkOLp1nC8ClwgwxEREtiuldIaZ3ccgMwMjtMhGpC8zoMpHb7cHr0+H16ZBSIhY1UN8YwthwHLYtoahAbX0wG0wfeekixkcTsG3pFg4D0D0adu1txZ4DGwAAm7Y1I9LITXJUXda2RRAMe3D+1HVs3j7/ab40NwbERES0KObq41tqOUKhbg/1jSE8+PCugo9jppdWKiEEurY24eTxARgpa0Z7QLp5PKNERLQg0wdhjA7HEAp78+6zkD6+u/e14fDz5wHYBWt9iVabTdua8fYbV3DxvWFsvW1NuZez4jAgJiKiOU0PflvbIzhzcjCvPMI0HCSUNIKhG0HxQvr45pZXlDKhjmg1aF4bRjjiw/kz1xkQLwEGxEREVFRubTAAXB+YxEDvOBRVIFzjhRBumYQvoCGVtODx3nxml90eiPIJIbBpWxPeOtqHZMKEP6CXe0krCrtMEBFRUZnaYMd2EI+lIafanzm2RHTSQNqwAAD+gA6PR2UXB6Il0rW1CVICl9ltYtExQ0xERLPKlElc7RuHpilwpISAm6kSQkJONXNIxE14vBosy0FdY7DoxjciWrjGlhBCNV5cOsc64sXGDDEREc2QKZPIDNOwbQe2JeHMMhzDsmyOOSZaBkIIdHQ1oO/SGKycqY908xgQExHRDLkt1IIhT3ZesnTcyW9CEQgEdQghoAjB8giiZbJhcwMs08GVy2PlXsqKwpIJIqIqNb3zw+59bWhqCi/KcXKHY3i8GsI1QHQiBccBIARCIR2KqkDVVWzd2YIrvRM4/Nw5eDwXYaRMxKLpgs/nD+jwB3QkEmlYpgPLvJHp0nQFu/etR/PaMLtM0IrX0dkI287P9CqKgGnYBR/T1BKGpiu4cHYY69pqS34uXVeZBi2CATERURUqNBUuEgkUncSWG/x6PBqMlIl4LA1FVRAM6dnjeDxuTXBmOIbHq6Gmzg9FCPgCHowOx2CZJmzLwRsvXwbE1Jhkx5hz7cmEiWTCnPV7lukeT/coCIa9s068I1opLl8chpGy5v242no/LpwdRvPaEMTU1Zu5bN7WAr3AiHPiZwUioqqUW9KQaXumqgKvvtRT8DG5dcFCAKMjcTeTKwBIiVg0DelIqKqAlBK2LWGaNqSU2Rrhu+/biN372uDYEpbpIFtSLN1yisVimc6M19Z9tH/xnoCoijU0BZE2LMSLXImh+WGGmIioCuWWNACAkTKRjJuYGEvh6cdOzFpikBtEj0fTUISADQnpAEITgHTbqKmKmBqVHISUErGoAcdGNigdG44jXeSS7mKYvndvIRPviFaqusYAAGB8NIFQjXeOe1MpmCEmIqpC4Yg/u8s8U7Nr2w40TWRLDHp78nuVRieS0DT3n33bdmZcapVSwrElzKnM7/hYErFoCooQ0D0KTNPGQN94wXKHxTT9KvBCJt4RrVRen1uHPz7KD4mLhQExEVEV2r2vLVvSkIybbkpVCIRrfAVLDHKDaFVV3G4RU4GnlNLdMDdFUd2McdpwkEy6Nb/ScfsQLwdNV2aUa7ClG9ENkXo/xkeT2UE5dHMYEBMRVaH2rgYcvH8TAkEvLMuBoioI13jh9bnjXGcrMcgNov0BzR20IQDdo8BxbvxSFQqgCJHNIEsH2YEci/27d3omWNMV7D3QgQ8/uJ0T74iKqK33w7YcxCbn3shKc2MNMRFRlWrvakB7VwOefuwEEnEj2xECmL3EoL2rAQeBbJeJ+oZgtsuEUASk7Ua70gFsOFCVGzkT25YQYnGiYVUV8Po1qJpaNNBlAExUWG19po44iXDEV+bVVD8GxEREVW73vjYcfv48ABuqqpRcYuD1u9lkCcyoC5YOYDn5bSPmmx0WioCiCNyxfz32HNgwa79jBr1EC+P1aVN1xAms76wr93KqHgNiIqIql5v5TcQMBELeGcFmb88Ijrx0EaPDcaiqAn/Q7Tk8MZoExOK2TAMAX0BDfWMobx2ZjDYRLY5IvR/Dg7Gp/QDLVeG/MjEgJiJaATLBZlNTGEND0bzvHXv5Eo6/1pediGU7DuKxNEJhD4Qi4NgLK4VQFGQ34qmagOMgLyNMREurJuLDtf5JJBMmAkFPuZdT1RgQExGtYMdevoQ3Xrns1kVMkQ4ghUR0wripTXLuGGd3A58/oLMMgmiZhWvd2uHoeIoB8U1iQExEtEL19ozg+Gt9ecFwlpz95vlQFPcYu/cxI0xUDsGQB6oqMDmRQktrTbmXU9XYdo2IaIXqPtoPRzozWpstFlVT4Q/ouNI7sTRPQERFCSEQjvgwOZ4q91KqHjPEREQrVHQiCVVVYFuz75hTVAGfT0MifqPDhBDFu0kIBXn9jqWUHKlMVEbhiA/9l8Zg2w5UlXnOhWJATERURebTuiwc8cNxpNtSbWrwRibY9fpU1NS6fYpTKSu7sU7TVWiagJGyAOG2TbNtB4pwO1NoujJnv2NaWTIdSsZHEwAAzaPCthzYlgNVU9ypgoYNAIjU+XH3fRtZR76Mamp9kBKITRqI1PHv4kLxowQRUZXo7RnB4efPIxE34PVpSMQNHH7+PHp7Rma9/+59bVBUd8ObqimAcEc2b97eBI9Pz45G9gd0CAUIhHRE6nzw+nV4fDrq6gPwB3SsbavFAw9tx70f2ZyddMeRyqtDb88Inv/+aYwMxWHbErYtYSQtWKYDCcAyHaQSFuypD1Tjowm88MOzBX8mafHVTG2sY9nEzWGGmIioSnQf7YeqimyG1v1qo/to/6wZuemT6XIzysdevoQTb1yBmbagezRs2tqEeMzM3u+eD3TNesxCx8vg8I3KcrPvx5GXLiI9lf2dYVppTaYPrpUu/DNJi8/j1eDzawyIbxIDYiKiKhGdSMLry/9nW9OUojW8sw3D6O0ZwZmTgwiEdGiaF5bl4NpAtOgY5WLHyz3u4efPu6OZczLYB8ExzOUw/f2YGEvg2SdPQfcqM4amFJIpk5gPx2Fd+XKrqfVjfDTBAR03gQExEVGVCEf8SMSNm67hnW+muZjcDKSRsqHpAj6f96aPS6UplgHOfZ/ThuXWkksJ20TJH1bsBQxtURTBuvJlVlPrw/WrURgpC76pkew0P6whJiKqErv3tS1KDW90IglNy//nf65M82ym1zSbpoVE3MTocBwj1+MYH03CthxmC5fIXDXlue9zIm5CwC1rsG0JXVehqgLdR/uLHn8+pJSQUkLzqKwrX2aZOuLoBMsmFooBMRFRlWjvasDB+zchEPTCSFkIBL0llTlMF474YU1rxXazmWYhhHupVgK2JeE4EmbaRmwyP6NNi2f6+Z8e5Oa+z7btZC+lq1NB8lwfgooFy9Opqnvs2voAPvjxW3hFYJkFw14oisDEGAPihWLJBBFRFSlWw1uq3fvacPj58wBsaJoCy3LmnWnu7RnB4JUJOFJC01QEgrNfppUSSCTSN7Vemt1cNeW577OiCDi2AwgBf8B9zFwfgubK7AsBROr9CAS9ePDhXTf3YuimKIpATa1vQTXf5GKGmIholbnZTHPmUr0QAopwA63opJHtZTxdKmGxDdcSmCvTn/s+67oKoSjw+TV4vFpJ5TbhiB+iSJSge5RV1XZPOg4S8cr9cFfXGEA8mkbasMq9lKrEDDERUQVa6vZluRuvohPJ7OXxUp4jc6k+ENIRi6YhgOLj7eC27+Jl9JuX+3Ph8WhIJd3gp1CmP/eKwnx/pnbva8P4SDxvkmGGogKNLTWroq2eEEA6bSO5BMFwR2cjbHv2SZK5FEUAczSPqKsP4uJ7I/B6dWza1jzj+yxdKo4BMRFRhVmO9mU38xyZS/Vi6hdsMmFNjYcuHBTzUu7Nm/6eWZYDRQCKcCcL6roKVVdw+LlzCEf6ZwSr8y23ae9qwH0fuyVvSt1qnESXjJswDBNSTgWmi+jyxWF3KuQcNm9rge4tHtCuWV8Dn1/D1f4JbLt97WItcdVgQExEVGEWsy3aUjxHbvs3r0+Hd2rqnaooGBmKz7h/scvuVLrZ3zPAF/Dg7ql64cX+ELUYNevVyrElEnFjRllKpRJCoLWjDn2XxtiPeAH4zxQRUYWJTiTh2A7GR5MYGXLblzn24rYvW2jrtd6eERhJExOjSYwNJ5BKmtl61P2HOhEKe/LuL9yJ0YjUsS/tzSr2ns3VcYLmQ8JMW4hOpqomGM5o66xDIpbG2DCvyMwXM8RERBXG49EwOhKHMm3TWn1DsOjjentG8KMnTmJkKDZnjehChnzkXrIPR7yIx0zEJg3UNQRwz/3uqOd7H9iCF354FlbahuNIKIqA5lFx930bF3YyKsxyjqae/ly6rsKynFnfs4VMMaSZpJRIJsyq3ZjW3lkHALh4bhj1TcX/vaB8zBATES2j3p4RPP3YCXzrG0fw9GMnZu2+IKXM7p+RU5vVRM7/L3Tcw8+fR3QyNeuQhukWMuQjNwvp9emobwwgUu+HL+DJBoXtXQ344MdvQfO6GgTDHjSvq1kxfWnnGoSx1M+VSppIJa1Z37PF6i29mtmWg1jUqNpgGABCNT6saavBuVPXi/57QTMxQ0xEtExK3chmmjaCYS9SSXezmqq57bJM0y547Eyw6vFosCx7zprg9q4GHATmle0sNQu5UutOF1p3vZCscqF6YVVR4PXrsx7rZntLr2buaOv0XM1SqsLm7S34+XPnMDoUR0NzqNzLqRoMiImIlkmpAVWmnKG2/kZ2zzRtBILegsdeyCXz+QauCymzWEkWco4X2s2j0HMZKQu//Jt7Ztx/IR9wCJCORCJhwkxXb1Z4uq6tTXjlJ+dx7tR1BsTzwICYiGiZlBpQtbZHcPxIHxxHQlMFdK8KVVPnHKLgBqs3blvsYHUxJtxVs4V8IFhoVnkhz7VSM/NLxTIdJOIGHGcFpIVz+AM62jrrcO7Udey7t5PdJkrEGmIiomVSSp1nb88IzpwchM+vQVUFLNuBkbSxdWfLnEMUbFsinbZKrgleCF1TEB1PYWw4AVVR5jXhrtotpO66UGeIseF40VryQs/V2h6Zswad5makTMRjqRUXDGds3t6M2KSBa/2T5V5K1WBATES0DHp7RpBKpDExmsTocAJGypw1oMpOgQt6UNcQQGNzCOFaL670ThQ9fmZMb7jGt6BxzKWs//Dz5+FIibrGAMK1PqSL1DSvRO1dDdi6swWJmImR63EkYuacH1Rm+xCUTJgwUhYGByYRixoYHJjEi8+czQtuZxuvvXVnC86cHFyWTX0r1ZVLo/jRP5zE4//zDfzk+2cw0Dte0uNs28Fbr/fhe996a0nXt1g6NzdC0xWceedauZdSNVgyQUS0xHLrSH1+DcmkhclxA5quYPe+9XkB1c20z2rvasCd+zdgaCi66K9hOYaFVLpM9j4Q0qFpXliWgzMnB9G8NlzwHMxWZpKMm3AcCVW4m+SklEgmzRnjraeXQDz92IlV/x4slBBA74URvPrTCzBNG7pHQzKZxrFXLmMPgHXttQUfOzocx5EXL2JirHpa2OkeFVt2tODsyUHsP7QR/oA+94NWOWaIiYiWWCaYlI6EYdhQFQFVFYAEzpwczMvwVWr7rIUO8lhJFjL8YrZMr5QSioJsbacQAgJzj7deyvcg0w7wvz36woosxUjGTRx7pRemaUPTVEAIaJoKRRU4fWL2LKrjSJw8PoDnvncaE2NJCAHsvGPdMq984W7d0wrbcnDqrYFyL6UqMCAmIlpimUAmETchcCMQchw5I6BaSJ3qcqjUQH05LVZAKoSYsdGplI1PS/Ue5PY89vn1FVWK4TgSsUkDqZSJ6HgSmjrt/VMVxKOpGY+bGEvi+adP451jVyClRE2tD/c/uA277qqeDaT1jUGs76zDyeMDsO3qmrhXDgyIiYiWWCaQsW0nL/BRNWVGQDVbRrESNq5VaqC+nBYSkM42YENKCceRkDL/v9zx1rMNcFmq92Bljn2WMNM2YpMpWJZb6x4M+2BNCwwt20Ew7LvxKClx5u1rePbJdzE6FAcA3HJrCz7y0I6qbGF22942JGJpnD89VO6lVDzWEBMRLbFMHakQAo7jBsUSgD+gzRpQVWL7LPa5XVjbudlqrwMhDxLx9NTPgzveWvdq2fHWBXsX378JB+/ftOjvwUob+yylRCphwpg2cW7brjU49splWLChqQos24FjS2zbtQYAEJtM4cjPLmHoqluDHwx7sP/eTjSvq1n217BY1nfWoa4hgLff6MeWHc1swVYEA2IioiWWCSaPvHQRo8NxKIpAIKhDUZWqyrJWYqC+nBZrup8/oMOxJeoag7Mep9AGxtdevABfwLPoH0hW0sAVx5aIxw3Y1swSgXXttdgD4PSJa4hHUwiGfdi2aw3Wro/g/Knr6D7Sl70C0LW1Cbv3r4fuUWccp5oIIXDb3lb87NlzuNo3UXTz4GrHgJiIaBlkgsncMb6BoHfVZVmr3WJN96trDOLBh3fN+pjZgmjbcjAxaSAi5bwm3pUiN/OtqkqVlsNIpA17zvHL69pr84LCRDyNl370XrZfrz+g4657O7FufWSJ17t8tuxoweuHL+HYK5fxSQbEBTEgJiJaRouVZc0NrFdj+UK1WEiZxWxBdDJuQlGVJWm5lpv5TsQMBELV9UFNSolkwkTaKH38spQSl86P4M1XemGm3Rrjjk312HNPBzzelRUaabqK3fvb8epPezDQN45162vLvaSKtLLedSKiVaBgjSmApqZwuZdHOQqVWQBuX+HZPtDMHkQ7CEe8ecdezDrfzAe1pqbwkvSxXioLGb+cSpp44+eX0X9pDADg9WnYe6AD6zfWL9Uyy27H7rV462gf3vj5ZTz4cG25l1ORGBATEVWZYkMy7ty/oaxrW2kWIxM//arAsZfdy9eZS/vRCQPDg1Hc/8lt2ftOD6JVRYHtrO62d9MZKROppFm0RGK6votjeOPnl2Ck3Gxya0ct9r5/w4ofXOFmidfjlRd6cOXyOFo7asu9pIrDgJiIqArkBmaJWBrBsAfIuaReKFvI0oqFK5aJn885zH0PdF3F6EgCmBbEpQ0bh587h1//nHvc6UF0Zi3zKb1YqRxHIhlPw5zH6PC0YeHNV3px6bzbW1n3qLjzfe3YsLlh1XRe2H77WnQf7cMbL1/CuvZdq+Z1l4oBMRFRmc0VtE4PzJJxE9FJA0KIbL3jbNnCxQroVqvFGFc9/T0YH0nOCIYzohMGnn7sxKwfWtq7GrDm3UGcPz0MKSWEEFjTFkb30X4cfu5cVX/YKfVDmxCAmbaRiKfnVSJxtW8CRw9fRDJuAgDWtNbgrns3IBjyzvHIlUXTVdxxdztefv48rlweR9uGunIvqaJwMAcRURnNNrhh+pSw6YMTAiEdAkAsmi46oGFlDlxYPosxmW76ezBXIDfb+9/bM4JvfeMIzp0agpyqD5BS4mrfJAZ6xxGbNHB9YBIv/PBs1U2XK+XnPyOZMBGPlV4vbJo23vj5Jbz0o/eQjJtQNQV7DnTg0Me2rLpgOGPbrrUIhj14/eeXsj9L5GKGmIhokSykPKGULOT0Nlxenw4pgUQsDSNlFXyulTBwYTFLPnp7RvCjJ05iZChW0rEKtUzTdbXghrjpMuc6Hk3Dtpw5g7l4NA3do+C1Fy+g+2g/RodjMA2n6OhdKd11WZaDH373JNa112bXdOzlSzjxxhWYaQu6R8Ouva3Yc2BD0TUsp1J+/hdSInH9ahRHX7qIWNQAADStCWHfoU6Ea3xzPLIwIQDvIneg6OhsLGmssqIImEbpr7+Y3fva8fJPzqPn9BA6FvB3SdfVFZlOZUBMRLQIFlqeUErQOltgpmoKWlojBXvZFnpcNW3EmlFuMBrHs987BUUBhFAgpQMhFKiqQF1jcPZSk+fOITphZG/zBzQEw96S3p/W9giOH+mDbTnILbd0E2sJAG6Zw0DvePZ7a9fX4Bd/bXf2+ZMJE5Y5d8CT4dgOknEbiZiJ2gYJ23QgZemPB4Dx0TgOP3/eLbE4MwQBN6CyTAvHXr0MABUTFBf/+Zcw0w6SidJLJGzLwdvH+nHm7UEA7uu+bW8rbrl1DRRl4TWzuq7CH/BAURe37vbyxeHsBr/loihuv+VXf9oDwzDnXUu8eVsLdG91DyyZzQqM8YmIlt+MS+O2g2QsjWeffBdPP3ai4KXscMSfnY6VMT1o3b2vDbbtlkYUK5GYbqGPqxSZc+rYDkaHE0jETNiWAzPtIG1Y2a/JhImB3nE8//3T2fPc2zOC579/Oi8YBoBkwkIilp6zfKS3ZwTvHB/IZu+kvPFfMVf7JvHUt7uzwfx8al0Bd7KYlACEG4TZtpx3wGKmHaiqwPnTw1PBsAIhhPsVwIk3rszreEtptp9/23bQvLYGyfj8SiRGhuJ49sl3s8FwXWMADzy0A5E6P1784Vl8/7G38MI/nsn7ADMXd6qkB8Gwd9GD4XIRisCGzQ2Ix9K4PlA9LfaWGjPERESLIDfTZaRMxKJpCACOlEWzkaUMbljIyOCbeVy5TC+PGB2OQddVxGNpOPbcQVFup4buo/1IF7jEnEyYCIa9sC0Hg1cm8K1vHMk7N709I3jmH05inonZrKt9k+gW/XBsp6R158rUdWZCL1VT4NgOhCIg55El1TQFUsoZWVEhBMz08mYki5n+8y8BBIJebNzSAKPEQRu27eBU91W82z0AKd3XuOOOtdixey2u9U/i2CuXoajuBtRkMo1jr1zGHmDOMcYerwafX7+pzHKlaloTQt9FLy6dH0HT2vCKfI3zteQBcSwWwz/9p/8Uf/VXf4W2tjZ85zvfwTe/+U0IIbBz50585StfgcfjwenTp/GlL30JsVgMe/bswVe+8hVoGuN1IqoOueUJyYSVDWg0TS3anaDUoHWhE+4WazLefD317W5c7ZvM/rmu0Q9FKBgfdUsN/AEdXp+OdNqtgQ6GdPScGc5mA+OxNCCBVGJ+wVsmI1ysTlpK90NLPGpAKEpeicvWq1G8c3xgwcFwxthwHMmEOa/HCAEoqgIJB8pUVtgf0BCdNOa1HnXqg5Wbbc7PMEspoXsq53dr7s9/2jBR1xDE+g21aFxT2oCZ8dEEjrx4EWMj7s9VTZ0Pdx/aiPqmIADg9IlrUFQBTXMv8WuaCgs2Tp+4VjAgVhQBf9ADXVdw46PJyiKEQOeWBrxzbABX+ybYlxhLHBCfOHECX/rSl3Dp0iUAwMWLF/E//+f/xJNPPolgMIg//MM/xGOPPYbPfvaz+P3f/3187Wtfw+23344/+qM/wuOPP46HH354KZdHRLRocjNdtuUAkIAQCATdhv/FNrOVK2hdKtODYQAYG3Zfu6K4AWksmkYslkZNxIuJsQQGetN5959vZnW6cMQ/o1wiQwggETMhAYTDnmwHDsDG8SN9cErY5DSXdHqODVACee3XvH4N4RovLMtBOmXBkchuIssEw0IAqqpATJ3DQrXJukeBbUts2taI82eG4Dg3gmMJYNfe1pt+fYupvasB6zvrkUiYJWevHUfizNvX8M6xK9kPUVtvW4Pb9rRCzekMEo+mZoxi1lQF8WhqxjHdTXM6vH5tVfTorWsIIFLvx+WeUaxprck7b6vRkr76xx9/HI888giam5sBAB6PB3/8x3+MUCgEIQS2bNmCgYEBXLlyBalUCrfffjsA4KGHHsKzzz67lEsjIlpU7V0NOHj/JgSCXggBCEVBuMZbtE/wSjU9GM6lKDm/dqRb01uotOFm7N7XBk+BjT+arsBx3MxpdNLA+GgSacOCbTmwLWdek89ms3Z9TdHyBlUTEHAv2X/8n+zEx//JTjQ0hWCkLASCXtz3sVvwwY/fgkDQi3g0DU1TUFPrRWNLCHWNAQTDXtREfAjX+hAI6dB1xd30J9xguLY+iIP3b8KHPrkde97XAU3X4DgSmq5hz/s6KmZDXYZlOohOpkoOhqMTKbzwj2dw4vV+OI5EqMaLD31yK3bvXz8jqAuGfbCmfcCxbAfBcH63CU1TEAr74AvoqyIYBqayxJsbYKZtXJlHXfVKtaQZ4kcffTTvz62trWhtdT+Zjo6O4tvf/jb+5E/+BNevX0dTU1P2fk1NTRgcHJzXczU0hG5+wYuoqam0yz2rFc9PcTw/xVXq+WlqCuPO/Rtw/vR1PPPkSaiagKoqbqZPChz68JZlWXulnh8AMzZQOXaBAHRaBrVUkTofmprCaGoKIxIJ4Jkn38H4mDsMQ9cV3POBTVi3vhaP/+9jcKZqbB1HIjaZLukJa+v9SKctJGKzl0N0dNXj//rd9+HRLzwDATlrqUNtfQDhGh8+87m7s7fNNnL7zv0b8N8efQE+f36QpqoKUkkTv/Dp2/DqSz0YH02gtj6A9x3qwqZtzXnH+Ogv3YqP/tKtc76uXMv18yMdiXg8DQMmPLWBue8vJU4eH8CrL/Vks+M771iHuw9thKdAGchdBzbgZ8+dg3RktkYfUuCuAxtQX++WVfh8OvxBT1nqaINBL/QyloeGQj5cuTyB/kvjbvcIfe7uEYGAB7X1c79f1aYs78Lg4CB+67d+C5/61Kewb98+HD9+fMZ95vsJbWQkNu/dvEulqSmMoSHu3CyE56c4np/iquH8RBr9uOeDG2fUBUca/Uu+9mo4P3mmOnLMMMc/5w1NQYyPxWHbU/cVgMej4MCHNmVff6TRj1/9f+7KPqa3ZwTvdl/Fz39yDk5mwMXUU0sp4TiAP6hnJ5pNFwp78o5XyNBQFLV1foyOxLMBd4aiCqTTNnbsXlvS+xQIeWe0zjNNG4GQF5FGPz766Z0znvtmLNfPz3x7C8djBo7+7BIGr7hXHwJBHXfd24m1bRHEYgaA2ctjwnU+3HH3epw+cQ3xaArBsA/bdq1BuM6HaDQFf9CDRCqNRCo96+Nns5gfGOJxY9nbrk23vrMWQ9eiOPvuNWzYNHfpViKRhmkv/lWd5VDsvVv2gLinpwf//J//c/z6r/86/tk/+2cAgJaWFgwPD2fvMzQ0lC2zICKqRiutLng+FBVwSvx9aVvzr9f1+jWk0xZq64LZdnJzddDItEHzeFS3EwEARwKY6t6gqgoACa9PQypp5Zc8CCBcM7/JZvsPdeLFZ87CMOypfm3ucWrr/Lj7vo0l/2yU0oWkmsx3/LKUEhfPjeD4K73Z4HnD5gbc+b72GbXBhaxrr83bQKcoAv6AXlGbC8spHPGhsSWI/kvjaG2vhe5ZeT2GS7GsPw2xWAy/+Zu/iX/zb/4NHnzwweztra2t8Hq9ePPNN3HnnXfiqaeewsGDB5dzaUREtEjEQusdpglHvEinbaRTVrY3LyRgmw68UxvQbFvi4Ic3Z9ulFZogl+lp7PFo2VZmqnCDo9rGAEzThiIETMuBoghIuDXGEm5mWFEVBIKzB8XT28W1tkdwpXcCUrrlDbpHQX1jaEEt76qtdd50ueemaU0YW29tQW1DoKQ67WTCxBs/v4Qrl8cBuB+E7nr/BrRtqFvQWoQAdI8Gv1+HYJuxPB2bGjA82Iu+S2PYuKWx3Mspi2UNiJ944gkMDw/j7/7u7/B3f/d3AIAPfOAD+PznP48/+7M/w5e+9CXE43Fs374dn/nMZ5ZzaUREVGGiEwYUVUAoAprqboSTjpPdEJfbzg5AdqqdEMDgwCSeeeIk6hoCuPu+jXl9ojVNIJl2IzLbthGPGVA1FZt3NqPnzBCk45ZPKCoQDHlg2xLxqIFU0sTTj53IC0hnm6Z3tX98apiDJy+jO1cQW2hMdbVebcicG0gHHo+GwatRXOoZwY5da7HzzuKdLnovjOKNn19GeqoXcduGOux9fwd8fn1Ba1FVZSorrN70psmVKBT2omlNCFcuj6Oto7bk7PtKsiyv+Kc//SkA4LOf/Sw++9nPznqfrVu34oknnliO5RAR0RLSvSrsefYPLsSx3c1Qju0GlkJxOwJkZNrZZTLA0pHZoSiKIjA5nsLh589DOhLjI0nYmU18OUlsI2lj4y21OHNyEKoqUN8UQCKehpGyYaQs2LaE168iEPTMGLKSO6EQcKfECbhDQgJBT9Ee1LkWOvq7kmXOjaJoiMfSSBtupv/d7quobwrO2gfYSFl489XLuHx+FACge1TsOdCBjq76BXV/EALw+vRsIM1guLANmxowdC2G/svjqzJLvPo+AhAR0ZKa7zCNudjOjUEV0nGHVWRk2tlFJ5IQws0qu9PKAAhASMC2bKQSFiTkjYBIuiNsayJeCEXgcs/YVAszN7ANhrzweG0kYibCEU/29ukB7uhwDLbpBuuqpsAybSiKyI58Bmb2oJ4tE5w7pnoimoY9Vbrx2osXqjYgti0LihCYHE9COu5meSEA25GzDsYY6B3H64cvZQearF0fwV0HNyAQ9Czo+XVdhT/gWTEjl5daIORBY0sIA70TaN9Ylx1mslowICYiooomHcBGbqcGdyxxbjnCkZcuYnQkng14pQQgAUUDTMOGhERNxIeJsRsDGRTFHecrpYSZtqBp+TXCmqYUvD06kURvzwhMw4GU7uCLTAs5t+fvjWAitwd1oUywmbayY6oF3IBeSomxkQR6e0bmHRQXKr9YLo4t4fV7MHh1FIq40TlKSglVFXmDMcy0je4jveg5426u13QFu/e3o2tr44Kywooi4PPrq/Ky/81q31iH4cEYrvZNYn3nwmq1q9XqHktCRERVQ1HcYEcRIjvE4uD9m9De1eCOKJ7lMVIClu12kfB4NXi8KlRVQNPcoBpwA1bdo83okVzs9nDEj+6j/fAFtKl0dG7QB3i8arYDRm5XiNwSi0wdtJsZBpJxcyoYFtljKaqSrZEuVSboTsSNvKC7t2dkXsdZGIm0YSE6mULn5gZ3g2L2Q4o7Kc/j1bKDMQYHJvGjJ05mg+HmtWF89FM7sWlb04KCYY9XQ6jGx2B4gcIRH2ob/Oi/NAbHufmJjdWEPzFERFQdhNsuyxfw4Fce3pX3LdO0EQx7kYib2VZubpbVDaIzG+qCIS8mxpOQjgNlamiKbUvs2tuKMycHMb29WaHbd+9rw+HnzsEf0KFpivu8tgNtampcpC4wa3Y2d3NfhqYpUFXh1h9PZVMzwWMopBcc+V3I9LrmUuuYb5aUEsmEmd0It669FjtuX4t3u6/CdtzMsNerQVEEtuxsxpuv9uK9k+4QLkUV2LW3DeGIF0d/djGvZ/BstcbTKYqAP+iBrivArB+NqFTtnfV4+9gVDF6JYu36SLmXs2wYEBMR0aJau76m6PjmhQrXeKF71FkDxHDEj0TcQH1jAGnDQiJuwrJs6LqaDWpN04bPp8Pn12Ck3O8Fgt5swNq8NjxrmUGh28ORfiTixlTm2f11apo2AkEvHpwWsE9fpz6tpKKuMQgjaWJ8LAlHuhntQNBtD1ao3VshhYLu+QbW82FbDhLxdF7tNADsvLMV9U3BvMEYrR21OPH6FUQn3LKJ+qYg9h/qRDxq4Ngrl