Limiting Behavior of M/G/∞ System. Consider the M/G/∞ system in Section 3.12 with arrival rate λ and service distribution G, which has a mean α. Show that the limiting distribution of the quantity of...

Limiting Behavior of M/G/∞ System. Consider the M/G/∞ system in Section 3.12 with arrival rate λ and service distribution G, which has a mean α. Show that the limiting distribution of the quantity of items in the system Q(t) is Poisson with mean λα as t → ∞. Use the fact that α = ! ∞ 0 [1 − G(u)]du. Turning to the departures, consider the point process Dt(B) on R+ that records the numbers of departures in a time set B after time t. In particular, show that the number of departures Dt(0, b] in the interval (t, t + b] has a Poisson distribution with


May 07, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30