Let z1,...,zn ∈ R and set ¯z = (1/n) n i=1 zi.
(a) Show, for any c ∈ R, 1 n n i=1 |c − zi| 2 = |c − z¯| 2 + 1 n n i=1 |z¯ − zi| 2 .
(b) Conclude from (a): 1 n n i=1 |z¯ − zi| 2 = min c∈R 1 n n i=1 |c − zi| 2 .
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here