6GobilLMpnGsVcuYw9QMCgWAvB6dXj92qoZubzUahv8CNV40XdxDGvaalbNeWVATEREi+qO/e145srJWccWL5hwL4dnhnBMlzvAQveoCCrC7VE8VVKRCWoTMQO19cFZa2oLtTcrdPtChmbM9ZhMffHNDOEoFHTPdt4Wg5EykUqaBTs4ZAZj2LaDk28O4K2jfVMbHwV23rkO229fC0UROPayGwxnNnNpmgoL9qwb8NzvK/AHPFA1Vn8uJiEE2jfW4dRb1zByPY7GllC5l7QsGBATEdGi6j7aj0idH7quwkiZiEXTcOzi/a5U1Q1gC5LA0LUYPF4V93yga8a3cwdYDA9GYaYdSCnx/PfPYNfeVuw5sAHtXQ2LOpp4IUMz5nrMYgzhWK7pdvMZvzw2ksCRFy9gfNTNUkfq/bj70EbUNQay94lHUzNqfzVVyduAB7hZYZ9fh9e3sJ7ENLfG5hA8Xg0DfRMMiImIiBYic2k+PtU+TMyRwFNVkd3gNpe0YeP61WjBTO71q1Fc7R+HmJpCZ5kWjr16GQCw58CGeb2OUixkaEaxxyzGEI6lnm43n/HLjiNx+sRVnHxzYGqgCrB11xrcemfr1LjsG4JhH5LJdF67L8t2shvwALZSWy5CEVjbVoPLPaNIJkz4Ayv/wwcDYiIiWlS6rmJ8NJHtO5s7xTmz0U0IdyOVbcnimeFZnHjjSsHg9sQbV6aGcihTzyfgOE7Rx1SjudqqLeV0u2TChJEqXCKRMTmexJGXLmLkehyAO4p7/6GNBTOO23atwbFXLsOCDU1VYNkOHFti2641bKVWBmvXuwHxtf4JdK6CQR38ySIiokUlhEBmGFymYwLgBsANTUEAQNqwMDmRypsYVyozbeUFhB6PBiNlIpkwc4JrJy8oNtOLOyxkqRULeMs11a7UEgkpJd579zpOHO3PbrLbsqMZu+5qy+vPPN269lrsAfI24G2/fQ06NjXC59ehKMwKLyevT0dDUxDXrkyiY1PDij//DIiJiGhRpdMWwjVeJBMWbNuZ6gEskEpaME23rjUzXtnn15BO27CtG1HxXPXEiqpkA0IhgJGh+Iz7uC1U3aBYSgndU1m/7m4m4F3+tmoSZtpGMmHOWSIRixo4+tJFXL/q1mkHgh7sO9SJNa01JT1TZgMewFZqlWDt+hqMHI9j5HoMTWvC5V7OkqqsfyGIiKjqZboc1Nbf6Gpgmjb8AQ98AY9bYywlPD4NhmHPCHXmShgHgno2IBydMAreLxMUSwC79rYu8NUsvtkC3hd+eBbBoAfptOW2hPMo8PnckcXTA97lbKs2vbdwsftdODuM46/1wjLdrHDnlkbc8b718Mzzw8hqaqXW0dk4o1VdJenc1ISL741gfCSF/QfdzayKImAaha8S6LpalWPfGBATES2xUsfoZu43OhyDY7uZ0rrG4IzsYe6xWtsjuNI7kf3zoQ9vQaSx9PZaSzHit1CXg3vu78oe++nHTuD6wGTOZDaZrUkt1pHCF3B/bWlTrbZsq3gwoelatstEpZie4XVsB+mUCTNto67Bj1g0DdO0oGlKtmY2N+BdrrZqlukgETfmzAon4mm8cfgSBvomALhZ/7sOdqK1o3bez5lppabpypw1yivB5YvDMFKVXc7T0BJCb88oTr8zUFIN9+ZtLdC9hUtjKtWcr+zs2bN4/vnncfHiRSiKgo0bN+IjH/kINm7cuBzrIyKqaqXWe2buZ1s20oYNSAnTBCbGEtn7A8g71vhoHFf7xxEIeuAP6EjEDTzz5Enc88GNJQW1S1WLWkqXg9372vDMEyfdTXZAycGPrquzBoSzUVWB3/w39yz4dSyV6RneZMLK1loL4fYgti0bibiZDUByA96lbqsmJZBOmUiVsHHu8vkRHHvlsvszC6B9Yx32HNgwI4M9FyEE/H4dnqnHrYZguFo0TQXEw9fjWLeCJ9cV/IkdHR3FH//xH+PChQs4ePAg9u7dC9u20d/fj89//vPo6urCl770JTQ2rvydh0S0+ixW5rTUes/M/VIJx82aTtW+pg0bwbCK7qP9AJB3LDPt3jdt2AgEPdB1FY4jS64lXcpa1Lm6HLR3NaC+MYjRkTjkPLpM6LqaFxAWE6m7kTHNvJ+JmIFAyLuobcjma3pA72a5JdSpdmP+gIZY1IFl2ZBSzgh4l7Ktmpm2kYgZc26cM1Imjr18Gb0XxgAAHq+KPQc60LGANbCVWmULht0P3MPXYqszIP6jP/oj/NZv/Rb27Nkz43tf+MIXcPToUXzxi1/EX//1Xy/pAomIltt8srpzBSWl1ntm7mdbDjJlk0II2LaTd//cY7n3FXk1iLo++2jj2ZRjxG+ujbc0YuTlmRviihFC5AWE4yOF13r3fe6VzNz30+fXl60rQyHTM7yKImA7EoGg2+vV69NhWQ4sU8JIWcvUVk3CTDuITibnDIavXB7H64cvIpV0L/Wva4/groMb4A945vWMiiLgD3ige6rv8vpqIoRAY0sI/ZfGYKbtFft+FQyI//Iv/zLbsmY2+/btw969e5dkUURE5VRK5rTUoLnUes/M/VRNgTMV4GYuoY+NuJvQVE2FbTsIhrwAAHXq0rqaM8ig0Gjj2YL35R7xO30tg1cm5v3Y9FT7tMw5HhyYhGM7eZfYhQDqG4PZ++S+n0KIZejKUNz0DG9NrQ+ppAmhiGxGWNVU3PfRTcuyPikljKSJVMqCt8gGuHTawvFX+3DxvWEAgKYruOPudmy8pXFem9+EAHSPBr9fh1jhrbxWisY1IfRdHMPI9TjWtJXWMaTaFPzJzwTDTz311Izv+f1+bNq0CV1dM8dnEhFVs96eEQxemYAjJTRNRSDoDgOYnjkttdygtT2C40f64DgSmiqge1Womjqj3jOTNdQ9ClJJB9Jx4EhAwJ3uFQx74TgSiXgagNvOSvcosCwbHq+aDaQgxYxjFwret+5swZmTg1jqEb+F1uIsoFBU11U8/dgJRCeSMFI2VBWQUmQ3tbsfIhTsP9SZfUy5M+GzmZ7hXYrNjaWwLQeJRHrOzYnXrkzi6EsXsz9/zevC2HdvJ0Jh77yeT1WVqazw6tg0t1KEa7zw+jQMDcZWX0Cc8fTTT+Ott97C/v37oaoqXnvtNaxfvx6Tk5P47d/+bfzKr/zKcqyTiGjJZYI1IdwAy7EdRCcNhGvcUaa5mdNSgqzenhGcOTkIn1+DkbJgWg5M04HusbM1wcCNTKGuq/BM1QE7NmCZNhRFIBDS4fXdGJ1qph0YKQu19UHsuH3uLhOFgvcrvRM4eP+mZQ3Epmdr5TyncqSSJgzDgpGysu29PF4FUgrYltvzWNWVBWXpF6JcgezNr8WtT08m0kUDU8u08dbr/Tj37nUAbkB7+742bN7RPO+ssM+nw+t3f44ZDFeXTNnEQO9Etrf4SjNnQCyEwBNPPJHNBvf19eFrX/savvWtb+Hhhx9mQExEK0YmWAuE9OzgCEiJWDSNQMiTlzktJcjKHM/n87jB8qQBx5awTAdX+ydwrX8CqiYQDLvZF8tyYFsOPvjxrWjvasC3vnEEXl9+L1Z/QIeiWPj1z+2fNQDatK0ZQ0PRvNdVLHhfyhG/s8ldi1xAVCQUgWTCnGrXNtURwXAgFEDTVOgeBX6/J5tFzrSmy2TCVVWBadqLkglfrC4di3Gc+Ryj1N7CQ9eiOPLSRcQm3V7PDc1B7D/UiZra+X2Q4Ka5laG2wY8rl8cRnUihtj5Q7uUsujlD/KGhobzSiPXr12NwcBChUAiqujILq4lodYpOJKFpCrw+HaGwB4o6NSFLShy8P7+ec/e+Nti2hGm6nQBmC7IyxwOARNyEnOrnKiWgCHcUrpl24NhOtrZVVUU2exyO+N0yiByZoDsTACXiRl4AdP709Rmvq9hxltNT3+5GdMLA8GAcQ9dikAuYRxCPpuHYckZvXOlkOiSYGBmKY3w0nj0vZ04OYuvOFgSCXqSSJgJB74z3cyFmq03Off+W8zilHsO2HMQmjaLBsG07eOtoH174xzOITRpQFIHb9rbiQ5/cNq9gWFEEAkEPgmEvg+EVINO1ZWIsVeaVLI05M8SRSATf+c538OlPfxpSSvzDP/wDamtrcfHiRThO5U5XISKar9ysr9fnlimYpo1A0DsjeCql9ZWuqxgfSbolENMCuNzRxMmElS2JyC27KNZvtlAZxKsv9eCjn96Z91xL3be2FE99uxtX+yYX7XhzJZdTSSv74SZTHvLgw7vQ1BSekUFfqMWqTV6M45RyjHTKQjJZvERiaDCKHz99ChOj7uNqG/zYf2gj6hrmlxHUPRoCAQ2iyOZ8qi66riIY9rg/GytwC9mcAfF/+A//AX/wB3+Ar3zlKxBC4I477sB//I//Ef/4j/+Iz33uc8uxRiKiJfWT75/CuVNDBb8/PpLEN/7jzwp+Xyhud4cffvfkgp7fTN9oc5WbuS0WdB9+7tysAdD4aGLG8Zeyb22pFjMYLoV0ZPaDxlJtoFus2uTFOE6hY9TU+iEdiUTChJkunBV2HIlTb13Fu8cH4DjuRs7tt6/FjjvWzateVFEE/EEPdH3q6gqtKJE6P65dmYR05IrrEDJnQNzW1oa///u/x+TkJBRFQSgUQl9fH37nd35nOdZHRLSk5gqGSyEdIJVY+PhVtxZ25gAGoHC/2UIBUKHavuWuFV5MmVrh+ZDyxljnpSoPWazM+2IcZ7ZjKIqCO/avR3QyVXT88sRYEkdeuojRIbcndDjiw/77OtHYHCr5+YUAvF4NXr8+r812VF0idX4M9E4gGjVQE/GVezmLas6A+Atf+AK+/vWvo6bGbbPx3e9+F1//+tfx+uuvL/niiIgWQ+7mM11XkU7bSE61j7LnMSVtUQlAyRnXW2gAQyGFgqj3Harua5mKAkyvxlNVJVsDrXtU+AMakgkrL7M+G1UVi7aBbjaLlXlfjONMP0ZjSxjbbmtBuNZXMBiWUuLsO4M48UY/nKm/B7v2tGHLbS3Z2vdSqJq7kZGt1Fa+bB3xaHL1BcSmaeJrX/safvd3fxdf/OIX0dfXh7/9279djrUREd203N33pmkjOmGUdT2KKqCqSrZ1kcerIlIXwIMP75rXcQoFUbN1mVguxdp+6R4FZnrufSdCCAhF5m24cxx3ep+cOo7Hq0FRFffDjJSIx9LZgE5RBaQjISWg6goCwaUd07xYmffc42TO4+Hnzs0rOM4cw3EkkvH01IbP2e8bm0zhyM8uYeiq+7MSDHuw795ObNu5FqOjpU0PFALw+W+0BGQwvPJ5fRo8XhWJWLrcS1l0cwbEf/7nf47Pf/7z+NCHPoRf/dVfxX/9r/8VHs/8xjMSEZXLay9eQDKWntFloVwcW8IfUOEP+G56c1sllUHM1fbrww9uL6nGWgiBUMjjDiGJpd0AWQB1DQFsvKUxr+dy5rwdfv48HNvtzWzbU6UCd6/HngMblvZFL4GbacEmBLJXP4plhXtOD6H7SF/270TX1ibs3r9+XiN52Upt9fIHPEgkVlFA/Nxzz2X//wMPPIC33noLQgi89NJLAIAPf/jDS744IlrZ5hokMNv3m5rC8zr+2Eii4vb2JOMmHFuirjGI1vbIgrKBS2khwybmmtzX3tWAzdubitZr7z3QkQ14I3UBHHpgy4zn3TPL48q9YXAxlToBcTbJuAnDMAtmahPxNF4/fAlX+9yR2f6AjrsObsC69tqS16coAj6/O72RVid/UMfI9dKuIlSTgj/R3/zmN/P+3NnZiRMnTuDEiRMQQjAgJqKbUiwTBsDd5DMcd0e9BvXs9yORwIxJbIV0H+13L60vcXZYKO6lxGIb6xRFQFFu1AzXNQazdcA3O9hhMS00Q1lK268PfXI7gNk3Me490IE9BzbMGvDOpZIy5TdrIS3YHFsiETcKXgWRUuLy+VEce+Vytu66Y1M97nxfx4znKsbj0eAL6FBWWHcBmh9/QIeZtmFZNjRt5cyjKDkgJiJaTIUyYa+9eAGm5UxdLnd/mcdjaYTCHji2xJPfPg7do5aUCYxOJBEM6ZgcX/y64XDEi1//3P7sn3MDycwmt4nRJCQAbVrbKseRiE4kbyobuFQWuqbpXS/ShoVYNA1IiacfO5F9rz70ye3YsqNyxh1Xmsx5lI5EIm7CnhraUls324fAzPhls+DUv1TSxLGXL6Pv4hgAwOPVsPf9HWjfWF/ymthKjXIFgm7ZbDJuIhxZBQHx7/7u7+Jf/st/ie3bt8/6/XfeeQd/8Rd/gb/6q79assUR0cpVKBM2NpxAuNYHKSWUTFN/KRGPme7mKgiEarwlZS4zwcViEwIz2nhlAknHdjARTd/ISktks8IZiiIQjvhnnIO0YSEeS2NiNJkXRC6nuTKUhcopcrteGCkLybiZffy1/nG8MBzHBz9+SzabywB4drv3teHFZ84imcyMpxaQjoN4PI3enpHseSult3D/pTG8fvgSjJR7n9aOWux9/wb4A3pJa3Fbqenw+jW2UqOszM+PGxCvnE4TBQPiRx55BF/+8pcxOjqKQ4cOoaOjA7Zto7+/H4cPH0Y4HMZXv/rV5VwrEa0ghfroAm4ApqpKdqQx4PaUVRRA05XsaNq5Mpc3grTSqKqAI92AtXltCNevxmYtt5ASaG2P5N2WCRjjsfRUIHNj173tSCjCDYqllNC9WnbaXOYcpA0L0UkDkBKappStfKLYkIi5yikOwi11yQ2GAbeNWiph4rUXLyzpa1lI7fNSHmch2rsa4PPrSBs2HEdCURX4A25XjczPumU6SMSNghvn0oaFN1/txaVzIwDcLP+d97Rjw+aGkgNbTVPgD3ig6WylRvm8fjcgNoqM/65GBQPilpYW/M3f/A1OnDiBZ599Fj/84Q8hhMCGDRvwxS9+Ebt2za9FEBFRrkJ9dGvrA7AsB4Ggng0Qs4RAMOTN/nGu2spMkPbjp07BMovXESuKQCDkmREAfedv38D4WDKvrZc/oONK70RevWs44sf1gclsVs89JuBICVVVIKeCl9r6AO6+b2P2+JlzEI+55QUQAv6gvuzlE5kgcGw4jnTahtenIhD0lDQuOnfjXPfR/oLPMTG2uNPipveXTiVNeHzaTdVj30yXh1LXOleQbZo2ahv8ecGrlBJm2oKRNJFKFd44d7V/Aq//7CISUx9KWlprsO/eDXl/b+YSCHjgmbpKwGCYplPVG0mKlWTOavpdu3Yx+CWiRVeojy6AbEASCnvcUgnbgaop8PpU+Pw6LMvdGFTKBLL2rgZ85Bfnbvm1pi0yay9g07RR3xiYEZxMD8R372vDM0+chBDIZoIlgHCNF1Iir954tnMwMZp0s3LBG31dl2rk8HS5QWAw7IGSMJFKWHAcA/WNoTnHReeucTHWW0rwOD1wHR9JwnYcQAjEo+ls7e2Rly6ivashe8xEzEAgNHtv4t6eETz//TMwTXsqQ6pNvRc398FkvkH29Cy9ogjoHg2ariKZNGfcH3B/Tt862ofzUxsWVU3B7n3rsWl7U8lZYV1XURPxwwGjYCpMCHeDsF1k+mE1Yt8UIiqbQrWkuYFyy7qavEA5nbYgBObVw7eUll+FjlOshGD6c9Q3Bt1s8lRWOBDUIRSBQLBwdi5zDp5+7ERJz7MUpmd+A0EPdI+KQNCb9yGhlHMRjvjzBmXkqq0PlNRq74UfnoWVtqcGTJh44Ydns/XHhdbsOBKQQCKWhqoKKELAcRyMDsdx7OVLOHNyEKrqtgzLBKRbr0azbd4ym9gyZQiWZSMWdTNgHq+GseE4nn7sRHbdre2RGT2RCwXM892omHv1JBDQoeoqYpMGbtvTOuvxh65FceSli4hNuvXyjS0h7D/UWXJ9p6II+APuez6fXsS0eilT+yVWEgbERFRxigXK73ZfxchQbN61nR/65HbU1l/CGy9fzv+GAD7+6Z0l1CHnl3bMFkDvP9Q5o9NEqUH7fJ5nsZXa6quUNbqbwuJTnQ9uPNbjVbDxlsY5M6WvvXgB6ZSZHcghpUQ6NbP+OFuzPbWBUUqZfb5MRjSTyTrxxhUEQm4ZSqb+3EyncfxIH8IR98NKLJo/aEA6ABSJZMKCYbgbBVP9E9BUASNl4mr/OAJBD/wBfc6M73xbqWWuHJx++xoS8TQcw8Zte1pn9Au2LQdvH7uCM29fA+AGtrftbcUtt64pqTWaEIDu0eD3ux/caPl1dDbCrsLA8tjLlxEMedG1pRmA+7OXaUCS+4G5mjAgJqKq0d7VgDv3b1jwaOI9BzbkTS/7yfdP4fzpYfzwuychhMCmbY1TvXLzn7PUwQ/zue9iPvZmzScLPtca27sasGP3OnQf7cvWbYdqvLj3I5tLypROjCWnguH8AG16/bGuqxgfTeQEzje+Z9kOblz1l4DlQDoOTNMdAQ3cuH+mvGI20gEs04acipUVxc1E26Z0p8IZtptNnyPjW+r5zdXaUYf6pmDB3sKjQ3Eceeli9rzUNQZw96GNiNSXdkVB1RT4/R7oHm6aK6fLF4ezXUCqiSMlxkcT6HnvOgBg87YW6N7qDIQz5gyIf+u3fgt/+7d/m3fbL//yL+Pxxx9fskURES21n3w/f0CElHLqz6dmDYpLDUxvpqXYYrYj6+0ZwWsvXsgGTLX1Aew/1DnnJfq5stNzrbG3ZwRnTg4iVOPNHiudsvDaixcwNpKAqikIhjzZSWezZUqnt6nL/XOm5GJ0OJH57oyAeLYSWHMqOJ8e/FmmPeM2VZ2qj5SAm/ZyO3/kPoGUyAuki2V855f9z/QWTs8aqDqOg3e7r+Ld41enzguwY/c67Lhj7Y02hUUIIeDza9k6dQbDtBCKIgp2OalWBQPif/2v/zUuXryIvr4+/MIv/EL2dsuySvpLR0RUyc6fHi54+4c+ucyLWWSZOtxM6YGUEqMjcbz4zFnc97FbZgS0i5mdnp4Flo5EMmkibbjBoG07iE4aCNe4tbnTM6W19QGMjsSzQXBmc2LdVP3x4efPw57aVJmx2EGdlDIvw6woM4N0AFBzBq4Uy/iWen6llEgmTKQLtLOaGE3itZcuYGzqw0BNrQ/779uIhqZgSa9L11X4Ax4oKssj6ObYlrvReSUpGBD/wR/8Aa5cuYIvf/nL+PKXv5y9XVVVbN68eVkWR0S0VApN9ip0ezXpPtoPK21nSw8ygaVhFL6sv1jZ6en1som4O2DCcSRCNZ7s9Lp4LA2hiBmZ0v2HOvHiM2dhGDZsx4GiKPD7NOw/1JkNtlOJxau5lNIdvS2nDpmb+fIFNJhpB47tuBslFeQFxR6vCillSfXec51f23KQiM9evuE4EmffuYa337iSXdvW29bgtj2tJQUluZvmiBaDmXaqtla4kIIBcVtbG9ra2vDss88yI0xEVaOcQxXKrbdnBD964iSu9o1nAz01Z4OZ7ThL3sZter1spv2ZoirZy/TJuDnVa3pm+7P2rgbc97FbZn0PM23fbMvJC2LzuBUON/6YU06hqm6wO9XuOe97mq4gUuvH+GgCmqYgEHLb36UNC5PjKUACti3hZowFurY2YuR6PJutra0PLPCMFS+RiE6kcOSlixgejAEAQmEv9h3qRPPa8JxH5qY5WgqOI2Hbzor7gDVnDfELL7yAP/3TP8Xo6OjULl73stHx48eXY31ERCVbqqEK1SDz2j0eFaqmwDIdSAdwhIQylSFWFGXJ27hNr5fNjB72B9xfN16fDkVVZrR0y1Uom5oJtlXNnWIoVeS1d3N7VWtIxG50jMgNeB1H5gfMQsAf0KBqKg7evwntXQ341jeOwOvLH1WcubuiuF0rNI+K2voArg1EEa71ZeuC5/uzVqxEQkqJ86eH0H2kLzsAYdP2Jty+b31JmTlumqOlYqbdkiVdX1nJ0jkD4j/90z/FF77wBWzdupWzzImoos233+tCVWIWOvPaPR4NwZAHE1NZTceWgOLW4fp92pK3cZteL1tb58fkRBKJmInYZDobUN7zga55Hbe3ZwRG0sTEaDKb2RXCzYJ7vBrShjU1XU+HbTswkm6Q6fFq6Oiqw+hQAqPDcQDu41RNgaYrqK0P5r1/0zPcibgJRQCqrqJ2qoODadp5rdyA+f+sFSuRiMcMvP6zS7h2ZRIA4A/q2HdvJ9a2RWbcdzpumqOlZppTAfFqyxCHw2F86EMfWo61EBHdlPn2e12ISs1C5752j1dDpNaH6EQK7vA2gboiXSZu1mwfEDLZ396ekWxNsISEhMB8r97nnvNwxOtOL5za1KPrKuoag2htj+DC2eFsCUN9440R2ZnHR+r98Pl0TE4kYaRsCMxcyMyOEG4tdibDDbg/U2bagqblD1wp7WetcImElBKXzo3gzVd7s1m4DZsbcOf72rNdOYrhpjlaDjcyxKssIL711lvxk5/8hEExEVW8hfR7na/lykLP143X7v7Z49VQU+cvWpqwGOb6gNB9tB8en4Zg+EbwaJqln6/ZxinXNwZgmnbea8u0e5uthCH3PTNSFlJJC5ASpom89WLqvmbagmFj6jEabNtCdMLA5LgxVZerQPe4HTLm87NWrEQilTTxxs8vof/SOADA69Nw18ENaNtQN+c54qY5Wk7JhDs+3OvXy7ySxVUwIN69e7e7CcO28Z3vfAcejweaprGGmIgq1nz6vc7oXZtzezHLkYVeiMxrX8ho65sx1weEmzlfmWDbNC13FLPtZCfKebxa3jFy15E2LCTiJizLxvPfPwNVFQiGPQDccoRMWzXLdDAx6h7jx0+dgqar8Pk1hMLe7PmrDXtwtW8y+zxSAmnDgaI4iI478AU0+AN63vmenjG/Y/96rGuvRSKRztYD5+q7OIo3fn45O6ChbUMt9r5/A3xzBBxCAF6vBq9fZ0kjLZvYZAqapsDnX1mz3Qq+mh/84AfLuQ4iops2n3669Y1BjAzFZ729mGJZ6HLWFmde+0JHWy/UXAHvzWTtM0GupqlwprpVQLrjlBU1f4NgZh1pw8LkhAE51Z4sbVgQCqCoAoGgJ7vZMCPzocgy3fZqHo8CoavZwD43GM7lOEAgpCIZN5GMmxACiNT5cf1qFGdODmYz5rZt4/iRPsRjBtZMqwFOGxaOvXIZl8+PAnBrMvfc04GOTfVzBrhuQMJNc7T8YhMGQjXeFfchrGBA3NraCgB46qmnZnzP7/cjlUqhq2t+myKIiG5Gpq1YbsAHAEdeuoixkQQcx53cVdcQwMEPb84LBqcHqxtvaUR0MoW0cWPIg8erYv+hzqJrKJSFbm2PlL22+GZHWy/EXAHv/Ka05csEuYGgjuikkY1eZztGZh2xaDobDGdJIBFLQ/eoRftMOw4wOW5A91jwB7Q5A01dV5GQ5lQlssDkeApvvHx5qqWbQKjGCxg2TCuFd7uv5gXEA30TeP1nF7OXn9e01WDfvZ0IBD1Fn5Ob5qicHEciFk2jtWPuDZ7VZs5899NPP4233noL+/fvh6qqeO2117B+/XpMTk7it3/7t/Erv/Iry7FOIlqhSs2qZi6fSymRiBqIThgY6B2fcT8pgdHhBH743ZPQPQrM9MxL1IUemzZsvPDDM6hvDKG1PYIrvRPZTGc8asCZOpTXryEY9MBIWdk1FyodeO3FCyVnjSuxe0UxvT0jSCXSGB9Nur3JhDu9zeu90UUik7l+7cULs/bsnf6aM+d9bDiOVNKt3c0koiRuBIDxSQM/+od3IQSywypk9n9yCLfGVkogEPRifGTuUo3c0oxiJsZS2edVlBujnPWpTh/JhIlU0g14bcvBQO843u2+ivGRBKyc0olwxIstO5rnDIa5aY7KLRFLQ0qJcMRX7qUsujkDYiEEnnjiiWw2uK+vD1/72tfwrW99Cw8//DADYiJasPl0bOg+2g/bspGMmyVnxWYLhueSSlgYHpzEQN+4O7XMnvlkRtKCmbZQVx9EdCKJ7qP9GLo2mR3eoE5t/pISmJg0EJEy+/qe/d5JOHambZjAmrYwhFAwNhxHOm1DVd2BE7FoOjtgI0NVBe64ux17DmyY9+tabLOOUZbuxrHpCVoAMC1nxoa3rdPKC8ZH47jaP55to5Z57bO93xJy9sEcM+8Ix3GHaTz48C48+f8ex/XBaNHHZnonO4571SD3KkL2PorIy0QLIQAhEQx5oWkKJsdTeS3VbMvB0Z9dhGFYec/tD2iAAN58tRdCCKxrr53xXO6mOR26Z2XVbFL1iU66HwJDNd457ll95vzbNTQ0lFcasX79egwODiIUCkFVuaOViBZuPh0bohNJmIa9LJeI04YbscwWDGc4NjA+lkRdgx8TY4ls8K2qArZlY3L8RhAlHXczciJmwM5pMCClxNW+SSiqO/DBthzY1tQoYXcoWh7blnjj5csAMGtQPFtJyVJlmHPHKKvKjfHQiuputsl9Dwu9z9N7+ZppBwJAOmW5H0aELPx+z+PnQEo3K93bM4Jo1Jg1GBZTMwaEEHCmXgcgEQh5oOk2kvH8NmmKAHLDZFVTEAp4YaZtTIzNzELbloRt3XjzM1lv03TgC3hgwcbpE9dmBMQerwafX4fCSXNUASbHU1Mf+FdWhwkAmHPMSCQSwXe+8x3Ytg3LsvCd73wHtbW1uHjxIhxn/tkXIqKM6EQSmpb/z1ChDgThiB9WkQC1HDJdd9KGfeOyvgSm/9M4MZZCPJbOBtrTObacGnGcOTCKBnzdR/tm3JbJ2EYnU3nZ9t6ekfm/sBJk3rvcrgluZyJnxntY6H12e/neuN22nKnAGtmvuffPNa8PRgLYf6gT3Uf7oagiG/xOuwvCNV40NAXR0BREqMaL2no/bFvC41XR0ByEUNxAVlGn1jb1fvn8OkJhL+KxNOKx4qUWqqZkyziEQPb8aaqCeDSVvZ+iCATDXgSCDIapMkgpMToUR31jYMVtqANKCIgfffRRfO9738Ott96KXbt24Qc/+AEeffRR/PjHP8bnPve55VgjEa1Q4Yg/r5YSKNyBYPe+tooLDFTV/SfUth03wFFQcNNWYo5AyS03mPq/cwR7ljkzsM6dVCeEm41VVYHuo/1zvo6FyLx3ak6gKqWEqioz3sNC73Oml2+GqilTHzKQ/Qpgxp8zt5WqviGQbQGXTrot3DRNyf4HAQhFgaK6z2+aNmxb4u77NuLg/ZsQCHphpCzougZ/UHeD5uYgIrU+hCM+6B4Vo6OJ7ASvQjRdQTjillRkfk4y58+yHQTDPggB+Hyae1xdBWYZHkJUDtEJA2nDRkNz8U481WrOkomOjg78/d//PSYnJ6EoCkKhEADgd37nd5Z8cUS0ss2nA0F7VwPu2L8eb756eUYGtlwCQfeyoaoqsC0bmqa6daNOkUv9BeTev1CP5GLGhuMwTTvbVxfCzTpmNnXdrNk2v505OQjdoyCVdCAdBxKAz6vOeA8Lvc+79rbizMnB7O26x50M55lqn5Yhp2qzc2PDUs+Px6uga2sTnn7sBBKxNGxbQiiAOhVRSynd59ZVBILeWTc0Zr7e6Itswx/Q4Qv4MTGWggIg4NcQDPvQsi6MS+dG3K4YU4TitlRLGzaMlDtiOh5zy0O8XhWWZcNx3PMRDPnYSo0q0sj1GCDmbk1ZrQoGxI8++ii++MUvFgx8/+qv/mrJFkVEq8N8+gYDbt3s5q0tePapk5gYS8Jx3A1siiLgODJ7+Tlz22yboUqRe1m8YB2xmNpYJd1L6gnLdgMZQ2ZLO5Sp5Ol8A/i5YqFQ+EY3gt6eERx56Ub7rtyDWNLdGNbbM5IX1M23k8Vsmx/PnBzE1p0tuNI7gdHhGJypyW6RusCMYxZ7n5vXhrO319YHseP2G10mbFvCsiw4NtwAX1MghMiOjp1LqMaLbbetyW7cC4Y9mBx3a4gdISGmzrXPpyFSF5hzol/mdZx++xqSiTSstI3d+9qydb+OI3Hm7Wt5ZRM+vwZfwB2coShpWGkHHq+C2lo/JCQs00a4xofb72pDx6ZG961jMEwVaOR6HJFa/4qdiFgwIL777rsBAB/5yEeWbTFEtPq0dzXMa+PXpm3N+JXGvTNuny3Qe+3FCxgfS2aDWrc/LCCEggce2o7jR3rzBi8IBVjbVpvNbnYf7ce1/glI6WZ8dY8Kf0CDoipQhIAv4EF0IolIXQDbd63NBnKW5QASUBRlaqMZ4A/o8Ho1jI8mZg2QxVTLMp9fQ01dAGPDcSST5qzRsW1LPP3YiWyWNhFLz5pVdgeySTz75LtoaY1k7z/fXsmFNsVd6Z0oeSx0ofd5ttv35Pz/px87kdfneHw0OetrFVN1uRACLetqsut6+rETN9auqwiF3T6qji2h6Qp8Pvf9LHWiX9uGetQ3BWeUgEQnUnjtxQsYuR7PricU9kDL6Qzh9+tIKxY++fDt2dvYSo2qQSphIh5LY+MtjeVeypIpGBB/4AMfAAD80i/9Eq5du4azZ8/iwIEDuH79OtauXbtsCySi1Wc+vYm7j/ZnW5Z5fSoCQU820Nu6swXHj/RBUWQ2OJUAfAG3C8Iv/truouto72rIy47mXu6/5/6ugoHcsZcv4fhrfbAd97I4hEAilobPp+PO93Xgwtnh7JQ8RRUIhT3w+nRIKRGLupfaNV1BfSAA07Snen+6l/cDIQ/8AR2JuIE3X+3N9uAtxLHd2ttE3MDxI31uxtLnZpiLdfXIVc5x1dOf27Kc2duwScBx/ycvuJ3++HDED6G474c/oM+rG0fasJBMmHl14lJKnHv3Ot462p9ts7Z5RzPGhxNIGflZ+0ydMMBWalRdhq/HAGDF1g8DJdQQ/+xnP8MjjzwCRVHw93//9/jYxz6Gr3/96/jQhz60HOsjolWm1N7EufczTRu25SARc5CMm9B0FbpHwZXeCXg8KkzzxvAGIQSScROpxEReKUEhpZR1zBbAP/DQdncYxUgCiiIQinhgOw7OnBzEwfs3ofto/4wJb4l4GqbhYHw0DtOwEbPTUBS39/CV3ons/Y2UiXjMnDMYzpDSbf3mOBJGysobAFFKYHsz45dv1vTnnjGFLod03DKJ3PdmtrWrmoKW1kjJ2W3HkUjGTZimlXd7PGbg6M8uYfCKe5UhEPRg36FOrGmtwUDvOI69chkWbGiqAst24NgS229fw1ZqVHWuD0QRDHvmHB5TzebsMvHf//t/x+OPP46amho0Nzfjsccew3/7b/9tOdZGRKtQ7uV5IQQc20EylsazT76Lpx87gfOnr+fdz7GdvK4LUgJm2kYibmJ0OIa6RreFVrbuNtPgV4iS25K1dzVg9742hCP+7CCOzOMygXkibuQF8ADgC3gQqfejvjEAr0/P6/ywe18bbNvtaJDpbGCkbGi6QCppucMkBCAdB8df68PYcByapsBImYhF03ntzkoxOZGCpoq8YRFAaYHtbGstdfzyzZr+3MUoCuCZVt84/fHptFXy2oUATNNGbDKVFwxLKXHh7BCe+e7JbDDcuaURH/0nO7CmtQYAsK69Fnvu6YDf70HasOD3e3D3vZ3YtL2FrdSoqsSjBqKTRvZne6WaM0PsOA6am5uzf962bduK7D9HRPNTqKxhrnKHzCaw8VF3jG+kzo+779uYvU/uJe5M8CfgXg5PxA088+RJ3PPBjTdGKhdqZyYB07CzHQ6SMdPdRDXVJ1hAIhFL48hLFxe0qSyTtS42XKRYqcFsmed41ICRyt8wpiiAIx3YtluukUxYC2rEJR1AD6hwkm6QN1dXj1zz3fy4mHKfe2w4XvS+wbB3Ruuz6WtvaAphx+61Ja09GTdhGPmTEZOJNF4/fAkDvRMA3E1ze9+/AW0b6mY8fl17Lda110IIwOvV4PXrq+73Z7WNI19uHZ2NMz6kLje39r7w948evgihCOy/t6vgQI7cKzDVas6A2O/3Y2BgIPuX+NixY/B6V97IPiIqXaEAcfoo3unlDr09I3jxmbNIJt3gVAiB8dEEXvjhWXzw47egvash7xJ3bvCnaSp0XYXjSHQf7Uc44sf1gcmiWUPbltmA6Nkn34XtyKnNbmKqM4WD0eH4nKUTCw165yo1yN1Q1tszgmeeODnjuR3HDYoVFVNdFxwsNLmoairuuHsdrvROzDtAme/mx8WUee6nHzuBZO94wfupmoJA0DtrEJYpj2hqCmNoKFr0+Rzb/fA1feNc7//P3r8HyXHd993w95y+zfTM7OwN1wUWdxIASYGkQAIUKRCURNmSYsqPHsdOGMcpx2/JpfdNXpcrcZLyqyqXq+w49bxOucpJlZKUU8kby6zHkiyLdCjRoiiQFImLAAKCCOJCcnFZYAEs9jo7M93Tt3PeP850b8/9srvYxeJ8/iC4M9Pdp3tmd779O9/z/Y1M4+Q7V6P0ks3b+/DEM1tgJBp37VJUimRSvy+j1DppzX6/cu3KJJyS3/qFS8iuPeugGfUFbRAwfHzxDrbuHEBPX+Iuj+zu0lIQ/6t/9a/wz//5P8fExAR+7dd+DVevXsV/+k//6W6MTSKRrFDabcVbvWjrzIkbcJwAlJCKSpnvzr8mnlkrbAHC3hBm/mqagnzOxqHP78L3v3OuLZExvGMA64ayGL85B5S7ywEoR2GRBS0qayZ6m+UsV4s2x/ZEjFu9mDdC0D+YxmMHNuH1Vy7C83woVV3iWkEIcOj5nRjeMVCR4nAvkc/Z0HQatcmOo6jihmFoOLsAEcbhOkHNwjmn5OPUO9cwenkaAKAbCvY/vQVbdjbeHyGAkdCQSIrP7WoRw/VuNoD6swedtGaXrEyuX5mBXfTw4CPrlnsoS05DQVwoFJBOp/H444/jW9/6Fs6cOQPGGPbt24f+/v67OUaJRLLCaCQQRSteo+bx0N6Qz9lgjEGhlcsXGOPRayqmuGdLAKFIZ3Tohjie5wXIZJMY3jGA/sFUlNbQiscObML3v3MOtJwdDIhEMzOlLWhRWTPR28hqAKBGtIUNNerGp7H5/T3/wu5oWxYwzM3GGkAQIJM1Kh4L2blnzT0vQjLZJBSVwio4NW2w120UcXlnTtxA4AcoWQxBuZOeptOWIowzDsvy4LmV1bqxa7P46dtXowYnG4ezePLQViTNxouLVJUiaeoVXfxWA/Uqvm+8egmUAHpCrbkBWc50EsnicPHnt5E0NQxvX/26r6EgPnjwID75yU/i8OHDOHz4MJ599tm7OS6JRLKCaSQQw1a8jSwCYjuv3IZ3vkJMKalY2BVOkYdfwGEDDJHvSzA0nMXLL51FsVgr/OLEdffwjgH0DZiYmy1FDT3CTGEz1dwGFopez3XhlHwEAQMBge8GePuHH0ULAJ2SX7fLWbUQq8jGBcqL7UQSgUIJOIRAC4Vx/2CqYn9xkb1xuLfieD/4zjmUbA+eK+LJCAE0naJYWJyOdctJ+D6YaQM9vfM3H2HlGwDeePUiXCcoW3IAFjCUbIbpyULdfRICuG4Au+hWpHZ4boDTx0Zx+dIkABGD9/hTw9j+4GBDHzAhBMmkBs1QO2otfa9Qr+JbyDngEP7t8LGwCryc6SSShWMVXVz7eAqPfHIoalO/mmkoiN9++20cP34cx44dw1/91V+BEIJnn30Whw8fxpNPPgldX73RGxKJpDnttuKtXrT12IFN8x7isijmnEMz1IbtmqsrrA/sWYv3ToxCUQjSGQO+F8D36s9Hhy17w2137F4TeZw7XVS2+1Yep49fF+kPlCDwOayii1TGAOOiS96hz+9qqwpbr3KWTGnI55z5mwUCgIhmDgcPb6sZT6PjzE5b6OlNVog2zvmqqMqF78PZk2PwXB+armLfE0MV14IFELaY2N0QZ0w8Xod6C+fGb87h+JtXYJUXbK7dmMGBZ7chnWl843Q/NNio97lljINXdY8Jq8CHPr+r7dbskpXHh+fGwRjH7n3rl3sod4WGgri/vx9f/OIX8cUvfhEAMDY2hqNHj+JP//RPce3aNZw5c+auDVIikaws2m3FW69a+twXH6xImejtNytSJuodK55e8c4bH4NDdAHz3KCh0NmwuQe3b+YbthvudFHZ2GgOmawBTVMwO20DipiyL9k+evuTaMcbGZ6DVXBhFz2YaS1akKWoFP2DJgAgN2ODEIK+fhMHD2/ryOrQ229idsZalVW50ZEpXDw3DjOtQVUN+D7D+6dv4vKlSVhFF0HA4Tqh5YFH9hgO0VY6TuAzWFZlfJ3vBzh74gY+/EBE+ykKxb4Dm/DAQ2sbVoXvpwYb9Sq+lBLwqoiC8PO2nOkkkoXBOceFs7ewfqgH/YOrtxlHnJa/wTdu3MAbb7yBd999F+fPn8dDDz2EX/3VX237AIVCAf/oH/0j/Jf/8l+wadMmHD16FH/yJ38Cx3HwhS98Ab/7u78LALhw4QK+/vWvo1AoYP/+/fjDP/xDqOrq/wMjkdyrdNKKt5Pn6xH3LjLOwRlHbqbUdJtb1+eiLnBEU7pqNxwnXh0LAgZarm6HgqqVNzJ+DqmMjvycg8KcA86FGG7U/a5dQrGdm7ZQKvlR177VVJWrnrJnAYNb8uA6vqisx14bVi5VVUHCUJDtEzcbnHG4JR+27VZUhSfHCzj+5mXkc8KGM7A2hYOHt6Ont/HKel1XkTDvn0zhejNDqq6AksZRfsuZTiLpnts35jA7beO5Lw4v91DuGg0V55/92Z/hxz/+MYrFIj796U/jxRdfxMGDB5FItB+7cfbsWXz961/H1atXAQClUgm///u/j7/8y7/Ehg0b8Nu//dt466238Oyzz+L3fu/38Ed/9Ed49NFH8fu///v41re+hRdffHHBJyiRSO594kKIEgK/zSX7LOAo5Odziu2ih9y0jZdfOttxpSqTTSI3Y8F1ArCAg4GDUhFlBrSuwlaIubLnuJB3YRVcrBvKLqhyFhfbmWwCICXYRQ920QOlBNm+JD78YFwkVMSsBvuf2drV8dod02JXBqun7G3LByEEQcChKATzSyUFhIibjyDgePzgJnDOkcuVYFnzn4kgYDj33k1cOHsLvBzJ9/AnN2LPvg0NhS6lBMmUDk2jaBrgusqoV/F9+jM7AMgq8Grjwtlb0HQFO3avWe6h3DUaCuL/+l//Kz7zmc/gq1/9Kh599NGudv6tb30Lf/AHf4B/82/+DQDg5z//ObZs2YLNmzcDAH7pl34Jr732Gnbu3IlSqRQd5ytf+Qr+/M//XApiiUQCoFIIVfsVW0EgmneIBnViMV03eahDw1ncujEr5A8BUG7wwbwAVtEFVWjTKmy1mNMNFX26Aqfkd1WxBuZF5/hYDoQQmGnR+EFVKTg4FIWidyCJ/JyD6fPCoqIoBL7n49TRawCwJKJ4qfJnq6fso1i+8n9ZVWQdCzgUSvHp57dj3VAW+VwJvb3z3uKZKQvHj1wWFhgAvQNJHDy8HX0DZt3jiwYbGoykuqIbbCz0ZqTZ9s1mhiSrA6fkY+TiBB54eB20qs6Pq5mGgvi1117DkSNH8B//43/E1atX8fTTT+Pw4cN45plnkE6n29r5H//xH1f8fOfOHaxZM3+3sXbtWoyPj9c8vmbNGoyPj3d6LhKJZJUSF0K8w6ZOnHOwoJw4QQhSab2rPNSx0RySpiZC9P2Y8OLCR/z4wc1N99XtivtG4uTUO1dx+th1MM7AGUCoqIYrigKrKBqfBIwhN1OC584brUk5A5oxhrMnxyJBvJgV3aXKn62esqeUICgnhsS9wISUu29Rgmx/EoNr0yjm5xNJGOO48LNbOHf6JhjjIATYs28DHv7kxoar6VWVInEPNNhY6M3IxxfuyGYa9zkfX7gD32fYs2/Dcg/lrtJQEG/duhW/+Zu/id/8zd/E3Nwc3n77bbz++uv4kz/5E2zfvh3/43/8j44PVq+jVLjKvN7jnTAw0J5Iv1usWZNZ7iGsaOT1aY68PpUc/vwD+P53zwlfaAdqJN1joGR7IvtYpcj0JOYXsSkiz7bda20VHPRkk5j2igAvL9iC8DP39icxcbvQdF/xc9A0RbQY5gSHP/9Aw+0+vnAH775xGYpKkEobcEoe3n3jMopzLs4cvx5Vgf2yKObgmJkSleAwzzgeJQaInxWFglACzwuwZk2m4XGyWRM796xt6/pUX6tEVZviTq93PdasySCbNXH0zRHMTlvoX2MiN2PD96rukoiwsqzfKISwaRowTZEQMTNVxJFXL+HOLdGtrrc/ic/+gz1Yv7Gn4XGNhAYzpbflFf74wp1ofL39Jj51eEdX17BbfvCdc9B1BXp5kZ+mAa7r44Mzt/DJg1uXfHtJZ6RSBrRlXi9lmjp6++dnRUZHpjGwJoW9j2xY0TMhi01b78LNmzcxPT0N13WhaRoUpbsS+rp16zA5ORn9fOfOHaxdu7bm8YmJCaxd29kfkKmpQs0f/uWindag9zPy+jRHXp9asoNJPP3Z7Thz4kbb1TlFJVA1iiTVoakUrGyX8H1RLfW8AGbaaPtam2lDtPP1WCQ2OeegCgUhwNREoem+4ucQr8JmB5MNt3vzhx8ChINSKhbyUYKAMBx98zICxkULZw5QIhYbxgl/rP4641zcVHDGoWkqJibyDY/z5g8/RHaw83SK8FrFq+GdXu9GZAeTeOixDThz4gamJwuia13VSSaSGgbWpFAoulAVBdPTRYxdm8HpY9dRmJuvFD/w8Drse3IIqipeU00YpcZKLuySW/M8UFlZ1zQFJduDnlChahSzMxb+7js/r8hJDvnRK+fx8YXJKGZv555BfO6FvQu6NoD4HBoJNfqcA2jr8xkyO21B1WjX298PLGbBolh0lr11s2W58ALxfltFF9dGpvD4U8OYbJDdfS/T7L1rmLT8v/7X/8K/+Bf/AgcOHMDv/M7vYHR0FL/yK7+CV199FX/xF3/R1UD27duHK1eu4Nq1awiCAP/7f/9vHDp0CENDQzAMA++99x4A4Hvf+x4OHTrU1TEkEsnqZHjHAL784j5s3TkAM63V7QJGKGAkVSgKhaYrMFMGDj2/E089tx1BwOF5ATgX/3aavPDYgU0IAh5VCcM4LzOlLcj60Ix8zoZadZ5RR8BYjFizqrkQXPGfhVWDMWBgrYmXXzqLW9dnUZxz4JTmm3cspKNYeK0Wcr0bEVoCrKKDwJv3EJtpHYpK0JNNIJlUkZ8rwbF97Nm3HiMXJ/DOj0YiMUwIkEiq2LCpB6paW+ChVFhrUhmjaa5wfCxGQsXcbAm27YEzIXJFwxXRGjzOj145j4/OT8x3TOQcH52fwI9eOb/g65PJJkUDmxidxO719psL2l5yb3Plw0lwjvtqMV1IwwrxT37yExw6dAi/93u/hy1btizKwQzDwH/4D/8B//Jf/ks4joNnn30Wv/iLvwgA+NM//VN8/etfR7FYxN69e/Ebv/Ebi3JMiUSyuvjU4R34u+/8HJmsChYwFAseAp9B1Sg0TUSNhSIsjq4pUfZxti/ZccRZuML+2JHLmJmyQBWKdFoDoaSl2OvW19msI6CqEZRsH+C8ompOKcqd7sTPQSAq44QgshYQIirot8fmYKb0cuwbixI5jEStyO9E0C9l/mzcnxyUF9Gxcv5wti8Jp+RjbtLF2g0Z7HtiHayih1PvXI2uUSKpIpHUEDCGC2dvY+Nwb8X+dUM83449oiYGjonoN6voRa3GWcAwPpbDN79xPLoOH1+YrLu/jy9M4nMvdHddQpq1Em+H8PdLNtO4Pxm5OIFsfxL9a+6P7OE4hHdiyFvBSMvEvYO8Ps2R16c5a9Zk8N7xq3XFVlx4hl/mJdsHJRDT2Gr9dr+d0mm19+WXzta3EKSMpgkT9c4nCDh2P7wOF8+NI/ADeE4Ar9pDWwWh5XUZnCPdY8BIaJidthH4ARRVgZnSkJ9zRAqHQpHqMaLjjI3mhDXBYUiYKpKmVnENgbsbufU///woPC8AY1z8zeeAmdKhGyqKhRI8V1ha+tekwBnH9OS8pzqVMZBMavADBnAhol948VEAoipspnSoHUSpffMbx2Ek5hMnZqdtsICBAxhYk4Lr+JjLlaBQkfYRXrf8bOMM7a/9u2cXcnkALGyBZLPfL4lgMS0Tx38ysuyWiV171kEzFNiWi//ffzqGx54axoFD21pveA/S7L2TnS8kEsk9R6Pop3rpBoWcAw4hhsLHFpp40GmzgXotb9uxJLTbEdAvN/hoRLjgLpM1okWFgc/KGb4MuqEi0yPi6XyfwUwZGBrORm2uA4+BMYZi3oVVdKGqCnRDwbEjl+H5rKtEgk5E2+jIFI6V49HCwgdVCBRKke4xEPgMuRkrugacA1MTxSiS2Eio0HRaESHlBwypTGJBUWrVFfykqaIw54BQCs5F6gcBoji88LPXiMVawLTQZhiymcb9SWSXePD+s0sAUhBLJJJVRD3hGXYsAwDX8WEVPfh+gPxsCaMjU3fli7/byDWgvY6A//3P3oXn+nVFsaIQUEpEukTMjyyiyoKosYhuqCCURFXrl186G91c+AGb3zcXNgCrGMAueujpS3Qcr9aJhWR0ZApvvHoJbskDixXCdV1Uq4sFN9auOQYXVeFMNoHHDm7GqXevwfcDKJTA90WFed+TQ0hnEnX96O1QEwOnUCiqiGWbulME50IkhzchAMpxcag4l5D1m2S6jGT5GBvNIZUxMLD2/rNLAFIQSySSVUQ94Sni0Qhcx0d+zgGBSGUghNy1fNWF+jpbQRWAUAIe1C8T+wFH/4AJ1wuiMWi6SBLQDQWc88heolCKb37jOKyCCzPMbI7HLvNyJZNxMM6Rm7Ghlm0XuqG2VflullMcPh9WjkuWC98NytVTsUAwnUmAUCA3Yze0yolFlRp8L8DG4V7sB3Dh7G3YlotMNoFHn9yELTsHO7zSlVRX8DVNEQkkDNF4bcuHbviRp9j3GVRNBWOsIi5O1SgI6U6YSySLweTtPNauT99XUWtxpCCWSCSrhnrCU9UVUAKxYEyoOWGhSGug5QSApRbES7nIDAD6B9OYnS7CLnqVVWJSjoajFAcPC09gOIbe/hQeejSLsdFcJOYoEc08RNXWQzHvCIFXdbyAzVeMKSFgAUN+zkGmRwjzVpXvRhaSmcliTeU4V+4iRymBplOk0gk4jgd7bj4RI+wcGGIkFCRTOoKyLSJ6GYFIj0gboA0acHRKvFL/139xshzLJwYUXqPcTAk9veKYQcBBFaCnN1khPDjnXad6SCQLxXV8zE7b2PXQuuUeyrIhBbFEIlk11BOeT39mBwDgte9+AICAKjSaxr6bImQpfZnhjYCmB3Cd2Fw8BwilFV30qsewv/zvyy+dBeM8qtqmMzrmciVYBU/cXMQSKkLxSRXRKS78OTdbgqZRKJTif/750Uj89Q+mK24AGllIgoDDqKocU4WCBQyJpHjP5nKlaCyR9SAuhpMqTFMsnGMBx55963FzdBY/P3UD6Z4EKCGYGM/j9s25rhZWNvM+52bsSORWWyLyOQf9gyk8/ZltOHPiRtcWGolkKZi6I3K416xbWU3O7iZSEEskklVFI+G5bii7akXI8I4B7L6Vx+lj16OmISCAQikef2pz1J4ZaCzoqqu2YqGdgWLeha6r4FxUXs2UjqkJC4RwJBKqyN2N+Yt9j6GQL8F1A5HV4BPMThcr7CmNLCRUQU3ucqZHj0RvbsZCEFuTFopORaV49MAmpNI6Lv58HMV8CalMAnv2rcfG4V4cf/MyUmkDnhNULG7rdHagHe8zr4rBC8n2J2Ekteh1S2mhkUg6ZeK2SDYaXC8FsUQikaxqltrHezdoVp0cG80h02sgmdQruvGNjeaiKnAzQVfXf61QrBvK4ssv7qvpyKbpFK4TCD+2SsC5iEEjBOJxKnzanHN4rkiyCAVoIwtJdeVU0xUkTA2O5cNxvNDxAmC+E5+mUTx6cHPUHnloS9/8+ClB0tSQz4mYM0JI1Iijm8YjzbzPwzsG0NtvYnqqWCOIKSUVx1tqC41E0ikT4wWYKWEnul+RglgikdwX3OsipFV1sp1ot2aCrtUNQ7zyHo7F9z1QMt+1D4SAkHKDipg/NvBZzVgaVfLfePUSCnOOaJ7hM9i2hyc/vRXrNvbg/ffGcOHs7ei1hAKKRnH+Z7dgpvSKJhvxBhu6oS3K7ECra3zw8Db8/ffOw6/ySzDGYVsesn1m0/NfSH6wRLIQZqes+7IZRxwpiCUSyX3DvZyv2qo6OV/hnd+mWvQ1E3Sd3DCEr339lYvwPD9KmbCKHgI/KNs25kWxUhbY7QhQTaMwTQ2O42N21oauKcjnSvjZiRvIzcwLalp2VjglH4mkFnWdo5QgmdKhxRpsxMW+otCuW0m3E5/nN2iSYhVcHP7FBxruu9tuhpJ7my3bBhEEzRvrdAKlpN2+MhGapohYxiZtyu8HpCCWSCSSe4BW1cmh4SxOH7uOuRkbVKEwEiqoQitEXytB18kNw/COATz/wu6KTnq6z2CVo9xcNwApexw0nUYCtFkV9NyZW+gdMOGUfHAIy4RVdHH62PWKYxMSa2JR7jhXsl0kEiqMpFYTGxV6rM+eHENupgRNU7DviaGOhWarKnoYG1cPQkjT47W64ZGsTq5dmVzUTnVh1zlJ58jQQ4lEIrkHyGRF6984oZgdHZnCxXPjMJIKVFVBEHCUbB+7H15XIaYeO7AJQcDheYHw9nZZKQ0Z3jGAQ8/vhJky4JR8ZPtM7P/UFgyszZSrTgALOKyCh/xsCT/47jm89rfnMTtdrKiCjo5MgXMOx3Zh5R14boDAZ8jnHLgl4Yfu6U0gkVSgqgRxvcvLneY0TcGPv/8hrl+erhlneH3MtIZ1GzIw0xounhvH6MjUgs7XTBkVSRXNPMmtol3zObtmQWE3PmeJRNIdskIskUgkXXC3/Z7NqpNhdTGRMGAXXSF0fY5T744CAPY/szUar+8GcBrEoXV7ztXbrx2Zwmt/e65mexYAAEPJ5lBVCiOhQdOBD8/fQe+ACcYAx/UReMJzG5JMafiFrzyEt37wIeZytqiocQ5FU5BJ6fA8Bs8LkJux6toM4tXXhaRMAM2r6JlsEsWCC1anQUpvv1lni8pt2/U5S6+xZLGplzd+vyEFsUQikXRIPb/nG69eQiqlw3X9JREpzTy+b//wIxgJFcW8A6s4LyQ55zh19Bpmpy3cvpmHohCkMnqFmG53YVcnHtfjb15B0GQWmACwbR/ZfhOUAONjOTDGsXVXP069OxoJSkIBw1Dx5Ke3QlUp9uxbj1PvXkPC1KCXxW0h70DXFRipcHV8rdBtZ8HhYvDYgU1449UiHLuyQYpuKFFjlGbbtpOCIr3GkqVBKmIpiCUSiaRDqv2eLGBwSx48N0DfQLJGpFRHlhFCuhLOjaqTYXUxXlUFyl5bAB9fmES2P9HSn9pMbHXicZ2dtpqeh6JSpNI6mM8wO1dCIqHho/N38LPj1yMxrKoUvQMmHnpsQ5QesXG4FwdUiuuXZzAzVcTMpIVURoeRmF9JWE/odlJ9XQjDOwbw2S89iGNHLkcLAHv7TRw8vK3le9zuokbpNZYsBeFC2PsZKYglEomkQ6orjrblR5m74ZS857p4/ZWLoArgOQwJUwWlBLPTFjiATI+xaNW9sLpY/X1GKAGBiP1qx596/M0rsAouOOdQFAozpUEpt7derCpr0tSQNDXYlgs/YPA9Bl9hOPXONfF8SsOBQ9uwYXO28lwIoOkqdu1dhwcfXg9AdNezik7F6+oJ3cVKmWiHhSSZtLPt3ap2S+4v0j0G7tzKL/cwlhUpiCUSiaRDqiuOgS9aqSnlpg+u48MqugAIVEbAOYNteSBENKsgECK6tz+JxajuhdXF73/ng7IoF2KYEgLGGAgh8H3WtEI6OjKF6ckiCAEoFe2S83MO0hk9qljGz9kpeSjkhV/2v/1/30a2L4mnntuO4R0DyPYlMT1ZWSWmlCDdY4AqosUzVQCVq3CdAHbZ5rF11wA++alh6EblV5OiUCRNDZquVIj+dm0G8eqrVXBgpo276rtdTM/v3ap2S+4vNmzO4vKlSeRzJWSyieUezrIgUyYkEomkQ6rTGigl4ADMlJi6t4oeCETlLgh4JIKDckoEISTKHl2s6t7wjgHsf3pY5JBCpDv4PgNjwPpNmZbpEmIqnkaRZeGYiwUvEnHhPkq2h3zOiewNQcAxPWnh9VfOY3RkCk89tx0Jc97GoBsqsn1JeF4AXdfw5Ke3YN2GHuRzJQQ+g5FQ8czzO/DUc9srxDAhQCKpIZNNQNWUmgp4q9SH6td++cV9+H//fz6LL7+4766K4TdevYQ7N+dQzLu4c3MOb7x6qeOEi5DFTgqRSABgwyYxI3PrRm6ZR7J8yAqxRCKRdEi13zORVGEVPczlHKiKC89joApB0lRhWz5YwMpCUyi60JIALG51b/8zW1GyPLx/+ub8gwS4fWMOqbQORdPglOp7l/M5G8mUhmLBRVx5soBFrz0E4NiRy5jNVdoUQlyH4fibV/Crv7Ufn/3Sgzhz4gYC30c6k8Tm7X3YsDmL61emcfIn16Ls1U1be/HEp7cikdQq9qWqFElTh6I2r9us9GYrx45chlsKZwfEe++WPBw7crmrcd/rHRclK5OBtWnohoJbN3J44KF1yz2cZUEKYolEcl/T7XR2KMTChWjJlBCbflT5JdFir0LeBWcMlM63OU6Z6pJU9/JzDnoHkuCMIz/nRE2rSrYPolAc+vyupgvz0hkdtuUj8BkoJegbSFa83vMZCCXgrP4CnHBB3fCOAWza2g+r6MD3GVzHx7EfX8bVj0VlVNMVfPLpYWzdOVDRSIMQgmRSg55YOV9PC7E85GbsyCoTZ3baxssvne1qnyv9JkBy70EpwbqhHty6LivEEolEct+xGBFW8xnAOsyUDgCwii5Kti8sAoaKhM/glALouoKkqUUpE2Zq8b2ss9MWVI0iN1MCAaLFfmFr1kZ+ZREZdgm