WebAssign login info Username: hybridtheorygfx Institution: suffolk Pw: Bourd@in123 (case sensitive)

1 answer below »

View more »
Answered Same DayDec 22, 2021

Answer To: WebAssign login info Username: hybridtheorygfx Institution: suffolk Pw: Bourd@in123 (case sensitive)

David answered on Dec 22 2021
116 Votes
Sol: (1) (a) Given that
2( ) 2 , ( ) 4G x x f x x 
On taking a antideriva
tive of ( )f x ,
2
2
( ) 4
( ) 4
2
( ) 2
( ) ( )
f x dx x dx
x
f x dx C
f x dx x C
f x dx G x C

 
  
 
   
 
 




So ( )G x is an antiderivative of ( )f x because '( ) ( ) .G x f x for all x
(b) All the antiderivative of f
 2 2 22 4, 2 , 2 4x x x 
(c)
Sol: (2)
 
14 14 1
14
dx dx
x C

 
 
Sol: (3)
4 1
4
3
3
3
2 2
4 1
2
3
2
3
2
3
t
t dt C
t
C
t
C
C
t
 



 
  
  
 
  
 
  
  


Sol: (4)
4
4
4 1
3
3
1 1
3 3
1

3 4 1
1

3 3
1 1

9
dx x dx
x
x
C
x
C
C
x

 


 
  
  
 
  
 
 
   
 
 
Sol:...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30