+G4AxYQNRdQVPPbe95lxVlcJzgyaj4MIbbHngnOPW9RxOvH0l8gqv39SDA4e2wUzrFVtpmoKkqYMuQwvZxYibawRjHABHuXFfVIC3io6MTpOsGDZsyuKnb19FyfZqZmzuB6Qglkgk9y2LEWFVb9V/0tTAAg4zZSCfs9Hbn1qSae16Iq6338TsjIUgYKCxqqSi0pZ+ZVqOIuXg4CCgVbo0PNekqdYVxIQSbNichVX04DrihuBnx6/j4wsTAIQN4tGDm7Fzz5qKiimlBImkVrOY7m6xWHFz9TDTOvIxi0kohgmBjE6TrCg2be3DT9++io8vTODhxzcu93DuOlIQSySS+5bFiLBqtOq/bzCFL7+4b9HGWk0jEffJA8N470QRJJYwwQEkTbWpX/nMiRvQEypSGSN6zPMqRVp4rkZCg5liFU1ADENB76CJ3Y+sg+v4uHMrj+NvXkExL8TgmvVpHDi8DZmeyhXsmq7CNFUQunxrvJuJ3k4/I9U3KZzxiqpwSHUrZxmdJllu1m7IYO3GDH524jr2ProhWqB7vyBTJiQSyX1LJpuEX05+COl0kdtyrfqv145YUQiujkzh0PM70duXLE/RE6TSOqhCm44rn7NbZhXHz9VM60hldCgKRe9AEpt3DGDvvg3oW5PG6WOjeOPvLqKYd0AVgkcPbMJn/sHuCjFMKUEqbSCV1u6KGB4dmcLLL53Fn//xG3j5pbMVKQ/Nzr2Tz0h4kxK3QhQLLoykCk1XQCkp/wtwkLb2KZHcLQghePzgMPK5Ej6+cGe5h3PXkRViiURy39Jujm0zlmvVf6PK5ey0VbHgLxxXK79yO/m21efaN5DC4/9gM3r7TXhegKk7Bfz9dz/A3GwJANA/aOLgc9uR7ZvfR9hgI5nUQO5SBSpeTU8ktRrPbrNz7+QzUrfSTADHFo1bFJUiaaoIAiXymHf7uZNIloKtuwbQN2jizPHr2LV3bc1i0NWMFMQSieS+ZbHE7HKs+m8k4nr7zZpp+0bJEnE6aXIxvGMAhACuG8AuuiiVPHxw5hbOn7kZVaUffnwD9j62ATRW/W3UYGOpqVdNDy0RAODYHnLTthhfSoOizlfT45+RmckigoCDKuLnO7fyGBvNRdd5erKAdMxy4pSEpURcEw4WMBTmHOgJDY8f3FyxrYxOk6wECCF47MBm/PjVSxgdmcaWnffPZ1IKYolEcl/TSMx2ErW1mJ3I2qWRgN26Y6CrVIRObw7sogfH8TAzZeH4kSuYmRJxa9m+JA4e3ob+NanotYQARkKLVq7fTTEMNK6mT08WomuVyRooFjwU5hz0DZh4+vkd0bmH/779+scwyikbs9NF3LoxCzOlI2mKqrPnMFjURSotRLFt+SAAqEpBqWjGQihFKqVj/zNbsf+uXgWJpD127l2Lkz+5itPHR6UglkgkkvuZTqK2uonlaiagw+emJwtgAaAoBH2DtSkVjQTsB2dudZ2K0E6lO/AZbMuF6wa4+PPbeP/UWDlWDNizbz0e+eRQRTMNTVOQSGotG2wsJZlsErkZC64TgAUMoR5nAYfnMqQzOoyEBiOhwfMCJEy95jpU2yE8l4EAcJ0AZkoX52mq4kahFIAxBs7EzUAmo0cJGpzzqCnJSiL83C1Ha2vJykJRKPYd2Ix3Xv8Yo5enMby9f7mHdFeQglgikUiq6CRqq9Frjx253DTXNvADeE6AQt7F+M05PH5wM9ZuyODt1z+GWxKiKoRNFOqK7HoC9t03RqBqzRfHdYtb8mHbLuZmSzj+5mVMjhcBAOkeAwcPb8Oa9ZnotWGDDc1QaxIV7jZDw1ncujGLsFcgL6+RIwTgjCE/5yDTI1pMN7pW1VXmwGcVLbgBcfPCOIcKAgICEI7qYvhKXDzXymMtuf/Ys28DPjh9E2+99iF+9Z/vr5lhWY3IlAmJRCKpop3EhWavDXyGmSmrpvFCWIUL/AAl2xcNMMqi7PSx6zj+5hWwgFWIYUAsymIBizyvzejtN6NUBNfxMTttY2qiCKcUVCQrdAJnDMW8g2LRwaVz4/jB33wQieFde9fiC//nQxViWNMUZHoS0BPLL4YBYGw0h6SpQVGVSAyHkVKEEBAgipBrJFir0yYUlVa04AaAYsGDqlD0DZoYWJtCJmuAknKnwruYQNIJoyNTeP2ViyjMOSjmXTglP0osaefzJlmdqCrFc196EMW8g2NHRpZ7OHcFKYglEomkik6ituq91i56oAqtiUQLK8aeE0Rd5AghoJSCcYbZaavhdLpT8tuq8n7q8A4EAYdVdDGXKyHwAxBCoGokEuXtw+G5AfJzDmZnLBz5/od4791RBD6DmdJw+IsPYP8zW6CWq+OEEJgpHamMsSzd5hohUjZ09PYnoSgEikKAcjZwEPAoSq6ZYK2O19N0Cg5AN5RI7LKAIZma7/BlJDSR61y2SZgpA4ee37liqq5hZdjzfFACsIBhbtaGU/JkLrIE6zb24NEDm3Hh7G2MXp5e7uEsOau/Bi6RSCQd0k7iQtzr6zkMCVMFpQTFggsWiInyidsFEAqoqoKkqUb2icKcU15YVjmhHoADQf0VZ77HkM85+MZ/eAvAfGMHTVex74khrN2QiTygmkoxV3QBzEd9hf7Ydruhcc5hWx6ckocrH07h9NFReJ6oXG97YACPPzVc0VlO0xQkU3rbYf7tLkSsft3QcLYinSGV1nBtZAae64NSYVngrPZ4+Tmn+nIDACgFGAPAAYVSPP2ZbXXHUe3Z7u1P4aFHK8dCiTh+HEWlWDeUXbImLa2uTzMv8HwrbgUsKDdx4WIxIFXoirN2SO4++5/ZiqsfT+HNH3yIX/ut1W2dWL1nJpFIJF3SKnEh7rlMZwxY1IVVdOsKMc6EhWIu50BVKZySvygpC+E+PNfHqXevQdUoUhkDiaSGUslD4DNksgaMxHzFsp2qHyFiwVjYVOLkT65i7NosAMBIqnjy01uxaWtf9Ppu2i6feucqTh+/DsY4VEX4cOt5VqsXLOZmLNy6MQtNo+AMFS2RQUS1t/EFa3S+BFQBEkkVRlJrmcRR/fx+xBakWW50c5Q0tUXLF25089Do+iRNDWZKb+kFDn3RZkor3zBwgAC+z1ectUOyPKgqxWe+9CC++7/O4OiPR/DcFx9c7iEtGVIQSyQSSR3i4icUJG//8CNkskmULLdiIV0qbcAtBfAZg6KQGmEWpjCIBViL71TjXFSQKy0aFMWCVyGI21nQFVaFr41M4+RPrsF1hIVj87Y+PPHpLRX70zQVZqqztsujI1M4few6OGeioso4SraPRBI11eszJ26ABQwlK0AQMHDGwTngOuI6V16EtodQAVVEBV031K4sAtU3R3OBjWLBRTHvRlaV0IvbjVWiUYrJ7lt5nD05Bs/zoaoKzJQGt2zF8VwGkiYtE0bCLGvdUJHpET7qwA+gaeqKsnasZrZsG6xYmLlQKCXwnKD1Czugrz+FT+zfhLMnb2B4W3/HqROaptwTBl0piCUSyapnITnB9QRJbtqGkVRRzLsIfFZu5CC+1ERnp1p1Rsi8cF1MwkpxddU5mdJQmHPa7obGAh5Vhd979xqujQjPoG4o+OTTW7BlR3/UtYpSgqSpQ9MpgM4sEuNjuXJzCzLfBYtzeE5QI0hnJosolTxQQkAJgR87yUbXuR3C9wIAevvFDYLnBV1ZBOIpI07Jg+/zaFiEcPg+R27Gaiu1od7ntF6Kiee6UYWdEgIWiKQMzsXPQczT3mxWIG4N0nQFKUoATvD0Z7dLMXyXuHZlckXG8FXT02cgldHx4+9fxONPDSNpaq03KrNrzzpohtL6hcvMPaDZJRKJpHtCQVsv8aEd6nU5I5SgZPll36VYjDQvTHndZAXO0XUVsxnhsaqPqagUfQMmzJTRckGXW/KRn7Nx7fI0vv/tc5EY3rA5iy/8ysPYunMgEq+ariLdk4CmK+hEDIfvQXidWMAr/LZ+wGsEaRDwaPFhvXPsBkIw3zKaYMHpD/GUkbARRzhOSikoIXCdoGVqQ6PP6cxksSbFxCmJhJLw8TApA1ycTzzzudmswPCOARx6fmfFZ+SLX3lYimFJDZRSPPTYBoADH5y5uahV7ZWCrBBLJJJVTSeZwvWo1+UspNoaQQhqFlWBiIoqCzgoRTm7dnGVMSGAqlF4XgBFoZHAi3dbq8fY1Rn8/L0xTNzKIQgISraIHlM1isefGsb2BwerqsJaR0I4JP4eKCoF/ACMCVEMBdEiRMf2MDoyFY2ZKgB8Al6+pvHKbreIwrLwyqYzQggupLtgvIW2yCauHGOYVdzKvx3F8VkMfnnxYtgGmyoivSMkCBjUstWjkHejA4aH1XQRCdeOh7naF71mTQYTE/mOr4Nk9ZM0dezZtx7vv3cTH567g92fWDc/y7MKkIJYIpGsahq17W3XLxoXPCGhJzhOKEp7sknMTltCzFACTacwTT1qbSxi1hrsgxKoqljpH/jzVWdCUa7+VR4PqJ8y0brTGMfoyDTe/fEInJIPxw6i8WT7kjj0C7uQ7jGiV2uaimRKaztBopr4eyBEHAOhIg0iFMNJU0XAKhfX9Q+mMTtdhOeysjVFicR0GHVHFRLtoyFl8VuyPQQBh6Yp2PfEEPY/s7Wr84kTtx0oynyjjtBWHWYVt/JvT08W4Doi0i3+PnMuIvQARAv1KKHQDCXyc9uWD99n0MufhXZTJiSSTulfk8LWXQO4+tEUMlmjYoHtvY4UxBKJZFVTT9B20i1saDiL08eug3EW87zWvk5U8yh+9bf2193Pt/77KczO2GDlKe1MSgOhBGbKWLRIruEdAy0rfJxxWJaHkz+5imLehedWLsAp5h3MzdpI9xgLqgrHY+kcO0BhzoGqifi5dEaHVfDgM1E5NdNabLHefPU+FJthBzmr6ML3AxgJBSzg8APh1033GPD9oG7CQ7VNZLEroPFEkpLtgTHASBB4HhMLATkQsAD5WQe79qxtuB8WIFo0GIcQIYQ9l4FSUc3etWctLp4bh+cF0A0VVKEV51r/EyiRLA7D2/tQmCth5NIkUhkDfQPmcg9pUZCCWCKRrGrayRRuxOjIFC6eG4eRVOCUOAK/eSUyTGSox8HD26LFeZ2OYzEgBHDdAHbRxZ1beUyMF2oqzoQAfsDw3rFRJJIatj0w2NWUaLw9tesEAHh5QWGAuZxIQoi8xKzSi8gChvGxHL75jePIZJPY/fC6qOLpexxmSo/sA07JQ2HOgW156BtIwqKu6AAYcPQNphatOhpf7BZ6yV230mpRnUgycXsOXli55gDnDO+fvom1GzINxlQrhkPMlA6n5OPXv3YweiycEZCVYMndhhCCBx9ZD+vYdVz42W08/qnNSCTbX2S3UpGCWCKRrGpaZQo3I/S+JhIGPJcBihBv3XiAFzKOhcI5R8nyYFku3j91ExfO3orEF6XCoxv+m0rp6Bswcen9cWx/cE1XxwuvW8liIBDRZozxyJbBMe8HZgyYyznogfiizc85UCiNFpZdPDceVT6/+Y3jFfYX2/LLzSQ4CCFIpQ3oRrCoVfd4yggAYYcBkOkx6ub8huL4r//iJGanrYobCrfk4diRyw3ec9LQI11vRqNeJrJEcrdQVbHI7vTx6/jgzC08+uSmisWc9yJSEEskklVPt+JhZrIoWvIyLhbFKaRD48DijGMhBD6DZbmYHC/g+JHLmJ0W3ulUWkfAGEq2aNtLCJDqSSCd1uHYHmzL6/hYYXX01vXZqAoe+o4pJRW+aUURC7+Csu3BLnpgYq0bzLQWJXrELRTV9hcRL8aFt7hMty2HG0XzxRcEhtnCBEKMi8i2+gs0czN21Jq7+vF6UEV4yAnniBfNw/bSskmGZKVhpsUiu3Pv3cTF98ex99H19/QiOymIJRKJpA6jI1Nw3QCcMVBKwcCjpIjlHFO7FWbRwMKDVXRx/me3cO69m2BMRMLt3rcej3xyCONjczj6xmUoGkU6YwBg8DzWMJM3fnxdV6PIsrBl8MVz41AUEuUyh2KuxnQdRcURUMqjRXKUEqQyBgghmJ22owVqczMlfPMbx6FpCtxyZquqUlBKEDAOM9W6+cipd67i7MkxuI6oKms6xeC6TCQ0q7Omj3z/EiglIsWhChpbPNdMgIeV60Y/x68rC8QCw9C6Eq8U6zH/+0JYSB63RFKPgTUpbH9wEJcvTeLayDS27rx3P09SEEskEkkdzpy4ASOhoGRzIWSoaMPMlil+s1HHsnrNHhjjsIsupiYKOP7mFUzdKQIAMtkEDh7ehsF1aQDA0JZefO6XHsSZn96A6/iiy1WDTN748QkBpqeKIABSGQOz00XcvD4LAkDVFOi6AttuHLxMY6KQEJGssXZjDwAgN2OhWHCjSnyYIBFG2jEOKFS0wO7pTaBkeyBlu0cjX/apd67i1NFrUWttzjlcJ8DURAFvv/4xNJVCUUSDi1xeLNyr14Y7ur7BfNZvIwHe229ieqoYiWDOOTiAvv7KBUjhddV0Cs9Dhb+aUGHNqE7f6IZOPj8SSSds2tqLYt7BtY+nkUrrWLM+s9xD6gopiCUSiaQO+ZwNM6VDVSlsywf3GUiDuLSQhLl0f1Lby1MW3ebyORsXf34bZ396I/I7P/DwWux7chPUsr1AUSiSpoZ8rgTPCZArWymyfcm6+cXx48/m3UjUFgtueGhwiEVxpXKb5WooFWKPg5er1UIoaoYaidjXvns+jOyoEMPzFgXASGpRmkc7Vc+zJ8eEwK6qvLolH0lTQ27GhpnWIyHeTAyHtGrocfDwNhz5/iU4ToCgPMuQTKg4eHhb3etKCQWltKLLXE82Ad0IP1PtZ2fXY6F53BJJIwgheODhtbAtDxd/Po6EqSHTk1juYXWMFMQSiURSh9CvaiTmI8FmJi0QSkApqWqeIFol9/an2tp3N1PXrfKUOeOwbQ+FWQc/euUi7twS0WJmWsfBw9uwrlyBJQTlc1Jx/fJ0JNoY56CURs05mh0/CBhoWcyygEdV47CRBKvqYqUoBBzCt+x5AVIpAzNTluhERwCz3AZ2eMcANIMi8OYXLhIixHsji0I7vmzP9Ws8zIAYb9RlrujFuuK1XjTJGYeZapz3PLxjAM998cGW73M+Z4MQlBtsVNolPDeIBHG33uj4cRaSxy2RNCPsZHf62HV8cPoWHn9qc+xm7t7g3hqtRCKR3CXqx7UxZLLC45rPsfnUhLI7oJ2FT6feuYrTx6+L1rtlL2o7U9eN8pT716TheQGuXLyDn75zDfmcEz2//cFBPP7UcDlHWLRzNk09mu4//uYV2LYHSggUKha52baH429eqRlL/PiKQsvtqsX5x1M3qhtLUKW8sIxz2EUPazf2RNc2HkEXXoP+wXR0nNlpOzqOojS3KDRD01X4nl+ni5zYX2+/ienJYvn51mJYVSnWbuxZlCSLTDaJ8ZtzAK+dfbCKHlSNwkhoXZ139XEWksfdLdK3fP+gGyoefnwjzpwQyRP7ntzUdTOf5eDezsiQSCSSRWZ0ZAovv3QWb//wI+iaAkoInJIPM2WgfzAFWhZm1eLF84J6u6vZ98l3rokudIzD8xisgofAF1PXzXjswCYEgZimD/2yiaSGvfvW4YPTY3jztY8iMUwIYCRVBH6Al//qLL79P97D6y9fwOWLExXRSLPTVqwqiihBYXbaanr8pKmWY9QqX0NI+J/yz3Q+lUMkSjA8dmBTxfR9mCahKARnTtyoOE4iKRbuMc6RNNXIojA0nMXLL53FN79xHC+/dBajI1NNr92+J4bAURtpxgHkcw62PziI/sEUCKVtecRVXWl58xN6dsUsw7xnt3qsjx3YBBawhlYcu+g1tWa0S/XnZzH22Yp2r4Fk9ZDuMbD7kXWYmy3hyoeTyz2cjpCCWCKRSMpUf4EHjMHzGQ59fhe+/OI+HDy8DUHAMZcrVWxHqIgAO3bkctP9v/Xah3Uftwpey6nr4R0DOPT8TpgpA4xxDK5L46FH1yM3U8LxN69EVVrDUNHTlwTzA1y7PAMjoaAnm0B+1saxNy/j1DtXo32Gotb3GXyfRb7eVsfnXFSb44kbhM5rYUWlSGV09GQNkUHMOQil6B9MYXjHAPI5O7IqhITT9/HjAGJxWv9ACpwDZsrA7ofX4eK58Y5E1v5ntmL/p7bUTOGqKoWqEpw+fh35uVKDrSuhFPjslx5sWeVsJvrjDO8YqOj0RYg4RlhZ830GM2XUdNzrlPh1DW/wFrrPVrR7DSSrizXrM9g4nMWNq7OYHC8s93DaRlomJBKJpEyrhUdhc41Xv30OQLm7GyWRn7ZRxmxIvQivEF1v/ec4HEPJ8pCbtXDynWu4fnkmGouZ1mGaOvyAgYOgty8BFjAh4MsZv2dPjmHthgze+vuPaiqmYZWyf7B+K9a4XzdskkEIgVPyYFu+WBDGOR5/ahgXz42DUIJsXyJKfwgXlOm6ipkpO7JCmOU21uH0fTNf8Msvne1qcdj+Z7Zi/zNb8YPvnMPEeB6uE8BzA/hly3TgA5quoFWdnyoUb//wI2SyN5pO/7fy7FZH2BEq3h9atq5wAKmMjmyfuaitve+mXUH6lu9fduwexNxsCZfeH8fDjw2hf2176yuWEymIJRKJpEw7X+DDOwagKARBILyyPOBg5UVYYTezbmjHu+p7DLbt4trHUzj5k6so2SKTVzcU+H6AYt5FMe/CTOlIZxIoFpyKtAdCCFzHx9uvf4xC3ml0GOzYXduhrtoLqmmKqCoHDIW8GyVCqBrF2g0ZzE5b+PjCZMV5vfbdD5BM6XBKHjhjIIQg8APMzQYghKBke/jrvzgJzwtgldMrsn1JPPXc9kjIdSuyfvTK+ZrxVOO5rW0vvsdgWx4Y43j79Y+x+1Y+ai0d98g28+yOjkzNL2ZkDJR6YuGgzxAwBkWhSCRUUIXe0w05lsu3LFl+KKXY++h6vHf0On78/Uv4P/7po9E6gJWKFMQSieSep9uFO9Xb6boK32ctv8A1Q0Fg+TX704zmDRRUjcL36ptUW3mQS7awVbx39HrkzVNUCjOlozBXimwM6YyBwGfIzVgVKQpA2BgCQmw20d8Xz41j7YZMdA3rLQQEF2P23Mrz8T2GV79zru7+A8ZRmBNCPGmq8H0uMn85QAiHpimYmbKi5A5KCWanLbzx6qXIptCNyPrRK+fx0fmJpte3EzjjsC0Pmq7g9PHryGSNmmzf+osyhWe33mLGgHGkewxksslVswCt2TWQrH6Spo4HH16L8z+7jRNvXsGnPrtjuYfUFCmIJRLJPU23DQfqbRe2MQZQ8wUeF89hZbaaRmI35LEDm3HynWs1j+sGbSjoAp/BtlzcuDaLE29egVUUldPe/iQcxweIqFQnTQ2JpIZiwYHrzItrVq7E8nJTC3CAt1g5Fi7yG94xgNGRKbx3dDSyU3iMww8YkqYmLBf1Usoaie3Y477P0dufFB3p/AAAQcn2q1Igyj5ad3483Yisjy8s7uKeMDXDsX0QWt++8eUX9+EQUPdG7bXvflC7mJFzWAUXv/61g4s61uUktBjJlIn7lzXrM9j7KMHZkzewYTiLbbsGl3tIDZGCWCKR3NOEvt+wy1hQbgF87Mjlpl+89f3CootawtQrvsCByta+8WizOPGmCvXY/8xWzE5b+OjCRJQ5q+kURlKvK+gc28PHF+7g5DvXYFvz+cC6TlGYc6AZCnRDRbaPggUcszN2TUMMVVPhuT40XYVuKLCK8/aGRlgFD547B0BEs9Xk9zLAsX0wxkEJAWvD7lFNeK2CQAh2qlQ2pYjvkjFeYYnQVBr5tXv7TTz9mW1N3+t27CidEuYVq1U2mXY9stWLFxstZuyUpYo563a/d9u3LFl5HPj0Nty5lcfbf/8RNm3pi2IgVxpSEEskknuafM6G5wUoxSwMnHPMTFkYHZnqeNGTU/Lxa1WLmKoXcjWiHU3zuRf24oGHmosLFnBYRRfvv3cDZ396o2bxm6YrKBY9aFBgJjWMzxbgOvWr1r/1u09H//8///xoSzEc4rkMoyNTmJmqjWADRPawbqhNI8PqQalof03L7ZYJIeCMIWmqsC0frOzjjV9LWl5wF6/q9w2a8H0Gt424u7BC3g6aTsEYQ1B1OeMZxiJrWfxQbZOJ+4QbzVxk+5I10Xacc/T211/M2C5L1Z5Ztn2WLARFpfj053fhb//yDM4cH8WTh7a13mgZkIJYIpHc02iaUlOx5VzEgDVLHujEi1pPPNej3Spfs6qZW/Lx8cVxnPzJaGSPAOICUtgN+gdN+C7D+O0CPK++GA5bSYfVvXiVubpJRe3JiOvXTOzue2II75++Cb9FZbwa3aBIZxJwSj56+5IoFl1QhSKRVOF7QY3wDFs7d9t+eOeewboe4vCahp5lI6kikdQQBDyKdwtnH/JzDsDFwknGxaKhXbsHcPtmHp5Xa99oNtanntuON169BN8NRJWdEmiGiqee297Rdaxmqdozy7bPkoWyfqgHO/euxc9+egN79m1AJrvyWjtLQSyRSO5pGolQSknTqetOvKj1xHPtQGqbdYS0M93MGIdddHHuzBjOHL9RY30I950wNSSTGigBCgUHnHNkegzMzdbaOD77pd0V1b2437eRGCYEZQsDidoKN3rt2GgOjzy+ET8/dQNOqXWlFhAWh3hqRPX16RswK1Im4q9/+4cftUyYqHetP/fCXgDzKROEEOzcM1h+vHKbeDvmtRsy0eMiC1k0tIi/h43e22ZjHd4xgM9+qXVb505ZqpgzGZ8mWQwOPrsNVz6cxPG3ruD5F/Ys93BqkIJYIpHcE5x65yrOnhyD5wXQNAX7nhjC/me2VlRRQ8JpeU1T8PJLZyPRMTScrYjIWr8xg8uXJqOmFpQCd27la4RJtXgORaIStiWGWLymarV/UtuZbnYdH1bBwbkzt/D+qbG6568oFOkeAyzgmJsroa/fLFdUecNFfqePj2LqjtXQTlEPzkVlVlEpnFLQ0G6gqARW0cH7p2+KLOE0hWP7FW2cIwhgpjT09qfqZupWV8zjIjNh6tHjrar6za71517Yi8+9AKxZk8HERL7p8Vs93s5rliNybKmOKePTJItBJpvAo09uwntHR/HIJzdi/VB2uYdUgRTEEolkxXPqnas4dfRauXEBge/5OHX0GmanLbhuUFPFFOkHHCXbA+McRkJFbsbCrRuzSJoazJSO3IyFm6OVYpoxRCkQ+5/ZGj1evVo+ldZRLLiRUAwbKex7Yqhm7I2mm8+eGsPmbX2wij4m7+Rx/M3LmJ6Y95WGoh4AEkkNSVODVXThlHxQKiLPFFXBc1/Yide++0Hd63br+lzT66ooBIzxuhVgzw1gJBSkMjoKc05l+gMFUmkdmqagkHPAIZp5eC5DENSpFHPAKQVttTs+/uYVTE8WoSgUyZTWdpQZsLKm9puNdak8uUsVcybj05aOLdsGRYzhKoZSAq+cfPPwY0O4cPY23nl9BC/8o08s2mLSRmia0nZPZimIJRLJiufsybGoi1co4DhHw2xZXo4Xs4oebNuHqortwAG76KFk+00Xl5185xpOvnMN6R4Dz/7CrqgKGBcrUcW6nOCw74khrN2QqalIj4/loozgpKnCSGgwU5pIxZgt4eLPb+PsyRvReMLvB0IIFIUgldHBOTA7Y4NSAkoRtTEOp9nrVmXbgCoUHAw84NFx48LXKQVRhFt406FpQqgSQjA7bUf+Ydfxa1I24jcquq60FYNnFdzydhzFgot0Roei0JZRZsDKmtpvFjnWbbe9hRxzqc5FsjCuXZmEU2p/Bmc1sHlbHy6dG8fxty5jcF16SY+1a8+6lvnwIVIQSySSFY/n+qIy3OHiLUA0UYgv1BIPticgC3MOXn/lPPY9sbmmG1k1s9NWtAgrXpEGhHWXBQyW5SGdMcC5qMD+6JULmLhdACDa9AZ+AEWhsCwPRkKI57AqnO1LQDdUeF4AM2UsWjtfFtlF5heYxQl/JhQAF6kKhBDk5xzEazv5OQeEEqDK+0ypuJExU3rFzUK1oAqru5xzUEqjg9uWj0RSxfhYDt/8xvGmYmylTe03slMspXBfqpgzGZ8mWSzWDWUwcmkCE7cLSy6IO0EKYolEsui0s4gsnB4P46eqW/TG0XS1Ix9sNTUirwNd7ToMp49dR8JU4ZR8FPIObl2frdin6/j46PwEjKSKnvLqadcJRPOFcicy3VBgpnTMTFkIAl5ueyx2smP3Gjx2cDPe/vuP4Dge1vUm4JQC5KZtkUKgEGi6As8L6k5VE9rZOYX4sciyVlVmzgCqEDilQCygC6MZSLmqXe62VrENDxM/OIpFFwFjDS0CM5NFeF4AVm6FTRUCUh5j0Q9AKG1pL1iOqf16MwVxu009Vppwl0juJoQQDKxJYepOMUpZWQms7MbSEonknuPUO1fx2nfP49aNWdiWh9yMhbdf/xijI1PRa0ZHpnDk+5cwPVWMfLhhi97460IG1i4sn3WhBIzBtjxwxsutduu/zoktbgsbThAA6zdmkDR1TE9bsC0friOEX9LU8Owv7sKTh7ZC0xU8/MmNSGUSYIxDUQh6+hJImBr6+k04JR9mysCh53fWCMH9n9rS1Xl12q8indGh60po0gZVKHqyBjI9BhSFAjysCM9/wYliL0EiqULTRHVZ0xQoCsGZEzcAiM+D6wZgAQMtN7pgAY8afvDysettG2d4xwAOPb8TZspoer0Wi9Db7nt+hbf91DtXm2732IFNCAKRWBEmV0hPruR+YnBdGr7PogY7KwFZIZZIJIvG6MgUTh+/Ds6ZEI6Mw7Y8JE2twh955sQNOE4ASkjFoop4i944U3fqN4e4a3BUtNptB0WhUBSCdE8CAeMolXzw2HqzLTv7sf/pLdAN8WdY0xQ88NA6mKaG08dvIF8U1fWnP7OjpaALK5Knjl7rqlLc1vmoFFSh6BsUVczqCidVKPKzJfQNmhXXiXOOqTtFqGpl/SVuEThz4gaMhIKSzctecbGgkDNRfc70GNF1qt62mrs5tR/3tgPi88EYw9mTY02rxNKTK7nf6RswQSjB1J0i+gaWt+ARIgWxRCJZNI4duRwtrOKcgVBRIXVKfoWAyedsMCZEc5zqFr0hnrt8i04IERXKdsVwGAvXN5CE4wSwCiV4HoPniuuiaQoOPLsVm7f3l/dPkDS1SPBt3j6Azdu7E0aUUgRsaRRxIqlWVDHrWRN6+0X3uGorgKardR8PLQIi/1eHqlLYllicp2kEikbRP5iGVazMWF4p9oLQ2x6HENLW51V6ciX3M4pK0TeQxNSdAnbsHlzytIl2kIJYIpEsCtVtfjkHeCC8oCyoFDDCQ+mVEyPmF3JRhdQVOgv1EHeLohA8/tQwTh+7DsZYW3+0A4+DgCHwGYyEgrnZIGqy0ZNNQDcUnDk+inOnx5BKG+XMXwWf2D9UVyC168d+7+hoRy2UO0E3FGT7zIpj776Vr5uyUU8o73tiCBfPjdc8Horr0FNrJDQYCQ0AosWD1b5g2/JQsnyUbA8vv3R2WSurmq7C9/yairimy69WiaQVg2vT+HDiTjlNxlju4UgPsUQiWRzOnLgBqlBUa0YWcFBCK/yRjx3YVDcDlwUck+N5vPzS2chLPDoyBSPRRmwOAZ54Zgu+9A8fxsbhXiRNbUHnoxsKfvErD2H/M1vx+FObQSgtt+wlULVaYUwpQf9gEj29BkA4LMvFxHgRnHFouoIHH1kHPwjguD40XQEhFDPTNgp5B/m5Uo3POjz3t1//uCwW5xeUVb/u+JtXmorhboovhAADa1L40j98GL/1u8/gyy/ui4Tn6MgULp4bh5nWMLA2BTOtlQUv6np49z+ztam3t5mnNu4LLuZdlGwfRlJBOmM0vB53i31PDIFDNGXhnIt/UT+PWiKRVNLTKxYgh10plxt5GyuRSBZEWMG8dX0WVCFle4F4LhS7jz+1uaKKN7xjAOmMgVnfrskD9n0WCZ3dt/IiykwV2bd20QMgUhVUlUY2BFWjeOzA5grf5tuvfwzVDRAwVtdXSwigJ1T4blCTsJDJGjj0+V3RmPc/s7WijW8mm0QqreHayAw810c6k0Cm14Dr+sjNlkTTjrJA1XQFjz+1GaePXocXBMhkEgAI8rmSiJEjAC2nNbz2t+dhprSoEhxGkbGAIZd3hR2l/DpNp2CBqGLbltfw/QlbMRMq/tV0Cs9hSJgq7HKVvnYj4Iu/8nDDymuzBhhx4RynmUUg7qmdnixE5xUunAu3/eu/OAnPDVCyfHguQ9JUo4zi5agSh5+3TlMmJBIJREwjULcT5nKwLIL45Zdfxn/7b/8NAHDo0CH823/7b3HhwgV8/etfR6FQwP79+/GHf/iHUFWp1yWSpSQUs3ER0jeYwtBwFhfO3kIhL+7cFUX4XAklkVg7emQEM5OVft/An08FCFE1iovv38bYaK5ietvzAqQzOvJz8+IREFViXk5ZOHtyDGZaA2c8ahAhxkPx+S/vrWn3G+bcWkVPVOxCoUvmB6UoFI8/JcRzJ9Fv1YLuv/5fb4GDIJ1JgFDg1o1cjfAmVOQNn3jrKlSNorfXhOv6yM+58xeJI0pTADhKJQ/FgotXvz0bjZ2EohkcLBCvCwIGSgCvsRaOoJRA1RV89ksPYnjHQHTexXz9ygwBmorMMEfXdXxYRU+MhRJYBRd//RcnkZuxG3bACwlnCCgl0XUP7RGKQqCqtOLG6PKlSUxPzltymBvAcwMkTLWmIUg9GrX+DmlmTWn23P5ntq4KARyeo1VwYKYNuchPsuSEVqMVoofvviC2bRt//Md/jNdeew09PT34x//4H+Po0aP49//+3+OP/uiP8Oijj+L3f//38a1vfQsvvvji3R6eRHJP0cpf2upL/u3XP0bgl7uRcQ7PA6bu5HFzdLbiOEHAUci7SJhi2v773znX9h+xRu1pM9kkbo/lKsRwSCHvom8gCc/1wQIFhTm3opLpewxvvHqpQuCFQgpAJJDCZhJhZC6lBL/4lb3RNke+fwm27UUJEmH0W7jfRvzX/+stqJqKVFpHyfYaVmhDgWymdOiGimLBgefWaW0cw3OqxF15/FCqvjh4udMc5wjQ5M0oLwqsjvqca9IEgnORC9yITDaJ3IwF2xLXjhKCwGfwOTDjWmI0LT4fYVWeMR5d91RKr6k8e66L08evN9xPyfJhDupNj9Wo9TeA6MaoUStlAEvSZnklET//RFJblecoWXnMzySuDEV81z3EQRCAMQbbtuH7Pnzfh6qqKJVKePTRRwEAX/nKV/Daa6/d7aFJJCuSsPL5zW8cr/HWNvOXtno+nPb2XBZFR1FCKiqx1Ti2D96i8lcNY6jJjx0dmULJchu2Tw58FqUTFAv1p/XDiLb4uWiaglIsCxh8Pv5MUSjWDWXrRr9RSoWtgJCK/TbCTBtImhpyM3ZTu4KiUGT7kqCUIDdjtRTDzQiC+te91UK/wbVp9A+a0BNqxfXyveZV1WaNOh47sAkly48UenxhZNg2u104F58R1/ExO23VxLM5JT9afNmIVtcgHo9GCRXvd/lxoPLzU/1ZbfbcauF+OEfJyiP6vV0ZevjuV4jT6TR+53d+B1/4wheQSCTw5JNPQtM0rFmzJnrNmjVrMD4+3tF+BwZWTvs/AFizJrPcQ1jRyOvTnPD6fHzhDt594zIUlSCVNuCUPLz7xmVksyY+OHMLuq5A18McW8B1fXxw5hY+eXArfvCdc02ftwoOEkkN+dlSJAZBRDJECCGVVUnOgcJcZwsgAp9BVUXFT1EoctNWdE5N4QSfOrwdb7/+Yc1TlAqbgVVwsGZNJjoXQkjU3IGFApKEoovj8OcfiK6tVXDAGRMLAWNNiOP7rYdT8sACjsJc80D5RFJD0tRQLDhNbzIWAiEkZreoT/zax69Xq5saVSMNr8GaNRkc+cEl+C5BEDAoKgVjwYKmPlk5kYRzVMSzsYBBUxWAAG5QdR2JmIEIAtb0b4rnBaB0PvNaeKoJPC+o+fyEhNcLQMPnVsvfserzV1Vl1Z3jSiWVMqDdp/ZQVRXFBF1XkU4nluQYpqmjt7+9nOO7/i5cvHgRf/M3f4MjR44gk8ngX//rf41333235nWdZtJNTRWWLHKoU9asyWBiIr/cw1ixyOvTnPj1efOHHwKEi3zZsk8zIAxv/vDDyMfp+/MigRBgaqKAiYk8piYKTZ8302KVPlUoWBBmB/MKEVxf4HT2e8YYx+SdApKmCqpQeB6DZohzUlRa1/+pKARPf1Z4eX/+3g1MT1miOUa4QKz8r5k2Ks5F05TofCgl5ZX/HIQQ9PUnkR1MRtfWTBvIzznCshGbuqOx/VZTsjxc/nACVrHxTQGlBOkeA5wDszN2XUsIACRMVVRZO6D6BsX3m5olotcA5Riz2PXKzdgNBSxVCHr7U5iYyDdsTdzbn6pozjE7bS+oAg6I6++6AYKARfFshFCoOoWmKTU3FpSKKf5G71eIpinwPR+cis8C58KnrmlqdD1mp4vwXBGXp6gUmk7R258CUNuEJH4tVxrtxPRVE//9UVUFvh+s6HNcbhbzJqFYdOCUli9nfTkp2UIQO46PQqG0JMewLBde7Ea62Xt31y0T77zzDp566ikMDAxA13V85StfwYkTJzA5ORm9ZmJiAmvXrr3bQ5NIVhz5nN2ww1cmmxQpBTHiDQtaPR9GXWk6jaKjGOfQjTYizjqEBQyFOQcl2wdVEJ1TKq3VRIIRAmixrmRPPbcdpqmVUxJCUcih6koU5RaP7UokVSF4wJHJGujpTcBM6zh4eFvFcR47sAmGoYCFcVmc1+w3HI/vMeRzJdy+mcO7PxppeJ5GQkW2L1luRFJqKIYJESIt3dNZ9iYhpNwxbv6itSodzExZsIpuRe7vYwc2QdUa//nXDRWPHdjUtDVx/JqXbA++twhVcF4b2/b4U5uhqAoIJUim5qP0KAWSpgaqVEb61SMej8Y4q4lHGxrOwrY8BH4AQoDAD2BbHoaGs/dUm+V2Y/qquZfOUbJ6CNs2Z7LLn0EMLIMg3r17N44ePQrLssA5x49//GM8+eSTMAwD7733HgDge9/7Hg4dOtRiTxLJ6qeZqG31Jdbq+TDftbc/Bd1QoGoqEgkNA2szeOKZLUhn5hcqKQpBOiMWPBFCRNZuHULBWv0YB0AoRSqlo38wHZ2TkdCi6B1ARJRlsgYSSbUicuu5Lz6I/oFUZO3o7TcrFr7Fs2oBoLffRP9ACpyjJvM2pHq/4Xbx/XLOYRc95OdsvP/eGP7+u+dr3g9AxAdlehIwEipyszackg9CRDemyhcCukHxxV95GL/+tYP4p//Pg02FaRxKhRgWCRwUmawhEhr6k9D0+jcxhAgvcMn2sfvhdRXX6/Nf3lvxHof0D85fg7Mnx8CZ8PgGAY/aKZ89ORZdc0qIqLQvwgQd52JsX35xH379awfx5Rf3VWQYqyrFwJoU+gdNpDIGsn1m3fe2mv3PbMX+T22BqqlgDFA1Ffs/tSVKhxgbzcFM6VBUBRyAoiowUzrGRnMVn616GcoriW69wPFzLNneij5HyephdtqGqtGOCwNLxV23TDzzzDM4f/48vvKVr0DTNDzyyCP46le/iueffx5f//rXUSwWsXfvXvzGb/zG3R6aRLLiqO7SFe/wFc9urTc92ur58DWNvvTqRUmdeucqTh+7jrlZ4a0kBAARKQqccTAuWvzOzZQQehwyPQZ0Q1RtnZKPg4e3VZwT5yINQnRxE3+SOK9s4RwfZyPLTTetcBttQ4iIS7OKLnIzNo6/eQWT4wUAwk5gJMXNQz5XAqXC312yPdFNj4soMT2hinbHPoNdjibrH0zh4OFtFcfUNKUcoSYynCsWGhLhV2UBE9aPgIEQUXEv5oUIDXzWMHYskVSR7knA8wKMjeawv+rc/+n/66mm16dRd8Dw8eEdA0KEzZYAzmMxSrziXKqtHo2oboMcH+tCxVkYj1bv85PP2UiaGszU/A1C/DN4r7RZDm1UccIZpVaE5ygtbZK7xeyUjWxfckW0bQaWKYf4q1/9Kr761a9WPLZ792585zvfWY7hSCQrlnZEb7Mv6niiwvRkAa+/cjHKGu4kZzTMrZ2eLFZUgEUFVoeZ0uF5ARRKYZQX6oFQpDN6JHJty4PnMrz9w4/E4rxiudEECHRDiV4HVFo74mNY6pzU0ctTuPT+OAp5R7RUphQ3b+Qi2/TG4Sy2PzCIMyeuw/cD9A2a8JwAczlxAyDsyAQcQvwHvmge0TdowvMCGEktinwL39Mg4NANFSwQ2cKaroBSgHMCI6Egk01ibtZGsRDehJBIcBICFPMOWIPACNvyUbILws88ZePUO1cXLTN3dGQKwzsGkM/ZYIxBoZWV7rhdpN3qcW9/bdvuesft1CPbirB1dNwnXO8zuNJZLechWf2ULA8l28Omrb3LPZSI+3Npo0RyD7GQ6lQ8a7hk+5Gwc8ZyeOPVYsu83XAfR75/CVa5S1y1uLGKLlSVQDdUOCUfv/pb+6PjkvLCNtvyYBXdqJ2yVXDAIbxjQcBhFV0UCw7MlF5RBa8+j6XMSb1xZRo/O3EDjuPBK4nmGeFCXUIJEkkVuRkbikrx5Ke34vrVWeSmLVBK0NuXhOv60HUVxaILp+SBliu5YXMT3VCRz9k1mbdBwGBbHsyUjqSZiM4/PmX9zW8cR6bHgG35wrJRFsRhikYz4u9XPHt3oYSNO4QI88oLMmMVYo4o7aNdduxe0/T5ZnnBC/kcNJuJuZdYLechWf2EzZDauQm+W0hBLJGsYkJPYTHvV4RDsIDDLXk4duRySyFx/M0rsO0m7dA4kJ9zkDRZtCq/urIt2uxqSKUNzE7bwgsMUcEM/yB6LoNT8iuqfmE1cHwsV06V0CJvZNgqeDEEMWMc5352G/k5G74nBHp4vQgBenoTYlGZH+DKh1P4xa88hN2f2FCzn5dfOouACQsDC1gUA5fPOQBxoWkKjh25XNF8IpU2ovMPAgcsEIu6Xv32ufLxCfSEUp7S15CfcyLhGQQ83oSvKYoibk7OnhxrWxDrhlrXNkEIomn4xw5smm9wUhbFYcU6ndEje00rqEJqbB3VNGsZvZDPQTv2onuB1XIektXPzJQNTVdgpps31bmbSEEskaxiQk9hvSodISRa5RtSbzp6dtpqKbo4A5xSUFGJile2v/mN45G3MfBZFJsWlOPekqYGSn38+tcOVowlrAYyzkEhOtgpigJVo217I1vhuT5sy8Pt6zPwPQYv1rAitIdQSkApQV+/CafkVSyWi18zq+AildGFcM050fmJi8Th+wGmJy1QimghiW0JawXnHJpeGy3GOYdj+/A9HwCN2u6JxV+krUYp4WLI8HzbZd8TQzj5zrWaxzWdRtPw4eLEeAtsQsT5GQkNQHNBrCjiXFJpveX7uRCPbCvuFZ9wK1bLeUhWL67jY2K8gPVDmRXjHwakIJZI7lna8VKGnsJqwuiy+B+jRtPRjPHyYqfmqktRSMMv4ri3UVHFIjHORVoCUOtzHB2ZwuuvXITnianfqKECgGLBQbYvuWBvJGMcdtHFtctTOHPsOuxYJrCmKyKiK+BQVArdEKkDxYIDNRaiX33NRCKFg6Sp179aPDw2omQGpXxtOUfTBh4sACgVHgmqUCRNMQ5hyWjWxQ0VVgZNb//P/v5ntmJ22sJHFyaiHGhNpzCSesObH0BUyut97uoRngtVaJQS0oiFeGTvhgddIpG0Zmw0B844Nm3pW+6hVHDXY9ckEklzPr5wp26r5jjt5o2G0Wvx3FqgvDALqOjg0yiySVFpW73mXSdoON56OcGMcyRNtSYOLjw3z/MjHy7nHEG5fa/vswXnpLqOyAn++MIdvPP6COZmK0PhNV14okGExy2ZDNs0+xXHrL5mZloDAWAVXJA6IpVzjnDtGWeY17FtVEk4B9YNZdHTl0BvfxJGQoOR0JBItha4PMxaxnz2brt87oW9+NKvPIyNw71I9xgYXNeD3Q+vw5kTNxp+RuPvt6Y3/pox0xqyfQlQhbb1fnablxv/fYl70Fvl80okksUlCBhujs5iYG1qRdklAFkhlkhWFKMjU3j3jcsA4U0XDbXrpQw9hceOXI66vYGUF4kZakWzikbT0ZqmgGsK3JLXMM0AEPttNN5qb2NvvwlCCFxX5LrGq3XhuamqEvlwKQDQ+Spx9TbtwgIO23LheQFujs7i+JtXooVzqia6k7mlACXLx/qhLLbs7MftsTwmx/PIZJN46nDlMauvmZHQwDmEZxgEhIgueLx83TgP84RJFJUmKqMacjPNOzURQuoumlJUBV/6hw9GnuM4u/auwbWRmZouc50SrwC3s7At/n4HPgOlPpzSfPXbSCj4xP5NGBvNdeR17dYjW+9mbzE96BJJt2zZNlhprVqBUEpadwBqk/M/uwnfY3jq8A6sH+pZnJ02IT6b1AopiCWSFcSZEzegqAS0XEZs9MXdzEtZz0rxa/+PJ1paLKqno13HF9PxnKO334RparAstyKtIiTeNMIquHjtux9g3VC2o4i4cHy3rs+WbQoqSjaLYhIY40j3GPilX/kEsoOdWyUc20Op5MF1Apw5PoqRi/PdMalCooYbCVNFMqnjH/zaJ2oba1RRbwo/HLuZ1qKUCR67YBxAOq2hWPBAML/KulUiw849g00F4df+3bMAOm+NHkbqhf7fpCkqz67r1/2cxMWl6/iwih58P8Drr1zE8y/srvseD6zN1BWujRbQNfusduORXUrvsUSyEK5dmVzxrZt37VkHbRE6mDLGce7MTazbmMGmbb0ryj8MSEEskawo8jkbqbRRUTGo98XdyEup62rT6l0zIRGvPrKAiTQDAKmMIZITAo7Pfmk3AETHmG/AIXy3+TknygLrJBIrXnVUVYogYCjZHhJJDZ4bwPcDaJqKQ8/vxM49azsSfIHPYFsufJ9h/OYcTrx1BcVyFJqiUlGp5Vx4eTmHoopEh1ZiuPqaxWOu9j0xhIvnxqEoFKm0jmLBBStbV1JpHVSh5bbRiHzSiaQKq1A/zcNIKPjcC3sBLHzRVFxsAmE1e55C3kWh4KIna8AqOnj9lQuiS13AoOkqOGfI9iWF7aT8GaGEwPOC6P0G0HU82lJEq8l8Xolk+bny4STmZks4eHj7ihPDgBTEEsmKIpNNigzbWMeuel/cjYQYJbzrWKp49XF8LAeFUphprZwUgGg/X35x33yVMtaAwyqKiieIWPTVybHjVcdkSosq067jI91j1OTytkOYzuA4HjyP4exPb+DDc+MAxALATzy5CSMX7kSCUNOVSLwWFbetYzSr2K7dkIkeXz+UxdBwNrIImCkDT39mR3TuwkaSwtCwhssfToExDlUh0AwFiqrg0PM7G46hupp6+PMPNKygh5nSjhM07G4nLp5Iv4inXigKge/5YAyYm7XBuYjOCxuFqCqtaBPczeewejFl0lTLn7+F2Rvivy+KQhfsQZdIJJ3BGMd7715DT28C2x4YXO7h1EUKYolkBfHYgU048oMP4Zb8KN1B1ZVIPAHzAshzfTgBKjrPvf3DjxY0NRxWH8OYtPhdfHw/4eviDTh8P4jaD4cJCO0eOz6lHQpwu+jB91nHfuGw7bJtiXbJk3cKOH7kCvI54dHtX5PCU89tQ09vEh++fxtmWoOqqeUECw+arsDzGqc9VNOoYlvv8XoWgerXdNKJbXRkCm+8egm+G5RTMzx87//+GZ77wgPRNqfeuYqzJ8eiuLXQx9yKIGDwi/PXgRBSFr8Mriui82isa17SVCve704/h5WLKUndpibdEr9xkSkTEsnd58Nz45iaKOL5L+9p6+/PciAFsUSyQhgdmcKxI5dhF92oAxkBQfxvR3w6OZ0xKjpRia5hN2AVHeHlLQpBSIjopNYJ7U4xV1RIZ0sghCAVqyq3Oy1dfTwjoUUxXF9+cV/b4+aMw7I9eK7o6HbuvZu4cPZWObqX4OFPbsTeRzdEf5B7+kwoqqh0lmw/EsOt4r+ASuEaLtZq5Lut5kevnMfHFyaj6LvegQSKea+mCUa8/XG9Y85MW9GCPUBUYfyCi1e/fS4KrqgXEMJY69QQRaHwAiGI47OblBIwxqFplU078jkHmu5hcJ1YKHPrxmzF2AgFNmzqrXsumWwSju3VLKYE57AtH1ShC7Y33LmVx+R4AZ4XwCp6uHMr31Hr8sVudrGQfXa77VKch0TSCt8L8NOfXMHaDZmW3SiXExm7JpGsAEKhOzdbEgvUFNEIIp3RoSfUaBq6UTRa+PxjBzbBLfmYy5UQ+IFoqMEYikW3o4ipTuKthncM4Msv7sMvfuUhJMv+2E4isTo9XiM810d+rgTX8TE9aeGH3zuP8z8TYjjbl8Qv/B978fDjGyMxrCgU+58eRrHgljOBGx93dGSqIgrv1DtXoxgvQLQhnZ4qgsSSNhpd7x+9ch4fnZ+Iouw455iZtOt2hCvkXfzgu+cwOjJVER0GADNTlWK4Gs7ri+F2UbX5r4e4IA6zjLfsqMwQFTnKDKm0BttyasbGGWBbYuz1YgOnJ4tgAYOZ0sptqcXgF6P98Kl3ruLU0WvwPR+UAr7n49TRazj1ztWW27YbcdgJC9lnt9suxXlIJO3w81NjKOZdPPXcyvQOh0hBLJGsAEKhyxiPpqYJAKvoVUw153M21KrFXtVWhkRSg0IpwgYO6R4DieS8qG6H4R0DOPT8TpgpA05JRKO18vB2s81ibMsYRzHvoFgQC+c+OHMTP/zb85idskEIsOfR9fiFr+xF3+B85rJuqEj3GNi0tR+fOry96XHrCYnTx64j8ANomoKS7YtoOEKE77bqJqWajy9M1n284fkFIjYvfjNUsv0Fid1WUIXALfnIZOcr5dVZxtdGZspNP8Tz4f9fG5nBzGR9e0P4eP0bO4piwYNuqMj0GKAKBeMcmqZ07B+v5uzJMbH4j1JQQkEpBSk/3opWN6HdsJB9drvtUpyHRNIK23Jx+tgotu4cwMbh3uUeTlOkZUIiWQGEHlrRxY1XtDaO2w7asTJ4XoDegWTFnTjnvGMPZjdpBgtJQOhmW7fkw7Y9cM4xN1vC8TcvY+pOEYBoHXzw8DasWZ+JXk8pQW7awvunb2F6ohBNGzezZdTLfGacwXMApOu3om7ml22nyUk1uRkbnhdUtL9eKjRdQbYvAackWmnHPcjxLONT714DpaTmc9ZOa+h6MWjJlIbCnFNu5qEgRUlXiynr4bl+jW+RENL1WBca2baQfXa7rYyekywH7707Ct8LKjLvVypSEEskK4BQ6CZNFcW8W57u5iC0soNXo3SJ+HTySo+YauRj7MTfGI9S45zjww/u4OyJG5Eg3fXQWjz65CaosWugaQpmpy2888YIALQd6VUtJJySB84AjzFM3C4AEP5YCjRsRR0nTGXolJr21277C//agZQbtiRNtWL8+5/ZWreZh6arZUHJyx7t+cfr2T8anUuIolL0DZhImPqie1w1XYXv+TXivZ021kvx+7SQfXa77Ur/uyBZfeRmbHxw5ib27NuAvsHUcg+nJdIyIZGsAOZbLFNksomyaAJ6+5IVFbJ2rAWL4cddKhr5GOOe3Gb+Rs458nMlFPIl+D5DMe/gx69ewumjowgCBjOl47kvPYj9T2+JxDAhgGnqSGUMnHp3FAA6mjbOZJNR0w6n5Ims5So4A4Kgfivqanbu6TxyqLffrGl/vWhWvPJ+wszkdtsob9nRV+FTDv9/y44+9DWIfQsfb/QZfeq57fjyi/vw6187iC+/uG/RFnzte2IIHABjDIyzjtpYL8Xv00L22e22K/nvgmR1cuKtK6AKwf5ntiz3UNpCVoglkhVAdSzU2o09DatjrawF3ba3vRs0ajl99uQYzLTWMLeWEOD65WmcPXkDM1MWEkkNfYMmLl+ahO8JsbrtgUE8/qnN0GNVP5Flq0dNNrqZNo5X5e2i13QhWz7nQFEpVI1GIrv6un/uhb0o5M/g1vW5lteLENE57uDhbTXva9+ACc8LUMy7TVMj0j3CB1yoI+QzWQOHPr8LiO233Zg74fel8FwWVYg1XfiAk6aBHLUrWn1TCiRNI7omd/MzGla4z54cE5YMrf021ksx1oXss9ttV/LfBcnq486tOYxcnMAnPzWMVLp1as9KQApiiWSFEArdTlvvNtvXSqORIPVcH6pq1DxezJfAGcfVjyfx7o9HwAFoKsX0pBXZFRJJFU8e2oahLb3RtoQAhqEhYWoV++xm2jguJHLTzf2WnEN0dDO1pnaMX/4nj0Utk6cniyIbWBGpIkHAUbJ8aAZF/2C6rbbFL790NjovVVXg+0EUH9dubF037ZB7eht71fvXpJr62O/2ZzS0fnTz+7UUY73bfvuFHlMiaRfOOY4duYyEqeHRA5uXezhtIwWxRCKpy1JkljYSpJoufKu1ntIU8nMlvHfsupjyDjhmcnY0TW8kVHzxHz5SIbIpJTBTOjRdqUliaMeDXY9QSLz80lmM35xruqiNEIKS7aO3P4l4lbv6eg4NZ+F6onNa6Cku5F1kegxkeo2OxOxjBzbhyPcvIZ9zwBkDoaI1dLyhy2LT6uZidroIz2UIfAZFpdB0it7+hfsIF5rBKxtzSCRLy+jladwczeGZ53dCN+4dmSk9xBKJpIalyixt5GPc98QQSraPmUkLuWkbgc/geQwbt2TBGEdhzkbJ8qMFh4QAqbQGVSUVYljTVWR6ElC1WjEMLCzeLRy/YSgtXxcK5tCO0Sy6LbQ7NIraaxfGEbXOJuWfO6E6a7nVe93Mkzo0nBWdAv0AhACBLzoHDg1nOxtUnTEuNIM3kdRkBq9EskQwxnH8zSvo6U1g76Mblns4HXHvSHeJRLLkhFW08bEcQMQUfrj4LF7t7JZGPkZAeEwTpgZVU2BZLkR3BmDs2ixK9rxw1HUFybQOxhiSSR2AEJNJU4NuKIhWiTUZw0Kmqp/74oP4wd+cq/DHVhN6lsOKabPoNhG1x6LzqI7aa4czJ24gkVSh9RgVlol23694B8R20zeaeVLPnLgBM6XDdQIEAYOiKtANBWOjubrtqzs5z3oe9FbnWS+DdzE+zxKJpJIPPxjHdLlFc5i6c68gBbFEIgFQKYo4B8AZ8nMOMj2ikcViZZbWE6Svfvt9DKxJgwUMtu0haerwPB8n3rqCkj0f4WUkVaTTOlwvAAs49uxbD1VVYKZ0UKWxEF5M+8fwjgGkMsLvbBVdBH5lKZZzjkSyMm3i7R9+VOOdVhQKP+DI9Ggo5F2A87pRe+2w0IzZboVmo5uLfM5G0tRgpvTosW6ysOvtV2bwSiQrE8Y4Th8dxeC69Ipu0dwIKYglEglGR6bw+isX4XnCW0soAC4EplUU3cN8n0HXVbz80tlF9RWHzRw8VwhIAPDcAFbBi6rCazdmsG3XAK58OAXbcpE0dex9bAO27RpEIqk1231X1c9WhP7Z/sEUnJIH2/Lh+wyKQtCTTUQL2sLrk8neqPHbGgkVJdsHLced2UVxvn19SWx/cBBnTtzA2z/8qO51rhb4mqbAKrrwXAYWMFCl1rPb7KZgZrIIzxNVeEWhMFMaNF1pKRgb7TOTTSI3Y81XiBUK3VCQ7TOb7q/d697It9xsPFMTBbglP7Lc6AkVA2vSbR232bVbCq+9RHIvcuXDSeRmbHz+l/eu6BbNjZCCWCK5zwkFo+f5oISABQwBE93yKCHR9Ltb8sE4EDAGI6EiN2Phte+er5uG0B4cnsdgl6usjuNDUSjsogenNF8V/uSnhrHrobUghGD7g2vQ35/C7KzVcOFcNd1WP5sRX5ynG2qU3dvIj1xvMR9VKB4/uBmXL00iXygBAPoGTGx/cBAXz403FPD1BL5VcOE6ASgVzTUCP4DvB3joUeHZbXZTAACuG4AzBkqFfSM/5yBpak0FbLN9Dg1ncevGLAjKNhA/gOUH2LtvYZ7CZosim40nldZwc3T+M8U54Ng+UunmN1OtzhPAot9sSST3IpxznDl+Hdm+JLY90HnW+krg3jJ4SCSSRScUjKoaNrIgUMoteQkhoITATBlIJDXhU9UUeK5YJMU5Q+CxjhcpMcZhFT0U8w4YE9YHzw2QmylFYphSgiee2YIHHl5XUW1QVaXpwrlq8jkbqlr5p26h0+WdLs5r9Pq1GzJwvQCZ3gT6Bk0wznH6+HUR3dageUg9P6xo6kKgqArAAaVsIxkbzTXcJtznmRM3YCQUIN5Bj4vot2a2jWb7HBvNIWlqUFTxHimqgqSpReNZiuvebDzXRmYAzHfTC/8NH29Gq2vX6DmJ5H5i7NosJm7n8eiBzTVt0u8VZIVYIrmPGR2ZwvhYDoxzUErLAlOIIs6BZEaPBMc3v3E88mFaRS9KNAgC3lHV1XV8lOx5O0QQMNy5lUfJmq/gpTI6PvnUMIa29kWPhQvnenoTmJxs3ho4znK0rG00jV59bV5+6WztYjvGy2Jv3n8bF/D1/LCMMRAQ9PYno0V1cc9uPmfD9wLkpu3IMpBIqlEahpnSoaoUtuWLmDSFQtFo0/eylS/XTOkg6cY5xN3SzLfcaDye60NR5m/yeNmvLVpPNyccczHvRhFyiaRacS7NnpNI7gfOHL8OM6XjgYfXLfdQukYKYonkPiWcCiaEiKkizsEhhCdjDJqmVlQ948IyCBhoWViEiQqtqq4s4LAtF54XRI9NTxZx/MgV5GbEdr0DSRw8vB19A5VT9apKYaYM0LKo6YRus4ebsVjT6HVFnELgB5URFnEBX0/gU0prsjXi23AO2FalZcC2fKR7FPT0JssxZhqMhLAQhB7oZrS60bjbNyHNxuOUAvieX9MoRNNbfwVqmoLZaasspkXjlWLeQW+/+Iw2e04iuR+YuJ3HjaszOHh4W81s3L3EvTtyiUSyIMLpXjOtIXQekPL/pXsSeP6F3RUCLp47S6kQzRxA0hSiopngcWwP+Tk7EsOMcZw7fRM//NsLyM3YIAR46LEN+Pwv760Qw6KSqSHdk2iaItGMhWYP12OxptEz2ST8qiYfmqGAElo33xeon/9rGApUXWm4Tcn26p5Hyfaa5gk3o9l23e5zITQ75r4nhkRjF8bAOIs+u/ueGGq5X0LI/O9HWVCHN47NnpNI7hfePzUGTVew99GNyz2UBSErxBLJfUpYnSTlilo4XQ5ef3FYPHfWsX24HFAUwC56yM+5oJRg15610esJATyXwbbdis5uuRlbtCyeKAIAMtkEDj63DYNrK1f8i45zBjSdtuUVbsZit6xtZRdoN+KrXvVaURU8/tRGjI3m6iYX1Mv/DTvSNerEFvisnByCyDIBIh5vlifcjFbbdbPPhdBsPOFxz54cg+cF0DQV+54Ywv5ntrbcr+v6yPQY4vejnJiRMlW4ZbtFs+ckktWO5wW4/OEkdu5ZU/N3717j3h69RCLpmvgUczhdHk6VN1scFj536p2rOH3sOhgXQsBIqLh4bhxrN2aweVs/7KIH1/Uxv06L49L74zh78gZYOV7twUfW4RNPbKqZZtMNFUlTK/s9F36u3/gPb9U8RgiifVMq/LdPPbcdwzsGcOqdq3jv6LWK5hvpHgPP/sKu+RivO3m4TjAf42UoGFibAdC+XaCeiEulNSHcXB+armL3I9mGEV+HPr8reu57f3UGt67PAQBmp21wzqLnNF2F74mItxDGGNSyZeDOrTwmxwvwXB9OKcCdW/kFx4p9+ME4bl3PgXOOwpyLVFprGh23GFFmzW581m7IYHBdOrphWLsh03J/wPzviWjFLYhbSpo9J5G0Ysu2QQRBky4/KwBKCTwnqPvcyKUJeG6AbbsGAYZ72ncgBbFEcp/SylvbSpSMjeaQ6TUqhB+hwIfn7sCxPPz8vZso5ktIZRLYumsAVz6awsStPACxaO7gs9uwdmNPxZg66TjXLvXEMIAKoc0Yx8yUhTdevYTNW3vx0fmJmtcX5hy8+u1zGFiTgp5Q4JSCin05pQCptIYHHlrXkWe5+ibj1NFrIBBfQr7n49TRawCEoGvkTT59fDQSwyG3rs/he391Br/8Tx7DvieGcOroNbH4LlxUBmEZ6PaYQGOv9IcfjFdcQ855+efz+NwLe+96lFn8ePHWze3ss9XvyWL70yX3F9euTFbETN5rvP/eTRgJFYV8Scy+tNHafqUiBbFEcp/SbIq5nWYWcdsAVQiSSQ1BwHDj6gxuXp8FVQg0XUFu1sZP374aHXfH7jV47OBmaHrlH874wrmFUC3k24VzwHcDfHxhsunrZmfsyAISVpnjMV6fe2Fv13aBsyfHysKUlvcvvNpnT45hcF26YZ5ytRgOCR8PrQHxynNoGfjvf/ZuV8cE0GQ89ePVPr4wic+9IK5N4AcoWSxKZ9B02nK/3QrihbRuXmnWEIlkpeC5AWYmixja2rcqfPNSEEsk9zGNppjbaWYRTiWn0jp0Q4VVdGEVXfgeQ0JXQQlBIS9+BkT18dOf34mNw701x0skVCRMvebxTqkn5DuBMT6fxduA6ulNSlGOrJuP8erWs+y5fk2GJyEEnusvuP3w/me21vXMLuSYjZ5rdA3Dx6cnC3CdoNy4Q6QzlGyG6clC2cKzuG2WF3rtmr2fi+1Pl0juFSZu58E5sK5N+9FKRwpiiWSV040fsx0B8fjBzXjv+CgCxpGbtuH5gfAGU47AZygUvciWoOsKVI3UiGFKCZIpHXobHefaOU/RftqHqiowUxpKdmdTkZQKz3JTURx7ivPQeiFEcjsxXs0Ivb714sGaxYrlc50J/8U4JtDYK12Yc+tew/AYLADAOQidNxxyxsACIDO4+LnRy5FFLZGsdsZv5WGmdaQyCy9mrATuYfuzRCJpRVgxFTmz89aHVh3l6sWBVQuIdUM92PPIOjCfwyl5SCZ1fOKJIVBCYRW8yEqQyugwTBXpnkrxoWkKMtkEtDY7zrVznp4XgBKCwGcVXe/aJWAMhDYfDK3zV5MxtB3j1Yx4PBjnvCIerFmsWN9gfWHX6PHFOGaz59Zvql8xCh9XFBFXForm0NOsKGRJItuWIwZOIlnN+H6AuZkSBtelV4VdApAVYolkVdOO9aEejRYSPf7U5ooGG+uGslg3lAUA3Lg6g5++fTUSoapKkcroYJyDBaI9MzCfLRw2gVjM81RVisAPKtIh2iH8e26mdCRNDZPjxYavbbTvnbvXtBXj1YxmXl+gsV/1zIkbmFNKCIJ5Ma8oBEmzddpBt8dsNR5NFy2+QzRdASHibqJvMIXcjAXXCaK4soShINtndh0D14z4PuvF0kkkks7IzZQAoCJh5V5HCmKJZBXTrXeyWpT09CbxyU8NY3BdGvk5u6Ki6zo+3js6iqsfiaqzpinYvnsQ0xNFWAUHqUwCe/atx8bhXigKhZnSo+52nTI6MoUffOccpiYK0HU1qvZZBReKSisEWDt87d89C0C0UI5PqWu6gsAPoKgKevuTcB0f+TkniouLQykBoQTFQv3mF53SyOsLNG9b3DdoghBSt3XzUhyz1XiyfYkaG0Y4nvCGK5VR6qYzLIUvN9znmjUZTEzkF3XfEsn9xuy0DUIIenoTyz2URUMKYolkFbMQ72QoIMIGGyXbhW1Vir5bN3I48dYV2EXxeO9AEopCcePKNFKZBPY/szXyDYfZwtcvT3dV/QtzjzlnACHIB5W+2SDoTAwDQmAP7xiouXFImioKeRYJS0IJCAh0g8B1KkvEjHH09Og14rPbnN1uPN+ZbBJTEwW4JX8+FzmhYmBNuul27Yy1G1p97oZ3DGD3rXxNVbqdY3Y71nC7lVIhXuxrLpHcTXLTFnp6DSjK6nHerp4zkUgkfbPgvAAAa2pJREFUNSzUO8k5h130UCyUKjzFnhfg5DtX8eb3P4Rd9KCoFLv2roHr+HBdH7qhwrZdnHr3GsbHckildZgpIYa78TSPjkzh9HEhhqlC61ZqOyXeTrnaM20kNCSSKjRNjdo9awZFT28Sijpf9SREZC9ThVbcZDTzbnf7XDNSaQ2OHW+CAji2j1S6tS2l22M2o9XnbnRkChfPjcNMaxhYm4KZ1nDx3Hhbn4NuPz/hdvEc4oWc40JYimsukdwtfD9APucg228u91AWFVkhlkhWMd34MUdHpnDuzC34ruhstv3BwYp0iInbeRx/8woKc6JCO7gujYOHt+Gnb1+FolKoqqgKqqoCPaVg9MosHnxkA4DuPc1nTtwAYxyUiErtYhAEtVP41S2Un/vCfAvrv/6Lk5idshH4QnUSKlqHEEprbjKanSfQOGe32XPNrs+1kRkxplguMufzjzej2/ekGa0+dwv5HCx0u05ziJeCpbjmEsndYjX6hwEpiCWSVUGz6ddO/JjXL4tKLCEcju3D9QKcevca9gNYt7EHPz81hos/vw1AeGc/8cQQHnxkPSglKOZL0I35Rh3pjIHADzA+Nt+koVtPcz5nQ1UIGFuEPs4x4lP4zQTc6MgUSraHgDFQWo5bKydLgDFYBbei3XE+Z4MQYDbvRovGkqZacZ7FvBs1pUgk559rtV09PNeHohAQQuY70cVykZux0IzeRjT73C3kc3A3twtZbHvDShuPRNIJc7MlgGBV+YcBKYglknuedrrKtculc3fgun5kSVBVBT4C/PzUGILgOubKlYG+QRNPHd6ObKxCkMokYNsuUmkDSVNM4VuWW2El6NbTnMkmEQQMJdtfVFEcr+o2E3BnTtyAnlCh6Qqsogffm/crKwoBZyxqd7z/ma3QdRXTU0VQQkAJAQsY8nMO+gdS4Jxjdtoqi1fRlKKYd9DbLxbFNdquGc2yhFuxHBm9C/kc3M3tgMX9/Vqp45FIOqGYd2Ca2qryDwPSQyyR3PPUmw6O+2PbgQUcxbyDWzdmwWJeWs45PCfAzKSFuZkSCAEefnwjPv/LeyrEMADseXS9SJBQCIp5B5bl1lgJuvU0P3ZgExRVQSKpliuhbZ9aQ3btXdO2gMjnbKgqhW6oNdOEhBBQSkEgossAcd3CIYZZuyR8nJCot0coYHn5/5tt14x4ljDjrCJLuBWPHdiEku1jZtLC1J0iZiYtlGx/STN6uz3mQj4/3XrpF+P3a6WPRyLpBKvgwky3jnS815CCWCK5xwnFWpxOpl/dko/8XAmeF8BMGfDLrYkDnyE/W4q6vfX0JvD8L+/FI/uHQKu6UxAC7Ny9Fk9+eis4J7AtD2bKwKHnd1aIzuEdAzj0/E6YKSNarFb9mnoM7xjA7ofXwfc4PF8srFOU7lWxbij43At723599aK7UJ/GhXnY7hgQiw5TGQNUoeBcLLpLZQx4XgDX9ZHpEc8xzsWCvB4Drus33a4Z+5/Zip2714BzgsDn4Jx0lItMiRDlHKJBBr0LOfvdHHMhn59wu5Jd/7PZiIX+fi3meSzVeCSSdmEBg215SKVXR3e6ONIyIZHc43Qz/UoI4HsMtuVWCL09+9bj5DtX4ZZ8OKV5EbZpay8+9ZkddfODVZUiaYps4U1b+7Fpa3/T8XaTMTs6MoWzJ6/DdYVxNyjbJsy0Ds8NWuYPEyI8z0Jg6jBT89WNdvyY1YvuQjhHxfULPdThexKvJoc3HAAwO11u/FEW1r7P0NsvbBHNtmt2fcauzYIqBJyJmLixa7NRrFwzzpy4AZSvD2cElBKAYEkXeIUWlFRm/rw8r71FZd1mFHebQ9zq9+tu+3kz2WRNUxO93NREIllqrHLEprkKBbGsEEsk9zidTr9yznHlwwn83f99Ft/9X6fxxt9dxM3RWQBAJpuAqiqRGKYKwb4nN+HTn99VVwwnEirSPYmuG220y1t//5HI/61yDtiWi97+JLJ9zRd3cA4wzqEbSk38VzvxV9UVPd1Q6h0GA2uFKGn2ngwNZ2FbHgI/ACFA4AewLQ9Dw9mup9KPv3kFtu0B5YozOIdtezj+5pWm2wHA9GRBeLMDFnmaS7aP6clCy2275V6qcjZ7TxYjBq7T2LWh4Sysois+PxCfH6voYmg4u0hnLJE0plgQ6UKyQiyRSFYc7UercXgew9VLEzj21hVQhUR5wSffuYqh4V5c/nAKQbniuXPvGjx6YHNFZSyEUoJkSoeuK2hhb62g22paGPEGzEeKASLpARCV2VRGR7HgRqKZllMXAp+BEIJEQkW2z+w6/itemfzvf/Zu3XFO3bGi1zZra2ym9PkKn6pANxSMjeaw/5mtXbUtnp22RARcGEtHAFJevNcKFgDgHCRmg+GMiceXiOVYyNctzd7Ll186e1fj4wBgbDSHpKnBc1k5pUSBplPx+Vmkc5ZIGlEsuCAESKakIJZIJCuQuFgLRefbP/wImWwSjx/cjKGtvbCLPjzPx8/fuwmqkCgvmBICq+Tjo/MTAIBkSsOBZ7dhw6b6FSdNU2CmNBBKOxbDb7x6Cb4rhGB+zsHN0Vn0D5p46rntbU8zVx+Tcw6/7Ct+4uktuHhuHIpCKloCN/Jndht/FY85i48jHnPWrK1x0tRgxr5Q4m2Nu7UEkKqVhtU/N0JRCDwvtuCPC0/vQjzaraiX+9xJw5i7TbP38m7HwOVzNsyUDpKu3xZbIllKHNuDkVCFtWqVIQWxRLJCaNZatt3KanUkk1Ny8e4bI7CKDlwnAKEELOBQVIJEUhUL4IpuJDK37hrAJz81HHlh4xACJBIa9ITWVcrDsSOX4ZaE/ywuamenrSg2CqhfiaMUYKx2nwAwOV6EkVSh6wpOHxsFYxyKSsvCXQclvHxzcKPmumWyScxOF2PVNgpNp5Gft9F113S1LH551AgDwJLHnP3olfP4+MJkJF537hnE517Yi2xfEtOTFqo9Jf2DrX2lfYMpTN3Jw3XKbaqJWHTYN9g86m0hdNMwZqEsRevmhcTAdesDXmhkm8wvliyEUsmHkWjdAfNeRApiiWQFEBey8dayu2/lMXJxAjNTllgQltYqckeBSlFRslwoCoFp6qAUmJm2YRXmBS8v5wsHPkcx71WMgRARpzM5XqjoTAcIi4SZMqBq9b3C7XzR5mZsEFLbXIMxUY08duQyPJ/VzVdtJIZDHNuHY/ugVIyVBQw+ER5jPaE2zGsdGs7i1o3ZyG4Q+AF8P8BDj2ab5r1u2dEXVdSBeYG/ZUdf84Gi++roj145X3VMXv75fDmnoZZGj8eJrkG4sI5zuG6w5J7Ubivh3dDo92uh2b3dvpf1PneWH2Dvvg1LdkyZXyxZDBzbr4ncXC1IQSyRrADqZYu6joPTx65HQgWco5B3kekxoCgEx9+8AtcLKr7g5mZLWLs+Dc1QMD42F0WmtYOZ0mDbbtSZLhTFuqEiaWoNp+A7+aIVHdRq96GqFDOTFjK9iYYtjRsR9xTH4+B8j4ExREkG9XyaY6O5hn7esdFc0xbLukHhuSyqEGs6RbFQeZNRj26rox9fmGz4eKOc4pnJ1tPoza7BSvSkdlPlXKrWzd2+lwvxAXd7TNkuWrJQOOdwHL/G7rNaWJ1nJZHcY8Q9hSXbQyHvRFFiccEHAIW8i76BZI2ATKV0KJQin3PgOAGcUntimFLhG9YNMQ3mI8CFs7cxtKUPSVMrJyo09ki0+0Xb229ieqpYs72ikii6rJvkgUY+Zs5Fo4pm+2vl523m8+zpTdZ4iNv1cXZTHW0kels17WhFq2uwkui2yrlU7amB7t7LhfqA2zlm9Y3D9GQB6UxlfN9KTfaQrExcJwC4SBdajazOs5JI7jFCX6Bo4+tWPFetdwJfBKMD4guNKgTJpIaAcbieh2LBBVUJFIXA9+uLJUIAM6PDLrjI9iXheQHyuRKCgIkFd4qCTE8CtI2FVe2KjYOHt+HI9y+hVJpvDU2IEJ1BwNHbb8L3WV1vZD7noBHxG4YgYBXXK6wYu44vWi77ATRNjfJ5W3mIm3k1W/k4m1Uyu6lyhgve2n28XRbiST31zlWcPTkGz/Wh6Sr2PTHUdjOQbjhz4gbcklf2OyPyO7eqcq60VIulHk+9GwfPYbCoaK2+FMeUrH6c8hoQ6SGWSCRLxmMHNuGNVy/Bsb22khtKlo9sXxKKSmGaOizLFXfvIOjtS0JPqKJC7NfPzjKSKsBF7nCp5KNkeyBAtBDN9xluXJ1uuHAvLuZ0XW0oZOMM7xjAc198EGdO3MDMZBFBwEEVoLc/FfkfG3kjb16frckgDolfr+prpygEVtGFVXQjv6aqkaiq2MxDvHZDpqlXs9lzzSqZ4badVjl37hms8BDHH5+8U6hrj+gbbC12uvWknnrnKk4dvQYCYenxPR+njl4DgCUTxRO35+C5lR0DnVKAidtzTbeLn6Oi0I5aJS8F9a55yfahUIpvfuP4ghe81Zu1SZgqSrYP3bg3kj3uF7ZsG0QQtFgksQKglODKx8K2tWvPWgysTde8pl5E572EFMQSyQqBksbT/3EUhSCZVvHM53bi+FuXMTVZgEIp/ICBBRyPP70JG4d7cefmHN59Y6TCR0wooOsqerJJ7Nm3HgDwkx9+LKbBTA1JU0Ox6IJSUrfqVk/olWw/arvb6ou21VRv3Bup62qUEDEwmMLURK3dQnh3VRAiMpbDyjNVRIpGIqGhkHcBECgqRdJUYSS0qCsagK4zgZs918xGEr6HnXo5Ravp+ikTL790FjlqVyw+pBRIms073IXvSTee1LMnx8pimJbfCwLGGM6eHFsyQex79X9BGj0eEj/HxUyZ6Jbqa65pCigBAsYWZcFbvVmbpKmBBRxmypApEyuIa1cm27a3LSe79qyLWsinexPQGjQnupeRglgiWQGErWxDUdewYkBEh6DeARPprIE9+zbgwtnbKOZLSGUS2LNvPdZu7MHpY6O49P44gHK3uSc24cFH1tVdGKclFJhJ8WWZz7tIJBTohlrXW1hf6Iks44SpL/iLNhTM1cLb9xnMlIZEUgNjvEbQiKqaWuPpdUo+jISCnl6j4rm4paPbTOBmz7WykXTrZ/3cC3vxuRfqH69/TUpUwFUFvh8suafZc/2aLFJCSEUW82KzkDSNbls3LxXxa/7yS2fBOG/rJqkdu00jS0bfYApffnHf0p6YZNVSKlv1kklpmZBIJB3QiU80n7NFG99gvspZjaYrSKUNuJ6PO7fzGLs2i43DvRURaVN3Cvj7736AudkSAKB/jYntD67B6Mg0Pjx3OxLN4TaEEAxv7Udu1gJngF4WamEl4L//2buRP3TLjj6Mj+XAOIeqKtB0BZ4rLAaUEDz13HYAiDUFqc39bfe61BPenhugkHdhpmr/GC/EC9xsu2Y0O49WHtFmz3XjPV4Oj6ymq/A9v+YmpJ0s5m7Ro/xndJz/vJJp14ff7qLCe63xieTewLY86IYCRa0fv3mvszrPSiJZZsIvLqvoVHxxjY5M1X29rqvIzznlKejK5wglSGcMmCkdhbkSKBHi+MLZ29FrgoDh5ydv4PWXL2ButgRCCB7ZP4SHH9uIC2dvwbbdqE3zqXev4eboLFSVItOTwIMPr4Nt+fA8UVX0vABWwUU+58D3RBXQc0Unu4Bx0HI7ZKvgIvAZKBEd29549RKOfP9S03MOr8vsdBEly8OtGzm89rfnceqdqxXnnM/ZFYkTYlGcC88LKnJkw30PDWdhWx4CPxA3Fn4A2/IwNJzFYwc2IQh4xfmF4qDZdgt5f5sds9lzzfbb7Llm+1wq9j0xBA6R5ME5F/+WH1/KY4IIISw6BQIgS3vMu0Emm4ySVkLq3dDUi49TFFITTTi8YwCHnt8JM2XAKfkwU0bDbo0SSbvYtofEKq0OA7JCLJEsCa08pNVVPs55FGxGKQXnIi3BSKgwUzpKJQ+FWQeptCaqYZyjmBdV4NlpC8eOXMHslAUAyPYlcfC5begfTOGNv7sIqohGFfmih6C8+O3yxQnsfXQjAGDz9n4cen5nxZhyM6IyJTyp8VVrKIsgXn6egypENAwpeOBonvt75sQNBH6Aku0L8U8AzhhOH7sOQOSz5nM2nFIgrBFlK4NVFIv+FJXWzZFtmqXbxAt85sSNrjJ4W0XNtfLlNnru5ZfOduU9/vKL++66Rzb0Cd/NlInlOObdoN2KbifxcXez8Ynk/qBkeUiYUhBLJJIOaPTFNT1ZqDvl6bk+UhkDJdsHCxh0Q0Uma8D3AhTmSmCMI5WOZQUHDGbawPmf3cL7p8bAmGi5u/sT6/HI/iEoiqiuhqLZsoSgTJYXzt25nY+ix4DKL8/RkSncHJ1teG7pjI65WafiZyOhoTDnRl7OeMxZfrYUHSufs+E5QZTqgPK/fsBw+vh1ZLJGOYaNwSqK+LmkqcH3AxBCkDTnr2lcCORzNpSqiDhFIS29wK22a0RocZnNu1Hr3aRZ33fdCa3220wMLcQj221L3/3PbG0oRpeqTXCzYzZjKVo3LxbtLmxcafFxkvuLku0hldZbv/AeRQpiiWQJaPTFxYL6VT4nAJQkRW9/EklTh6IS5OdK0A0N+57cjFPvXhOZwJzDDxh8j8GBj7M/FZXDdI+Bg4e3Yc36TMU4UpkEpu4UQAmQ6UmAUIK52RIYR8NUg1ad4YyEBk33EfgBFFWJMikpJeAgcB1/3v5RtlOEPsdMNolC3kV8LRbnouzM2PyiojAr1XMZKPWhaSpUjVTkX8aFgK6rmJ4qghICSsoV8TkH/QPNvcBLtV23sWvN9muUrSKLLYaWoqXvSmsTvFStmxeTdiq60hssWU6cko/+wdbrK+5VpIdYIlkCGnk6FYXU7cYWVimNhPAGTk8WYRe9aAHc/qe3IJnU4ZQ8cCb6yYcL53Y9tBZf+D8fqhHDALBn33oQStDTK5pezM2WEJSrzY2qma07w3HohgIO0a44PD9VV6AoQG62VE7K4AgYh5nWIp/jYwc2CeFczpfjvFxTJoBaVak1UzqMhIJf/9pBPP/Cbiiq0tAjG7echPsmaN3Fbam2a+b1bPZcs/0ulU+4XV/qcu9zIay08XSL9AZLlhOR2rN666hSEEskS4SmUuRnS5iZtKBQikPP70TfYKru4pl1Qz14+rM7AE4wPVmAYWjY//SWKA1i43AvDh7eJiqsc07kr33uiw9g/9NboDYIRN+8rR9Dw72wLBeW5YEqFJkeQ/zboLLYquLolHxk+0zs/9QW9Panoi/mRx7fCFVVKizHYQpAOLU/vGMAjx/cDEIoAsZAKEHS1KBQWpNrGa9+xoVAyfZqhIDnBUhlxHlxDlCFIpUxorSMRizVdtWLAuPXoNlzzfa7VGKo2XhW0j4XwkobT8joyBRefuksvvmN43j5pbMNF91KJMsN5xye60NfhfnDIatX6ksky0R8erZvUFRm3bJQqp7y5BxIpnQ8+PA69PQm8elf2IX+/hSmp+ebUIxdm8GZ4zeQz5Wix7Y9MIjHP7UZepO4Kd1QkTQ1PPz4RkxPWUiaWlvTrI8d2NTQQ6yoFL/+tYPRz/GFZy+/dDaWpcyilsK25VcI8P3PbMXaDZkKv+TefVlcPDcuKs0NxnjnVh6T4wWRglH0cOdWviLmbHa6snFHELCW8WmhtaW3f/4mwPMCmKnmDS1aHW8hsWvNxrMUC6WWwpe60ryuK208QHe2kpVmRZHcP3iuaJeuG6tXNsoKsUSyyDSbno1X+QCgfzCFPY+sR/+a+sLt6keTePdHI5EYJkS0XR7e3tdQDBNCkErrMFOayBnusLI4vGMAu/auqfvc4wc3NzzvsApnpjRwzE/51xO3wzsG8OUX9+HXv3YQX35xn0iCaDLGsE2wiIFD1CY4jGvrNj6tWxtCq+N1G7u2HPFpS3HM5TiPe2k8QHc2jtVi/ZDce7iOyP9ezZaJ1XtmEsky0SoaaXjHADZt64ddztVtxOjINI6/eSVq56zpCsy0DsYYLpy9XdGQI34cM2WIBXgxOq0sfu6Fvejtv4rTx68jKFs8MlkDazfU+pRDwiqcbqjI9CBKmdA0ta2p/WZjjLcJJoSAU17RJrhp7FqLY3bTtrjV8bqNXWv13FLQ7TW42/tcCCutdTPQWYTaQraRSBYDxxHfVau5QrwsZ/bjH/8Y//k//2dYloVnnnkGX//613H06FH8yZ/8CRzHwRe+8AX87u/+7nIMTSJZMK2mZ13Hh215DRdulWwP774xgtGRaQCiKmymdWi6qApRQqM4NQC4OTqLS+fGQQiQNHXs+cT6RfmiX7shAzOtRwsBfZ81nZ6N20E0XUGKEgQBXxSfa6s2wfmc3bQFczO6sSG0c7xu2z4vR37sUhxzpeXgrrTWzd3YOFai9UNyf+C5oSCWHuJF4/r16/iDP/gDfPvb38bAwAD+2T/7Z3jrrbfwB3/wB/jLv/xLbNiwAb/927+Nt956C88+++zdHp5EsmCGhrM4few6GBc5siJBgsAwVPzgb85hy47+utXdm6Oz+NmJG5ibtaOqsG4o0Aylwh7hBwypTCLa5uenxpDuEZnF05PFRfMUtmo+US9nNmzwMTNZRBBwUGU+xq1V++Fmz2m6Wp6yq7yJCKsVCxEK3eTlZrJJ3Lw+WzkcAmzc3Bv9+L2/OoNb1+einzds7sEv/5PHAAA/euU8Pr4wKVIlCMHOPYP43At7W47n1DtXGzaliJ7zAmiack83rFiKDONm13wxxwnMV8YBMVMS+MJTr6gElFJQBVBVBVZBZHcTACAEnHEolFZkhMfpJHat3WsYvi78nVU1gt7+1LJX0CUrC788m6npUhAvGq+//jq++MUvYv369QCAP/uzP8O1a9ewZcsWbN4s/Im/9Eu/hNdee00KYsk9x+jIFC6eG4eRVOA5QpQZhg4zo4MzjqmJAiZu57EfqBDFo5encOKtq/C9+QQK3VDwwENrceWjKfh+AFWh8AMGFnDs2Sd+f66NTCOV1uGW/FiOb2V3uG5pNj3bcHHP8zujL22jXFluN4O32XMDa80KcRkysNYE0H0+a6tFSo1ERW6mWK3NAQ7xOGrFMADcuj6H7/3VGaQzBj46PzG/Gefln8/jgYfWNRzPnVt5nDp6rWwdIZGPOqTRc/eaKF6shWPx9873GGzLi56LX/N2RXH1Z2FoWCwEjY/zyPcvgXEgkVTh+wx2sfKYvscBMBAKlJiY3SAEEI0fRXOd3IyNN169hM9+6cGa823XitLuNQxfxwKGUkk07wl8gtnpxbuxlqwOwgqx1iDRaDVw1wXxtWvXoGkafuu3fgsTExN47rnnsGvXLqxZM7+IZ+3atRgfH7/bQ5NIFkxYVU0kDGh9ClxX2CNmpixkehJQVQU+ggoP8O2xORw7cgUsEApL0xQk0xo457hzq4D9T2/BhbO3UcyXkMoksGffegxt6UUioaGYd6KKV8hieQqbVV1btaZe7Oem7lh1xxg+3q1ntdV5NBIVxbxXd3/h4/XEe/h4/L2K8/GFSRQLXsPxTI4XIh81ICwjoY8aQFOP9b1Eq5mJdqgWhPlcse7rPjo/gc+90Pn+rKKD08evI5FUkUjo0TjzOdGQRusxkJtu/DvIY8mLcecU50I4uyUPx45crnu+7VhR2r2G4etKVhA10eFcNMTRDXVRbqwlqwNPVogXnyAI8P9v782jrKjP/P93rXfr23s3S9MNDSKIKKAQICCIBmMEZWIyajSaTJJJYjKeTCYnicmYySQnM1GHrOMcZ5xkPHOS+EuMX1yixiUOKCAgIKIgIEvTTUPT+3LXWj+/P+pW9b2379573+d1jke66lbV535u1b3veup53s+BAwfwm9/8Bl6vF1/5ylfg8Qx9rJnuRyMdVVUlIzXEEaGmJn3xETF15yccVODxyfB4JYABne0BGIYJMECMtVMWeA6RsAq/3409O87gvYPnne19fhkejxRnWaZi8dI6LF5a57yG46xObi63BF+JC4GBaIJoVVUdVTUlw57ja2+4FC9uO+JEnjXNABgXW/4e3LFx2ggCj3DQauk80us0zbAeN3ODxjgmM6FphvM+a2r8uHrVnLzeYziopD3m0UNtkOXBdBVJsub26KG2jPvMNu9Ow42Ebn3W8kzj0TQDPM8lrON4zvmhil/HcZyzbrJda5nmINf38uenjiR8dtle29cTRnmlFx++dh4uuaw24/6UqIZwUIWhmwgFVLhcotNBkZkmGMdBFAWkKRHIihG7Me7pCqO/K5JyPNnIdQ7t1wX6ouB4DpzVBgamYcLtlvKac6IwfD4XJHHiF6oFB6zv6OkzypxOolONMf8UqqursXr1alRWVgIArr/+erz00ksQhMEf9I6ODtTW5vcl0N0dhGkW+A00wkyUoo2JylSen7JKL0zTRDikQonqltAxLf9e3bDCQrpuQBQF/H+/2u/YqYkSD5dbgOwSwXGc1Z5ZN+Dxyo4n8YWWPrSc6UEkrEIQBCz90CxcvmwG3nj1FAzDTEgVuHzZjGHPcX9/GDwP9HVbUdjySi/WXD8XZdUeeEtcQ6LHmmbAG/uiHOl14ZAGTdVhwvLCtH/nJVnM6X2mS33I9D66O4MAYHX3000IIg+3R3SWpyPbeOybnWTBxHFcxvGEQxp0TQfjBzdkJoMkWV/j9jpn/7F1k+1ayzQHub6X7s4gXG4Rup65wQoA9PWGYZomWpp6cPZUNzjOskNcdW2jEx219xcOKRjoV8Difmt6eyIoLbMiqhxvdW7suDgyc77tiUMpUyeykesc2q/jBR6mYQJWd3jwAo9oVMtrzouJkbxJCIUUKFF9xPY3WoRDKgBgYCCCcEQd59EUTqbPbsx9iDds2IBdu3ZhYGAAhmFg586duPHGG9HU1ITm5mYYhoHnn38e69aty74zgphAMNPEwiumoa87jFBQARiDKPGxFscCwBg0TUc0lkIR6I+C5zlcuaIOH94wFwAHXbd8UnXdSMgVvtjaj5PvdyIcUqFrJkJBJZYzi1HpXubkFjKGimov/OVup7kIMDo+u5nWzZ5XEYuixuY69u/Z8ypyfi/hkJKQ+tByujvjMSVJQCigxJqMAKZhIhSwRIbPL6U8lr28ojp1MV9FtQeXXFadct0ll1VnHM+SFXVgAEzTBGNWSgQDsGRFXcI6k5kJ6yYbhXgGJ3d8kyQhoSMkx6d54shZNxWBAdVJWWIM6OkOYfuLJ5zOcf4yD3TdRDCgJohhwN4+9hRD4Ky25UndKAtFjWoFeQznOof262SXADN2TgEMksyPu08zMbHQNOt7UBCnbvuKMY8QL1myBF/4whdw5513QtM0rFmzBp/61Kcwd+5c3HfffVAUBevXr8eNN9441kMjiIJRFR3RiIbKGh+uWt3g5PyWlnkw/zI/2i8EMNBnFffYP9TllR6s2jAXFVVWYRjHczh2+CIiYdWyT1syHTMbyiEIPFqb+6EqmvUonOMScgK33LlkxPP8suUgjpbPbrp1h/a1Qnbx0FTTiRBLMo9QMHUub67vZcudS9Iec++OJjBYublO1DX277IKH0KBviHHKquwGqx4vC70C1FHZAEAL3DweF2xIq70jgfpxmPPUTqXCWedZnk/T1aXiXzzwVPl96pRHbZuFUUeHq+IcIpzpbTMirwni1ye46Aog+d7XUMZDuxuTpsGYRrM8v/mOPRpYZgjo4dhmkBPV+YnEqnIdQ7jX2cajFwmiLTomgEx1hBmqjIuiSuf/OQn8clPfjJh2erVq/Hcc8+Nx3AIomAM3UQ0oiU02JjZUJ7gIGGaDBzXhq72YOzfwKKlM3D5VTMhCOnvtjlusP1y+/m+IYboo2nIH+iPgOOAvoBqNZ4QLFExEj67mUi3XaA/AkEUoKmDSkMQhZzef6A/Yn1GcdtKMp81iqeqOvylLkTCujMHPq8IVdWdx4fJ9HaFnGPKLgFKRHcEvOwaHO9HblmUtpgr09wtXzsnrci1102UlKThWKflc/6kuuFRFR26aiAQ665VVuFBXUM5mk/3OrZ0LrcAXuCtHP84OM666TFM03FUee/tC1nHseXOJfjto3sBcBCExDoYwzTBcxz85W4nomyvtYojWdqUPzN71kdKcp3D5NdNlPOHmFjY181UZuJnchPEBCUa0aBEtYzFMwN9Eezd3oTuTkso+cvcWLWhEdW1iUWgF1r6cGB3M3jB8ivWdQMfvN8Jf6kbsxorUVI6tob8siyipzsEnuPAcxxMw0RgQEFlVeoW07kyHEutRAsr629/WfbiDlU1EsQwYFXR84KRcTy2y0Z55eAca5oBr8+F9vP9qY8VE2DMZIiGB/MCGQOiYR2if+o+boyn0M+5EBGdbA+oRDVEIzoYY6iq8UGP3bSeO9sHb4kEt9uLaOw1tj9wvIcex1kFjjzPO44qumoVNBpG6ovdbhrjL/MgEkpsumPvq6zcDU03IQgcSvwyQkENpmGiosqDeQtrUkegOcR8zAlifNF1E6I0tb+/pva7I4gRhuOsR0eB/iiikfRimDGG4+9dxEv/76gjhi9dPA03fmLREDEMAMcOXwQvWNXp3hIZZeUeKBENB/ecA1BYXuVwYIw5ESzHFSHu34USH82zUz8EgcuaJxkOpU6NSLc8HjVNwYoa1TOOJ9OcpxNG9vJommOmWz7VKORzzpTrnQk7v9cmEtat/H1x8NiKYkBXjYTxuD0i3B4J5RUe2Ce7HdQ1GYPLJWDZylkI9EcyFmxzHJybpmUrZ0GUhVjRJIvldFv7Wr1hrpPvzxgwbWYpbvrkYtz+hRVYvnYOKqt9CS3XBZGHr0RGRfXwbkIJYiTQKUJMEIQNMxnCEcvtIJMuDA4o2Pd6EzrarMeOvhIZK69txLSZpWm3CQWicHsklJS6wQs8ggNRcBycR+yF+uymIpconKYZ8PldThTNdliITw0phEzNPjJhF7YBSHCZMI3syZrpb1oyj2c4c27oVvMFsLjxchixYquJTiGfcyGdERvmVaVsygIAXt9g4aNpmjFLscTxKFEdn753FVpOd2PP9jPo77XGV1HpdVwm/GWtTtRXEBKjxBwHuDwSVm+YC8C6Tq/ftMDZF8dxCfuyX5OKVdc2OlH1fJrLEJOb2Y3VQ9J2xhOe54AUDyVOH++a8hFiEsQEkQNarMFGpkgRYwynj3fh0N4Wp+PcvIU1WLaqPquZeUWVD5zAQdcMmIolOpNTIgrNy40n10fZ/jIP+ntjzTBs8WkylFV4cz5OKvFSaIvlwdbNFoOtrbN/hdkFcamWZxtPujkXJT6hq2D8cnu8mpoUDWbW8mLAPn9UxXDyr2WXkPH8ydYZcfuLJ6AoRszWUMP2F09gw00LEm5cerusDoIMg08PZJdoNSxJOl4unzNgRX1fe+EE1Khd1Bo7/zigosqL1RvmJmw7nPz5kbrpJSYPzU1dE8p2bf5l0yC5hv5e2UV1U5mpLfcJYpiYBkMooCAUVDOK4XBIxesvncT+nVb7ZY9Xwvob5+ND6+ZkFcOSJOCq1Q0Y6IsiFFJHNSUi10fZdQ1lCIdUGLoRa+dqIBxSUddQlvUYhdqcZcJu0Zzr8ngKtTnLxLKV9UOjKFxsOTAsm7ipQCHnT3LqAzAoWvfuaEIkogGMQeB5gDFEIhr27mgCACdSLMoCPD7RyvfVDQz0RxEOqXC5BIiyUFDKkR31La+0zjWe51BV48OmWLrDSArWhnlV2HLnEnz63lWj4h5DEIWiqkZOAYjJzNR+dwQxDOKLc9LBGEPz6R4c3N0MNRbZnT2vElevmT0k2pUMxwEutwS3R4LP78La6+fh0L5WhIMKvCWuUYkO5foo+3xLPzxeCZpqxlImBEgyj/Mt/Vie5RiF2pxlIlvr5kwUanOWCdvpIZ0FWiioFWwTNxUo5PxJlfpgi9aXth117O8Q+z/HGPp6Bj//+LbposgjEtah6yY01cTGWxY6rynk+hqJpzMEMZnRFB3yFG7bDJAgJogEOM5yIIhG1CHRqmSiEQ0HdjXjXFMvAOvR7IprZqNhbmXW4/A8B6/PlZCTZf/ojqbtUa4pC4H+CLw+GVzJYBiUMZazzVkm0V2IuNBUHYLAOT7MdtHSkLSENBRqc5aJTBZogf4ISss9CdZbuc7fVKCQ86dhXhWmH20fcuNifzbJ/qfJf8efdy63BJdbAmMMSlRPyN8lWzGCyB+KEBNEEcEYQzSsQVEyF80BQOvZXry18yyUiCXI6hrKsWLdHHi8qTuYxSPJIrxeKX33rALI1a4qOQoXCWuIhq2mIs8+cTgh17evJxQX4eMhyTzKK7NXvBeaJ5yJwRzixA9mtL+gD+w6mzYKnGndcOZv2GONVYOPRWOOTLni9vvX1MRCzD/8av+QvFt7/KeOd4LjrBtGxhhOHe9EeeVZlFV4EqLBgJXTzgs8fvvoXvjLPE53urGyJiSIYoExBlXRU+YWTyVIEBMEGDTNRCSUOU8YsHxm397TgqYPLCsoSRJw1Ycb0HhpVdYOPhzHweOVILsEpCzjLYCW093Yu6MJPV0hq3mGT8ro+ZpcgKSqBlweAV6fnLBdXUMZ2lr7nMfUhm5A1w1cvjR7DnGmR9+F4vNLCUV18ctHiwO7zuLAm83gYAk0XdNx4M3mwfVp1i1fO2dY8zfSYx0tUZypQNN+/yz5IQsH9PWE8doLJ3D9pgUJ5+fh/eedgrj463D/rmaU+GWIEg/TiK2LFba5PWLa7nTk0kAQI4OuW6lflDJBEFMYZpoIh3Xn0fuFlj6n7bLP73baJwPAxdZ+7Hu9yalen1ZXipXr58BXkr05hCjyVmvXDCb7drQt1xxHp3gtqDrNBEJBFSV+GYLAO3ZVydgpAs8+cTghkhuf6wsAXp886BIgCpBdQk45xKNRLd/XHc1r+UhweP/5mMC00lqsjmKmJdyAtOuWr52D8y39Bc/fcMfKcRwYzxLGMxpkyhUHrPMnHFQTnrbYNwi6amDP9jPYu6PJifym83YGrKJVQeRRVuGBqupQogYkLw+vT447NiDwPFweiVwaCGIE0WL1MZQyQRBTFFWxUgXsaFR8tzjZJSISUXFgdzOW6SbaLwRw8v0OAJZh/tKVszB/UW1Ofd3dbhFur5zxNfHRNrcnc5TXxhYkdicsAFb1fVhHWYU7a75qtlxfj1dyBIe169xzYEe6CCm+sNGxvUpaPtJoqu50IBs8NufcPGVaF+iPDGv+ChkrOMAwBov4wCHnHOtCyOX8Gdq1zfq/rpvo6Q5bbZIxNB84GY7jwEzL8/e2zy/Hbx/dm/LYSlTHbZ8fjVsOgiheotFBC8OpzNR+dwSRAiPWyjW5yUR8tzgAEEUBUV3Dnu1nnOhV9bQSrLq2Ef4yd9bj8DwHj0+GLAtZc5IP7WuFaZiIhg0E+qLgY76t6aK8wKAgEQQ+1riCc95ffO5koZ7A/b1hy3s59t55gbO6esXIlLecKb+2EOK9hBMijjnckGQbT7r3IckidE0fUhhnewlnWjecPOpC2hcLYqIvMmMAGHI20i/kmPZ7NA3TcnSIu54kWYxFxnmYSTnETiQ4ZkXH7D+yYJqDNxSjkadOEERqwkEVgNVkaipDgpgoKqIRDUo0dcvlUCDq3AEzxhAJa07RHM9zuGJ5HRZeOX1IZDAVkiTA65PA8XxWMQwAvV0hRKMaeI4Dx3MwDRPhkOGI0VTYosDrkxAYUBylyPOckzuZKc8zU65vR1sAF1r6Eo5nGgzBgOK00k233462wIjns5ZXudHbNTS6Wl6V/cYkU35t7Qx/2vexZEUdDrzZbHU5s50tYssBZFxXaB51ro1TkknXsS+XTn65HDOVYI5vWMEweKPC8QDHWU8qJImP9fzOOoy02PccPM85gnc08tQJgkiNLYg9PhLEBDGpsa3UImE1Y4tMn9+NSEQFwCEUUBwxKoo8Nv7VZY4xf7Zjud0SZLeEHIOXAKyomf3omIP1HJljLGNepS0KBIFDiV9GKKjBNExUVHmcKv5nnzhckCfwoX2t4AXOmQOOixWHGczJEU233672YMb82kIIBVL798YvTxflzJQLXD2tJOP8AOm9hjOtKzSPOlv74nSYaU7rdMvzOWZawbzxEvh8MjTVgBmzKBRiOfKmaeUQa6oJDmZeepiPpQE5BXmx/HjJJTqCl7q6EcTYEQ5RhJggJj3MZAhHNGhqdiu1BVdMw94dTQk2UZLMY9W1c3MSw6m8hXOFFwDo8WkBViIon6GoN1kUTJtZOkQUFOoJHOiPAAyO96+NYZrOtun2my33thCy+RBninJmGk+2+cnkNZxpHVBYHnWujVNGkmzHzCSYwyHVufHjOCsQbHWmM+GpcIPndbjcAjgOGOhTchpPeYUH4bAKXTNhGgwcB5RVeEasRTJBEPkRDqoQRT5r19XJDgliYsqiqQYi4exWagDQ3xvB0bcvOGKY44DySi+uXFHnuExkQpLEWIpEYXZqldUljm+raZjghdx8a7OJgkJzLf1lnhQFUVbxnr1tuv0qUSNjfm0hZMvnPbSvFYZuIBpO9P09tK8147YTLRe10PHEFxomL8/nmEpUczq8SZKAltPdaQWzbdvHTNOxQWMGA8db+ffO+RDR0NMdyun9ixKP27+wIqfXEgQxNoRDKrwlcs41G5OV/ENZBDHBMU2GUEBBKKhkFcOmyXDscBte2nYUPV2W/dOCK6bhk39zNW78xOVZxTDHAV6vDJ9fziqGW05349knDuO3j+7Fs08cdnJxASv9QRAF+Pwyaqb74fPLEERh2DmRy1bOgmEwaJphRVQ1I6dcy2UrZ0GUBScSa5omTMbgcglO/mi6/S5ZURfzkjWdbePzazPNQzri92kyc8g+e7qCiEb0WHGhlTsbjejo6QpmHE+h8zNaFDqeSy6ryWt5qmOGggqCARWGbgBgkGQeb7x6yml4EY+dsysIsbSMuMuMmdaTFXvcjLHcXLc5YNnK+lxeSRDEGBIKKAmOOVMVihATUwo1qiMSSYxspiMwEMW+HU3ovBgEAPj8Lqy6thG1M/w5HUsQLB9UQcx+X5mtcCk+/SFXH+JcKDTXsmFeFa7ftAB7tp9Bf28EHMehotKLVdc2Otum26+9PlV+baFFY3ZqwmAntsScXdMAwBg4fvCzYKYJ00jaNkW+70TKRS308/rILYsAvD+k7bG1PLdjvvrccTDGIIpWQajsEqFpRqyxiInkAjbGrP+nik6XV/qccb/xykn4/C4EA8rQRh0xRInHspX1o95ZjyCI/OntDmP2JVM/PYkEMTElMHSraC45kpUKxhhOHevE23tanKIxj1fCspWzchbDskuExyvl/Agpl2IpW0zW1PjR2RnIab+jSbZ0jEzr0+XXxtvLGYYJIcleLpP9V+0MP6qnlTg3DPGflSBw0DQ4YtB2fbCLvPp6wtBUA4xZqTTxbYAzvY9C7NqGS6G5sR+5ZRE+cgsKOn862gJOJ0BdM6BpAmTXoLfvuhvmD3mvrz53HMwczAu3LwVJFp2CRGAwJUMUBceazfZK9vgklFf6El5PEMTEIRJWEQlrqKwevbbzEwUSxMSkhjEGJaJDUVJbqSUTDqrY90YTLrYOALB+lH0lMjiBw6F95yCIfMY0iULbL49HsRRQuI3XaBFvL8dzifZymcYKIGPjkopqH/p7w4Od4QQebpeAsgov/vLc+zj5fqczBsZY7O/3M0ZQC7Vrm2yFXvb7tGFs0GZJdgnwl3nSiHSWcM0N/jvxQrTdUHTdcIobGYASvwzZJY76NUAQROH0dFrBg8qa7IXlkx3KISYmKVZ+ZaA/imgaX+GEVzOGpg+68OJTRxwxLEo8Sis8kFwiRFEAL3A4dvhi2n2IIg9/qTvmVZxfcYG/zJMyD3O0i7fiI9McZ/1fEDjHOm2sibeXA2ybOTh2bunGmu19LFs5C7zAw+eXUVnthc8vgxd4LFs5C6eOdaUcS7rlNsntkHmeBxdbPp7zWkgOdibs95lMOKhmyV/mYnZ8sb+cfyfurWFeFdZtvASSJMJkAC/wKPHLcLklaqZBEBOcni6rILYYIsQkiIlJh2kyhIOa5RWcg4NENKJh16unHEs1l1uEyy3AX+pKsOMSBR6hQDTlPlwuET6/C7xQWJXteBVvBfojEJNynMciMp0OXgAQZ5sWby+XaazZ3octurw+F5SoDq/PhXUbL0HDvKq0+eTZ8sw1VR+SEhNv1zYe82pH0cMhJSEyPRxRrKl6Wr/ihYunpY148wLA8Rx4noMgWP/n+NRWgQ3zqrDxloVwuUUwkyE4oKK3K4xoRKdmGgQxgenpDMHlFuGd4h7EAKVMEJMMVdERjWg5CWEAONfUi/07z0KJWrmOs+aUY8U1c7D7L6cRiahOm2YA0A0TPn9i5zOe5+DxypBkHvlGheMZr0YCE81WLN5eLt4ezbaXy9ZKWlUMx5ZOjqVE2KTLvY1v+5y8PBOSLMZ8jpmT82ovH815zZSbHB+ZVhUd4ZAGXTfw6nPHsWRFHc639Kctyky73wyd5M639GN5mnFm+yxTYRqm86TENBkMw0RHW2BEroOW093Yu6PJyQ9P5V1MEER+9HSFUFntm/KWawAJYmKSYBoMkbAKTTOyvxiWcD64uwVnT1mRM0kWcPWHGzBnfhU4jsNlS6bjwO5m6DAgCjx0w2oCcNmS6c4+RFGAt0TOqVVzLoxHI4GJ1uLWHo/sElOOJ1Mr6bbWPivdgudg6AbCuoFFS2ZkPeb0WX60nRtIuTwTs+dVJOUeDy6/9PJpozKv2XK+7Vx0VdERGFCslA6Og6ro2L+72TpXGUNgQMH2F09gw00LhnSbA4COCwN48akjcHuktM4PgGVnl45sn2Uye3c0QVUSr1/GgINvtqB2hn9Y10bL6W5sf/EEIhHNScnp6wnjtRdO4PpNC0gUE0QBaJqBzrYALr9q5ngPZUwgQUxMeJSIllOesE3buX7se6MJkZDV1nf6rFKsXNeY8MhnZkM5lgM4dvgiQoEofH43LlsyHTMbysFxgMslwe2VRuHdjC2jGZkuxGUh23gytZL2eCWncYkgCpBkPmME04bjrA5LiR0IBXBc5oyxUFCDyy1AVQwnQiy7BISC2qjNazY3EjsyHQ4NCj8n+s2sG0dR4mHoJsIhEy/88QhklwhZ5mEyhlBAd5xVACASTt0S20bXTDz7xOGU7zGfOWg53Y3uztTNOUyTZW1NnY09288gHLveY70ewfGArmZve00QRGrazvXDMBjqGyvHeyhjAgliYkLCcYCmmohE1JgHanY0zcA7e8/h1DErqieKPJatqse8y2pSPu6Z2VA+xFGC5zl4fDJkWchZgE90RiMyPRz3ikzjydRK2uuTwZVwsS5oVi52Ljm7gf4IyircQzrVZdvWEnnptxupeY2/sQgHrY5Q8akYosijpyuIP/xqP/p6Ik66EMcBPD8028E0Et0fVEWHmlvX5CHouunkK/f1hPDS0+9DlgVUVA/6DGebA/tcyYQ9p4XcZLWc7kZPd3jIcmYCBjPJxYIgCuRcUw8EgcOM+rLxHsqYQIKYmHAwxhAN526lBlg+qnt3NCEUsH75a6aXYNW1jSgpdWfZchBJEpz2lFNFDI8Wh/a1IhrWhkRdRysa5y/zoKt9AJpqOtFaSeZRPa00p20z5fum8xoei/zroTcWVrEoxwEut/WEIhxSoUR0qFGryM9uhMHYoH3ZQJ913nMccs6vzwpnFZoOtnTWwEwgoptQLwzg1efeh7/UA1XVM4pXO+rNC1xCdNqGFzj4yzx53WTFC2claqTNgQZALhbEhGZ2YzUMI7egz1jA8xy0WGpTy+lezKgvT/gOnMqQICYmEAy6ZiIcUnP+Udd1E+/ub8WJ99oBWD+uV66YhQWLp+Wc+8txgNsjOQKEyE5H2wB0LfFLXFMNdLQNzdUdCXwlEi60DB6PMUBVTPhKsn9mmfKoM3kNj0X+dXKKRIlfxkB/FOGgBtklQtdNKFEDHM85KRKCwME0GUyTgec4yC4RPK/ANJGya1zBMMSKSa30kfhcY9MwYehAb08YldXejOLVznv2l7rQ35vk4sIBbreIZStn5dS8Bhh6ExEMqOnfAgO5WBATmuamLqfoeyKhRDX09YRx6eW14z2UMYMEMTEhME2GaERzumXlQndHEHt3NGGgz/qRraz2YtWGuSiryD0ixPMcvD4XRIkcCPMhWQxnWz5cmk/3Oi4P8Y4Pzad7s26bKdf11eeOO17DgCU4TdPE4f3n8fmvr8krT7iQx/3JDVtklyUcQwEVStSKvCoR3frBjLu/43kOZsy2TonqKK/0IhiIwjQAM52HWh5IEg/DMBGN6pBdekLaUrzoNg2G/t4ovD7J8WFOfs92pF12iSircCMwoDiR4qpqn9MO/I1XTubUvCZZOIsin/CkIp6qGh/lDxNEAfR0WWlIs+ZUjPNIxg4SxMS4k6+VmmGYOHqoDe8fuhATRxwWXzUDi5bNcIRNLuTbfpkYPzRVt3xuOW6wNTNjMVu07KTLdbX3G4/tNZxpu2QKzalOlZbBCzym1ZU57YyffeIwOi4MJFjHMcYgCDymzSx1Xndg11m8vfdc1rHmQnmVF0pUQ3BAGRqBTbJp01QD/aoBj1dMme8fH2mXZAGl5W4YBnN8ou1GI+GgikhIg7dk8GlNqhSV5JsIj1eErlmFjzw/WGgouyWsurZxROaDIIqN7vYQZJeIiqqp36HOhgQxMW7ka6UGAH09Yezd3oTe7kGv0VUbGvPqolNo++XRxsll1QxIkuDkso77eJJya4Hs3r6ZoqWFrJNkMfb0IPGYVtfA7GTar67pQwrnJDn9fu199XaFYBgMvACYhpVe4HZbTiaSJEBTVbz8zPtgsRs9j08GGEMkbN38pUptEEUeoixgzXXznGXLVs7Cay+cgBLRkuacoaNtAAd2nUXtDD/272oeusMC6bwYZ7eWFHFOZ9MWCesAdPznQ69bPtGy4DzxESUehsFg6KZzLiXbwfn8MgIDCoIDChgDBJFPmaKSfBPhckuIRjTLgcQEAIYSv4z1N16a0oc5nU8zQRAWSlRHd2cI9XMriipgRIKYGHNMw0Q0okHJw0rNNBmOv3sR7x0470SSF145HVeuqIMg5B4VFkUeXl/hHedGi0y5rOMhirONJ5O3b6ZoKYCC1vn8Usp0Gp8/ew5xpvEsWVGHA282wzTNwchzbHmmfalRzSrmikPTrPNLdlniPZQUWQ0OZLd60HUzdqM2SMO8Klxx1cyUgtfQTRx4szmjl/B4YOgmIrFoMcfDmSuPV4SmmjiwuxlnTlits530B0mArjOEgyoC/VaKhS2c40nO7Q6HVGiaCW+JDI9XcnK944k/B9weKS9XFIIoNi6et77bZ8zKXrQ8lSBBTIwZlpWagf6+CKKRzP6n8QT6o9i7owld7VbUqqTUhVXXNqJmeubGCsm43SLc3onZfvLw/vNOLivHcWA8c3JZx0MQx48HSMytXb52TkZv30zFUQAKWtfXnbqldvzydFHgTOOx0w3SRcKTObSvFYZuDBHDAAAGhENWMVymQq9syG5xSC7umRNd4Pih0VnGAJ7LaLIw/sQNLhLWIQiWU0ZfbwSmYcJf5gJinfeiEQ3WKcfBWyLh+JH2IU07knPCdY3B65Ph9Q1G55OL8eLPAY7j0hbsEUSxwxhD27l+lFd54Jmgv5ejBQliYkxgJkM4okFTdchSbqcdYwwn3+/AO/tandzE+YtqsXTlLIh52MBMBm9hTbWKpgxj0FYMHHLOkS2UdCIy23gC/RF4vNbnaBgmBIGHxys6BVAcB/QF1JTrshVOhQKq0wrY7bG2i08ViC/qspdnigIn55wmH3P52jlpBXDy/PR2haCnSfFhzLrh6+0O5+ydnYrQgDLkhrGvJ5y2w7L1SHPinNjJ11jy33YeuBnLg7YaoEhOsxFwHPiY3Vs60Rqf2/3bR/dmPaeynQMEQVj0doWhRHXMXVA93kMZc6i0nhh1NNVAYCAKVdFzFqShoILtL36Ag7tbYOgmvD4JG266FMvXzs5LDEuSgJJSNyRp4ophwMqXZGZMPNg+s6a1fLSwRaTdeMEWkS2nuxPHg6HjkWUx5hZgguc4mIaJwIACWRYzrvOXeaAniUW7cEqSBIQC1nYcZ6XWhAKKE9VLhb08VQTQdj3IdMx850dVjSH7ShwPhjyuzxfDMKEpJlpOdyftO/UcpMrlHg7pUgY5Lv26TNun2sYuCvT4JJiGCU0zoOvWjQYDnJutXERrLp9voecAQRQbba0DECUe1dNyr8uZKpAgJkYN02QIBRSEgkrODhKMMZw50YU///Eo2mN5THPmV+Fjn1yM6bNy75Zjewv7/K6c/YjHE3d89IqlWT7CZBKRbk/q3Fx7OWPMKUe0BRkX+3emdctWzoJhMGia1WlO0wyncIrjOOet2+KPxf59yWWD0Yp4/WcvD/RHICbdPNhiKtMx850fl1tIsH1LprTcjeraYf6QcBzcXtFJIwGs4tF0wjfblcXzHCQ5802kIAJIJXhjTwasYXHg0lxLGYVy3DqOh5On7fVJEEQeFVVeK68/Fjku8csZXSaSyeXzLfQcIIhiQonq6O4IYnpdaV6OTVMFSpkgRhzGAE3RERlSFZ+ZSFjD/p1ncb65DwDg8oj40DVz8vZBtL2FJZmf0FHheDjeEkFKRHcEl8sjphUgI0Gmx8gcZ0XponHjcXtER/homgGf34VoRE9Ib7AdQ9Kty+QJ/MYrJ+EvdSES1p1UC59XhKrq+MgtiwC8j1PHuizBHRPJ1vLM3egyHTPf+fH6ZGiqAdMADNNMUKPeEjln14t0cDzgL3VBkoWEyOjqDXPx2gsnoCdFqEWJx7KV9aid4ccLfzwyZH+b/noxAOu9d7UHYp3+4tNPOIgSh5rppahrKMOZE13o6wlbnznPQZJ5eL0yggEFhmHltfMCBxZzyRBEHr4SCbzAIxSw3CHszzzeZcLjlwCOszpJ8hxKSiRwPAfDYFizcV6C4wQvWMWNuTZCyeXzjX8NuUwQRGrOnekBAMxsKB/fgYwTJIiJEcXQTUTCasbHyqloOdOD/TubnR/Q+sYKrLhmdt7d4yRJhNdn/dhOFjEMDAo6f6kboihA1w1omgGvzzXqx0zXmjgcUhJaX8ePx1/mQV9PKGF/hmGivNKKjvb3WrZ4dnTQNBnKKjL7WSbskw2Ox95neaXXKuSL2dKVVw7uL1tXuVz9hJPHk2p+aqaXOp3V7NbBksw7RV2AnQJjQhAFRyAaugGO51FZbY07FFAQDmuxMDjg9VpPNABrruMjow3zqnD9pgUZRd+mv16cVvDl+t5zzaW259Ve5vW5sOa6eVmPE78fr2/oGAu5cbG3zfY6+zU1NX50dgay7pMgigklquHCuQFMqyuFx1ucXVtJEBMjgt0xKx8rNcB6RHNgdzNaTlt3prJLwNVrZmP2vMq8/A+tiObwI3TjRbygEwR+TB7pZhORmdbVNZShrbXPaSds6FYO6OVLrbSW5HVh3cCiJTMyFr9l2mc2G7jhiKlC5idegNnvSdMGX+dyCTCZALdHdJZFIzp4Ds7rZLcIQRKwcPE0HD/SDiFLZDSb6BtNwZfu2PnOb67vgSCIsaXldC8AhtlzK8d7KOPG5FQPxITBtlILh9Sc84Rtzrf04a3XzzoV9TPqy/ChdXMSIm25IIjWY93RLEAbbcbjkW42EZlp3fmWfnh9MlTFsNIbRAGyS8D5ln4AgMcrQVPNWHRUgCTzON/Sj/Mt/Rlt19Lts6s9mNWWbqTFVK4iO9Xr7MYa2ZbZ+6ud4R9RMU8QBJEr0YiGttZ+TJ9VBneRRocBEsTEMDBNhmhES9kwIROqomPf602OMb8o8bhqdQPmLqjOuyuO2y3C5Zka7ZfH45FuJhGZaZ1luyYl3Lwwxpy8V69PBlfCpVyXyf4q3T6ztVgeLXIV2flEUNMtIwFMEMR4YD2h5dAwN796nakGCWKiIDRVd1rQ5kP7hQE8/8ZZBGJdu2pn+LHy2kaU+PPLlZ0M3sKTgUxtlDORS/5xIev6e8ODEWKBh+wSUFbhhRI18m6xTBDDpdDrgyAmC5GwhovnBzCjviytu1CxQL8mRF6YBkMkrDpuArmi6wYOv3UeHxxpB2B1JLvyQ7OwYPG0vKO7kiTECucmj4vERCRTPm+2H/3h5B+nW9fRFkibe1zXUDbYYpmPuRwgfYvlkYREUXEynOuDICYLZ050geM4NBRx7rANCWIiZ5Sohmgkv6I5AOjqCGLv9iYE+q02u7Uz/FhxzWyUludnis9xgMstFf1d7EiRqaVxLhX7heYfp1t3aF9r2tzjhBbLmgFJytxieaQgUVS8DOf6IIjJQE9XCF3tQcyZXzUkla0YoRkgMmIVzZmIRNS829EahokjBy/g2OE2MGalOSy+aibWXDcPfX35tUy1vIXlvLrUEZkZbjvbQvOP062zrLjS5x7bLZZHOsc6UwSYRFHxQu2eiamMaTKcOtYJj1dCfWP5eA9nQkCCmEgLYwzRsAYlj5bLNr3dYezdfgZ9PdaPR1mlB6uvnYuKam/eHXDivYWJkSNbHnAxjCdbBJhEUfEy0a4PghhJWs/2IhLSsPjqmUXZlS4VNAtEChg01UCgP4poND8xbJoMRw9dwCtPv4++Hqvj2WVLp+OjH1+EiurMjRmS4TjLrcDnl0kMjwITrZ3teIwnU/tqwBJFyU1mSBQVBxPt+iCIkUKJamg+3YOqWh+qaobZan4KQRFiIgHTZIiENGha/nZWA30R7N3RhO4Oq9uYv8yFVdfORfW0krz3JYo8vD4XeIGE8GgxGs0sJtt4skWAsxUPElOXiXZ9EMRIcfp4F8CASxbWjPdQJhQkiAkAAGOApuiIRDSwPPMjGGP44Eg7Dr/VCsOwtr10cS2WfGgWRDG/nF+OA1wuqajNwceSieZ/O9bjyfZYfCqJInLLyJ+Jdn0QxHDp6Qyh82IQsy+ppN/ZJEgQEzB0E5GwOuTRcC4EAwr27WhCR5tV5OQtkbFyfSOm15XmvS+7cE4qUm9hW7Ck61RXqKAZre0O7DpruT6oOiQ5P9eHfMd0YNdZ7N/VnHKdKPFYtrI+47HTHW/ZylnY/uIJBPoVGIYJMAAcwHMcWk53O4JoIoii4QjaqeKWMdlE/WQbLzG10XUDHxztgNcno6GxuJtwpIIEcRHDGIMS0aEo+VupMcZw5kQX3t7TAl2zhPTcBdW4anUDJDl/JwhJEuDxyeB5rmjFsC1Y3B5piGApVNAMdztDN6ApBoIBFe0XBnDVKkt4Hth1FgfebI61U+agazoOvGkJ1myiOJ8xHdh1FgffbIaZ4V5N10zs39WMY+9exPqPzh+yj0zHAwCTWecz7POOAYqiTyjBOFxBOxXcMiabqJ9s4yXGh9mN1dbN+Bjw5vbTUKI6brnjStTOyC1oJRWRsxMJ4qKEQdNMREJq3p3mACAcUrH/jbO4cK4fAOD2SPjQujmom12e9744DvB4ZMhF7oGYqrgrXrAUKmiGs52hG4hGdEv0cgAzTby95xxqZ/hxeP/5mBi26nI5joNpmji8//wQQZwcJVMiWsKYVMVAOKjihT8egewajDTbopvl+FsRDKQWHJnmAADcHhGGboKDCY7jwBiDqhjw+YUJIxiHK2inglvGZBP1k228xPjQ3NQFJTq6LegBoK87jOPvXcTiq2aibg5Fh1NR3CqkCDFNhmhEg6rkfwEyxtB8ugcHdzdDVaxOdQ3zKrF8zeyCTL0FgYfXJ0MQyewk0G85cvQFVJiGCV7g4fGKjmApVNAMZztNMZyucYD1+RuGiZe2HYVhMCQ3GOQ4DpqaeF6lipL190TgL3MBkoBQUEU4qDqvVxUd+3c14723zyMazvMcZXAcIuIFR7Y5cLljgpgbfB+GYU4owThcQTsVLMQmm6ifbOMlpi6GbuLEkQ64vRKWf3j2eA9nwkJKpIhQFR3BgWhBYliJatj9l9PY839noCoGZJeANdfPw5rr5xUkhmWXiJJSF4nhGLIsIjCgwDSs1sSmYSIwoECWrbkt1P5rWNsZg08PTNN00hbMWE4LY9ZyG8YYJHnwXGg53Y1XnzuO4EAUoYAKTTVitmY8QkENABAJDYrhePIWw7CeNqQSHJnmwF4Xfx4yxiAI/IQSjMO1f5sKFmKTzQJvso2XmLo0nexGNKJhweJaam6VAVIjRYBpMIQCCsIFpki0nu3FC388gnNNvQCAmQ1luOmvr0DDvPx7n3McB49XshptJIcYixjGGJzZiH1EXGw5ULigGc52Vj63dXxb9/I8B1EU4C2RneWMMZimCQZgyYo6AIORYU0zwHODAl9VdHh8EkzDjI0p35lKj8crpRQcmebAXifJPBhiwp8xyC5hQgnG4QrahnlVWLfxEnh9LihRHV6fC+s2XjKpHt1PVFHfcrobzz5xGL99dC+efeIwWk53T+jxEsVFf28E55v7MLO+DOWV+fUCKDYoZWKKo0Q1RCP5F80BgKrqePvNc2j6oAuAVc1/9Ycb0HhpdUFi1hZSXp8LoXDqyGCxomkGfH4XohHdSZlwe0Romp2aUpj913C2u2pVPd7ecw5GTA1zHAAO8PokyC4RjFme1abJhrhM2PmToshbUW+OAxhDOKTB55dRUeWF2yujr3tkHh97vCJkt5hScGSbA3tdT1cQpmGlXZRVeJ3XTASngJGwf5sobhmFMhEt8LIVzk208RLFhaGbOPFeO1xuEY0Lqsd7OBMeEsRTEI4DNNVEJKLCKMBKDQAunh/Avh1NCMceaU+b6cfK9Y3w+V0FjYe8hTNj53iWV3ogigJ03YCmGfD6Bue7UEFT6HbL185B7Qw/Du1rRfv5foDjUOKXIbusrw2XW0RFlQ9b7lwyZFs7f9LjFREMqLDvyHTdipKt2TgPDfOq8i6c43mgtNzj2NIBg4LD6xtqVZfLHGRaN5GcAia7oB0JJtocZCucm2jjJYqLMx90IRLWcOWKOoiUnpgVmqEphhW1UxEKRgsSw7pm4MCuZmx/4QTCIRWCYEWFN2xaUJAY5nkO3hIXPD4Sw5mYqI9XG+ZVYcudS3DjrZfDW2K10M5lfHb+pMstocQvgxd4mAyQJDHhUf3ytXPy6pYkucQEWzoA2HLnEqy7YT4A4I1XTiY8th4u2Vo7E8VNoD8yRGhQ4RwxEejtDuNCSz/qZpejoopSJXKBIsRThuFZqQFA58UA9u5oQnBAAQBU1fqw6tq5KC13F7S/YvcWzof4x6vpGnOMJ/b49mw/g96uMABkzEeLb3ksu0TwAg/DYCnzVrs7QhBFHoZh5SEjzbliPfkwoCr6EOu00YriklMAkYmp4N5BTD10zcCJ99rh8UpovHRi/IZMBkgQTwFM00QkpEPTCvMyNAwT7x04j+PvXgRjVlT3iuV1WHjldPB8/rnCHAe43RJcHooKT0Yy5cxGIxoQ8xzu6Q7hz//vKESJB8CBF4DK6hLn9bnkT7ac7kZvd9g6zzgAsYcasZRj8DxQUupCcEB1bNGCAQVlFR5HmI6m3ysJHiIT8Td+omg5k0yEJztEcXP6uOVtvGxVPQSBEgFyhQTxJIYxQFN0RCKa4waQLz1dIezd3oT+XiviVV7lweoNcwuuRrXaL7tiIonIlWyd6rLx3z95HbqW3zFt0WkjCBzmLqjGxQuBlNHWvTuaEIlo4DnOyfllYI4nNS9w6GofwEtPvw9ZFlBR7Usrgm2hrEQNcPZNV9xY7HFxHIdIWIcQV5xnpwLZwnQ0o7gkeIhMUOEcMdHo6gji4vkBNMytKPjpbrFCgniSYugmImF1iM9lrpimifffuYgjBy9Yll8csGjpDFx+1cyC7yglWYTXKw0KHCJnsnWqy0QhYhjAkDQWw2A4+X4nXB4RpWVuqIqOcEiDrht49bnj0DUjwQouGdNgUGPexRHdhHphANtfPIENNy1w3kNykZpdcMe4oWk1gsiDmSYM3URJqYxgQAUzLc/g+BzmQ/taRy2KS4KHyAYVzhETBU018MGRDvj8MmZfQudkvpAgnmQwxqBEdChKYVZqgOVLuHfHGfR0WrmgpeVurLq2EVW1JQXtj9ovD5/hRDkLEcOZUCI6erQwDMOEwHPgOc4q9jMZOB5pc3yTMXQTYd3EG6+cxKfvtb6ck9MbRJGHoRsAl7hbXrAcLQb6oxB4DrJLhFs3oUQNyLI4xFFiNKO4JHgIgpgMnHy/A7pm4MoVdQWlOxY7pGAmDcMvmjNNhg+OtOPw/laYsUjegium4coVswq2ZKH2yyPDRMtVtdMSrKcHXExoGjnbo8UT6Ffw5K8PQFV1hIMqvCWy8z49XhGBAQMs1gravskzDQZdN+HxSHB7JChRHeWVVgrG1avmoLMz4OyforgEQRQ7nRcD6LwYxJz5VSgpwBGKIEE8KTBNhmhYg6oWVjQHAMGBKPbuaELnxSAAwOeXsWp9I2pnlha8T9klwuOljnMjQXyuqiDwE8Z2zTQBXrCEKyBioE8ZknucC329EVRUeRAOaQgFrH243BJcbgmBAetvjrMK8xiL5cerJjbesjAnYUtRXIIgihVV0fHB0Q74y1xoaKwY7+FMWkgQT3BURUc0ohUcFWaM4fSxThzae87JN563sAbLVtVDkgvrac5xHLw+KbY9ieGRYDi2a6I0smkTLrcIVdEd0Vvil+FyS9A0A1U1PjDG0NsddnLF7acNmbAjzXYaRDioQXaJ1jnJLCcJd5wrCWMMSlQnkUsQBJEBxhg+ONoBw2BYcMV0quEZBiSIJyiGbiIa0ZzWvYUQDqnY93oTLrYOAAA8XgkfWt+ImfVlBe9TkgR4vDJ4gS66kcaOctbU+BNSArLxt99YX3BhXTLeEhm+Ehmqosfyd3nILtGJWK+5rnFIO2MlakCUrLSKgT5lyD45Dk6hpuwS4S91IRRQoUR1+Ms84DkOZlLImazNCIIgstPRFkB3RwhzF1TDVyKP93AmNeMqiB966CH09vbiwQcfxLFjx/DAAw8gGAxi+fLl+MEPfgBRLE69Ho1oUKKFF80xxnD2VDcO7m6BplqCevYllVi+ZrbTdjdf7EfcbvIWnpD87TfWp1we7+pg6CaCA4p1XsVEqsslYMNNCwAMNrdgjIHjuYT83eS83PgUBfsYvMDB4xURCVupPYLAgcE6H71xnQp5gce0ujKn5bO9PWBAiWiIRHSAAcEBBQd2ncXytXNGZc4IgiAmM0pUx6n3O1Fa7sasOeXjPZxJz7gpzj179uDpp5/GtddeCwD45je/iR/96EdYunQpvvvd7+LJJ5/EnXfeOV7DG3PsLlyRsAbDKMxKDbDE9P6dzWg92wvAevy9Yu1s1M+tLHif5C08eYl3dbAs3YBw0PKtnjazNEHkJhemrbluXs75u/a2hm6iqsbltHeWJAHBgIJgQIXZHwXPWyJ8zXXzhmz/+ssnHTHN8YBpmDjwZjMAkCgmCIJI4tSxThgmw4IrplEtzwgwLoK4r68PP/vZz/DlL38Zx48fx/nz5xGNRrF06VIAwK233opf/vKXRSOImckQjmjQVH1YLY7PNfVi/86zUKKWqKibXY4V18yBx1t4VJe8hSc3yXZuLrcE2SVCiepOhNYml8K0dF3s0m3bcrobr71wAqZhgANnNaNLcY43zKuCqhwHzwM8P3jjZZomDu8/T4KYIAgijq72ILrag2icXwWvj1IlRoJxEcT/9E//hK9//etoa2sDAHR0dKCmpsZZX1NTg/b29rz2WVVVmIfuaFFT48/6GmYyRCIqohENJT4X4CvMKkWJatj56imcOGrNmewScM1H5mPB4uHdNbo9Erw+eVTuPHOZn2JmpOanqqYEgYEoTMNEMKDA0E1wPIeqal/exzh1rAO7XzsDQeTgK3FBiWrY/doZlJV5cclltSm3+fNTR+ArkSHLg181qqrj6KE2XL1qTsJrNc0Az3MJ5xvHWx7IyWOl8yczND+ZofnJDM3P2OHzuSDlmR6qaQZOHeuEv8yNhVfMyMtz2OuVC+5EO9UZc0H8xz/+ETNmzMDq1auxbds2AKk7X+Urwrq7gwU7MYw0uRRFmQZDJKwOq2gOANpa+7Hv9SZEQlZF1fS6Unxo/Rz4Slzo7Q0XtE9R5OHxyjAjDOGIOqzxpSLforFiYyTn5/JlM7D9xROIRDRwsK4r0zDR3x/Fn59+D2dOdKGvxzpPyiqstt3posQ7XvkA4Bh4nodhmOB5DgZnYscrH6CsOnUBXHdnEC63CF0fPM85zlqe/B4lSYCu6WD84HXMTAZJEhNeS+dPZmh+MkPzkxman+yM5A1DKKQ4T3Vz5eTRDihRHYuWzkA4PLSQORPhsArNGJ7umMxk+uzGXBC/+OKL6OzsxJYtW9Df349wOAyO49DV1eW8prOzE7W1qSNOUwElqiEa0dO2wM0FTTPwzt5zOHWsE4DV5nbZynpcsqhmeFFhtwi3lx6/TBUa5lXB7ZGgKgZMk4EXeHi8lt3ZwTdbwMAcodzXE8ZrL5zA9ZsWpBTFhXTTy6fhyJIVdTjwZjNM0wTHWcV9LLacIAiCsDrNXjjXj7rZ5Sgtd4/3cKYUYy6IH3/8ceff27Ztw1tvvYUf//jH2Lx5Mw4ePIirr74azzzzDNatWzfWQxtVrKI5E9GI6vgBF0pHWwD7djQhGLDuDKunlWDVtY3wlxV+cfA8B49XhuwShpXHTEw8NM1AeZUn4UYp0h2GaTIIQmKKgq4aOLSvNaUgLqSbXnzDkWxtle084cP7z0NTdUiyiCUr6ih/mCAIAlZNxQdHOuByi2icTx7tI82E8TXbunUrHnjgAYRCISxatAj33HPPeA9pxGDM6jSnKMMrmjN0E+8eOI/j714EYInYK1fUYcEV04fVt1ySBHh8MnieIzE8BUkpZGPNNJKfJpgmSxvxzUfc2uTbVnn52jkkgAmCKBoaL6nJ2Vnq3QOtCIdUfPSvFqG+sTDnqPjfASKRcRXEt956K2699VYAwMKFC/HUU0+N53BGAQZNMxEJqcPOb+7uDGHv9jMY6IsCACqqvVh97VyUVRbevIC8hYuDVEKW5zkwbrCDnA3Pc2kjvvmK2/jtqOMcQRDEUESZB29mD2iFQyoO7TuH2fMqMXdhTdbXE/kzYSLEUw1mmgiHdWhqfsnyyZimiaNvt+HooQtgzBKxly+bicuvmpFgT5UvlrewDJHuFqc8qYTs/MtqcfTQBavYLiaKGWOQXGLWiC+JW4IgiLFl/86zMHQTq+M83ImRhQTxCMMYEAoqGOhXhlU0BwB9PWHs3d6E3m7LBaC0wo3V185FZY1vWPuVJBFeH3kLFxOphGztDD/27mhyXCbKK70ZXSYIgiCIsaerPYhjh9twxdV1qKgiy7TRggTxCGLoJiJhFUIs2lYopslw/N2LeO/AeSfVYuGV03Hl8joIYuFRYY4DPB4Zsps+doKivQRBEBMdxhh2v3YaskvE8rWzx3s4UxpSRiMAYwxKVIcS1YZdlBboj2LvjiZ0tQcBACV+F1ZtaETN9OH5HgoCD69PHpagJgiCIAhi7Dh7shsXWvpwzcZL4HJTvc9oQoJ4GFhWagbCI1A0xxjDyfc78M6+VhgxW7b5i2qxZOWsYVeFyi4RHq9Evc4JgiAIYpJgmgx7dpxBRZUXi5bNHO/hTHlIEBeIaTJEIxpUZXhFc4CVc7zv9bNoPz8AAPD4JKxc34gZs8qGtV+Og+MtDJAYJgiCIIjJwpkTnejvieCGv1o0LGtVIjdIEBeApuqIhLURiQo3nezG27tbnBbOc+ZX4eoPN0B2De+jEUQeXi+lSBAEQRDEZIMxhrffbEF5lRdzF1SP93CKAhLEeWAaDJGw6ojX4RAJa9i/8yzON/cBAFxuESuumYP6xoph75tSJAiCIAhi8tJ8ugfdnSFs2LSAfsvHCBLEOaJENERHoGgOAFrO9GD/zmYn3WLWnAqsuGb2sBtkcBwHr0+CJFOKBEEQBEFMRqzocDP8pS7MX1Q73sMpGkgQZ8AqmjMRiahOodtwUKI6Dr7ZjOZTPQAASRawfO1szJ5XOew7QFHk4fW5wAskhAmCIAhisnKhpQ/tFwK45oZLIAiU9jhWkCBOA2MM0bAGRdFHJCp8oaUPb71xFpGwBgCYUV+GD62bA69PHva+3W4Rbu/w90MQBEEQxPjy9p5z8PgkLLxyxngPpaggQTwEZkWFw8O3UgMsW7ZDe1tw+ngXACuSu2x1PeYtrBl2VJjnOXi8MiSZ7iAJgiAIYrLT3xtB69lefGjdHIhUFD+mTBlBPBKWJKbJoEQMaJoOnucK3ifPcxBFHl0dQbyz7xzCQQ1lFR5U1fqwbOUseEtcwx6rKApwe6VJa8UyWcc9VtD8ZIbmJzM0P5mh+ckMzc/4ceJIOwBgweLp4zyS4oNjw+kxTBAEQRAEQRCTHIrHEwRBEARBEEUNCWKCIAiCIAiiqCFBTBAEQRAEQRQ1JIgJgiAIgiCIooYEMUEQBEEQBFHUkCAmCIIgCIIgihoSxARBEARBEERRQ4KYIAiCIAiCKGpIEBMEQRAEQRBFDQniAgkGg9i8eTNaW1sBAE888QQ2bdqEm266CQ899BDsBoDHjh3DJz7xCXz0ox/FP/7jP0LX9fEc9piRPD82v/vd73D33Xc7f1+4cAF33XUXbrzxRtx7770IhUJjPdRxIXl+vvOd7+CGG27Ali1bsGXLFrz66qsAgDfffBM333wzbrjhBvzsZz8bzyGPKcnzc+jQIdx2223YtGkT/uEf/gGqqgKg66u1tRWvv/66c95s2bIFq1atwpe+9CUAND/2+bNr1y7ccsst2Lx5M771rW855w99/1jzs23bNtx00024+eab8aMf/cg5T4p1fh555BFs2rQJmzZtwsMPPwwg/XdxsV5jUxJG5M0777zDNm/ezC6//HJ27tw51tLSwjZu3MhCoRDTdZ3dfvvtbOfOnYwxxjZt2sQOHTrEGGPsO9/5Dvvd7343jiMfG5Lnx+bkyZPsmmuuYZ/+9KedZV/84hfZ888/zxhj7JFHHmEPP/zwmI93rEk1P5s3b2bt7e0Jr4tEImz9+vWspaWFaZrGPve5z7EdO3aMx5DHlOT5CQQCbM2aNezYsWOMMca+/vWvO9cRXV/nEtZ1dHSw66+/njU1NTHGaH7s+Vm3bh07deoUY4yx++67jz355JOMMfr+OXfuHDt9+jS75pprnO+f73//++x//ud/GGPFOT+7d+9mt99+O1MUhamqyu655x72pz/9Ke13cTFeY1MVihAXwJNPPonvf//7qK2tBQDU19fjhRdegNfrxcDAAILBIEpLS3H+/HlEo1EsXboUAHDrrbfipZdeGseRjw3J8wMAqqrin/7pn/C1r33NWaZpGvbv34+PfvSjAIp3fsLhMC5cuIDvfe97uPnmm/HLX/4Spmni3XffxezZs1FfXw9RFHHzzTcX5fzs3r0bS5cuxcKFCwEADzzwADZu3EjXV9z1ZfPwww/jjjvuwJw5c2h+4ubHMAwEg0EYhgFFUeByuej7JzY/J06cwNKlS52/N2zYgL/85S9FOz81NTW4//77IcsyJEnCvHnzcPbs2ZTfxcV6jU1VxPEewGTkX/7lX4YskyQJTz75JB566CFceeWVWLhwIY4ePYqamhrnNTU1NWhvbx/LoY4LqebnJz/5CT7xiU9g1qxZzrLe3l6UlJRAFK3TsFjnp7u7G6tWrcIPf/hDeL1efOlLX8JTTz0Fr9ebcP7U1tYW5fw0NzfD6/Xiq1/9KlpaWrB8+XLcf//9eP/99+n6iuPs2bN46623nPUdHR00PzH++Z//GXfffTdKSkowa9Ys3HjjjfT9E2PhwoV48MEH0dbWhtraWrz00kvo6uoq2vmZP3++8++zZ8/ixRdfxN13353yu7hYr7GpCkWIR5DbbrsN+/btQ3V1NR555BEnjzgejuPGYWTjy+7du9HW1oZPfOITCctpfizq6+vxH//xH6iqqoLH48Hdd9+N119/neYnhmEY2LVrF+6//34888wziEQieOyxx2h+kvjDH/6AO++8E7IsA6Dry6azsxNbt27F888/j127dmHJkiX48Y9/TPMTo7GxEd/4xjdw77334q677sKCBQsgSVLRz8/Jkyfxuc99Dt/+9rfR0NAwZD3HcUU/R1MNEsQjQFtbGw4ePAgAEEURmzZtwokTJzBt2jR0dXU5r+vs7Ez5mHOq8/zzz+PkyZPYsmULHnjgARw5cgR///d/j8rKSucxJlC883PixAm8/PLLzt+MMYiiOOT86ejoKMr5qa6uxpIlS1BfXw9BEPCxj30M7777Ll1fSbz22mu46aabnL9pfiwOHDiASy+9FA0NDeB5Hrfddhveeust+v6JoSgKrrzySjzzzDP4/e9/j5kzZ6K+vr6o5+fgwYP47Gc/i2984xv4+Mc/nva7mK6xqQUJ4hEgEAjgm9/8JgYGBsAYw8svv4yrr74adXV1cLlcjlh+5plnsG7dunEe7djz4x//GH/+85/x7LPP4kc/+hEWL16Mn//855AkCcuXL8eLL74IoHjnhzGGf/3Xf0V/fz80TcMf/vAHbNy4EUuWLEFTUxOam5thGAaef/75opyftWvX4ujRo2hrawMAbN++HZdffjldX3H09PQgGo2ivr7eWUbzY3HppZfi3XffdYTLa6+9hiuuuIK+f2KEw2F85jOfQTAYhKqq+M1vfoObbrqpaOenra0NX/3qV7F161Zs2rQJANJ+F9M1NrWgHOIR4NJLL8UXv/hF3HHHHRAEAcuXL8ff/M3fAAC2bt2KBx54AKFQCIsWLcI999wzzqOdWHz/+9/H/fffj0cffRQzZszAT3/60/Ee0pizcOFCfPGLX8SnPvUp6LqOG264AZs3bwYAPPjgg7jvvvugKArWr1+PG2+8cZxHO/bMmDEDP/zhD/HlL38ZiqLgsssuw7e//W0AdH3ZtLa2Yvr06UOW0/wA8+bNw9e+9jXcc889EAQBs2fPxg9/+EMA9P0DABUVFfi7v/s73H777dB1HZs3b8bNN98MoDjn59e//jUURcGDDz7oLLvjjjvSfhfTNTZ14FiqJBiCIAiCIAiCKBIoZYIgCIIgCIIoakgQEwRBEARBEEUNCWKCIAiCIAiiqCFBTBAEQRAEQRQ1JIgJgiAIgiCIooYEMUEQ48qCBQvQ09OTsGzbtm340pe+lHXbv/3bv8WpU6cyvub+++/Hr3/965TrHnnkEfzlL39Ju+3WrVuxc+fOrOPIRigUwhe+8AVEo9Fh74sgCIIYeUgQEwQxafnv//5vXHLJJQVvv2/fPui6nnLdO++8g1OnTuGaa64peP82Pp8Pmzdvxi9+8Yth74sgCIIYeagxB0EQExpVVbF161bs378fhmFg0aJFeOCBB1BSUoLrrrsOv/jFL3DFFVfgsccew1NPPQWfz4fly5fjtddew//93/8BAA4dOoQ77rgDXV1dmD9/Pn7yk5/g6aefxpEjR/Dwww9DEARs3Lgx4bj//u//jk9/+tPO30899RQef/xx8DyPiooKPPTQQ2hpacFPf/pT1NbW4uTJk/B4PLjvvvvwm9/8Bk1NTbjhhhvw3e9+FwDwsY99DFu3bsXnP/95VFdXj90EEgRBEFmhCDFBEOPOZz7zGWzZssX575e//KWz7rHHHoMgCNi2bRuee+451NbWYuvWrQnb79y5E9u2bcNTTz2Fbdu2IRQKJaxvb2/H448/jpdffhnt7e145ZVXcNddd2Hx4sX41re+NUQMDwwM4ODBg1izZg0A4Pjx49i6dSt+9atf4U9/+hOuu+46PProowCA9957D/feey9eeuklVFVV4bHHHsN//dd/Ydu2bXjiiSfQ3t4OAHC5XLjqqqvw+uuvj/j8EQRBEMODIsQEQYw7//u//4vKykrn723btuHll18GAOzYsQOBQABvvvkmAEDTNFRVVSVs//rrr+PGG29EaWkpAOCuu+7C3r17nfUf+chH4PF4AADz588fkrOcTHNzM2pqaiDLMgBgz549WLt2LWbMmAEA+OxnPwvASrmYNWsWFi1aBABoaGiA3++HLMuorKyEz+dDf38/pk2b5qxvamrKf4IIgiCIUYUEMUEQExrTNPHd734X69evB2AVqCmKkvAaURQR34VeEIQh6204jkO2jvU8z8MwjIT9cRzn/B2NRnH+/HkAcERzqmMlYxjGkNcTBEEQ4w+lTBAEMaFZu3Ytfve730FVVZimie9973v46U9/mvCa9evX45VXXkEgEABg5fvmgiAIKYvq6uvr0dPT4wjvlStXYs+ePejo6AAA/P73v8e//du/5f1eWltb0djYmPd2BEEQxOhCgpggiAnNV77yFdTV1eHjH/84brrpJjDGcP/99ye8ZvXq1bjttttw++2349Zbb0UgEHBSJDKxYcMGPPTQQ3j66acTlpeWluLqq6920i4WLFiAb37zm/jCF76AW265BTt37sQPfvCDvN6Hqqo4dOgQrrvuury2IwiCIEYfjmV7dkgQBDHBee+993Do0CHcc889AIDHH38chw8fxs9//vOC9/n222/jP//zP/HYY4+NyBi3bduGkydP4tvf/vaI7I8gCIIYOShCTBDEpKexsREHDhzA5s2bcfPNN2PPnj34zne+M6x9XnXVVWhsbMQbb7wx7PEFg0E8//zzuO+++4a9L4IgCGLkoQgxQRAEQRAEUdRQhJggCIIgCIIoakgQEwRBEARBEEUNCWKCIAiCIAiiqCFBTBAEQRAEQRQ1JIgJgiAIgiCIooYEMUEQBEEQBFHU/P+X0xTQW3q+OgAAAABJRU5ErkJggg=="
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 761,
"source": [
"g = sns.lmplot(x=\"Height\", y=\"Weight\", hue=\"Gender\",\n",
" height=10, data=df)\n",
"g.set_axis_labels(\"Height (cm)\", \"Weight (kg)\")"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
"metadata": {},
"execution_count": 761
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png":...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here