Let X, Y have the joint pdf Scx fxx = {0 for r? + y² 0, y > 0 0.w. where c is some constant. Question part 3: find fx (x), the marginal distribution of X. (Answer choices are given in terms of c) O...


c=3, please help with the rest, thank you!


Let X, Y have the joint pdf<br>Scx<br>fxx = {0<br>for r?<br>+ y² <1 and x > 0, y > 0<br>0.w.<br>where c is some constant.<br>Question part 3:<br>find fx (x), the marginal distribution of X. (Answer choices are given in terms of c)<br>O fx(x)= cx/1- x² for 0 < x < 1, and 0 otherwise<br>O fx(x) = c(1 – y²)<br>for 0 < x < 1, and O otherwise<br>O fx(x)= cx/1<br>– x²<br>for 0 < x < v/1 – y?, and O otherwise<br>|<br>O fx(x) = ; (1 – y?) for 0 < x < V1- y², and 0 otherwise<br>|<br>Question part 4:<br>find fy (y), the marginal distribution of Y. (Answer choices are given in terms of c)<br>fy (y) = ;(1 – y²) for 0 < y < 1, and O otherwise<br>O fy (y) = c/1- y²) for 0 < y < vI- x², and 0 otherwise<br>fy (y) = ;(1 – y²) for 0 <y < V1– a², and 0 otherwise<br>O fr (y)<br>= cx v1 – x² for 0 < y< 1, and 0 otherwise<br>for 0 < y < 1, and O otherwise<br>-<br>Question part 5:<br>What is fxjy (x\y) ?<br>x/1 – x²<br>-<br>fxjr (x\y)<br>for 0 < x <1 and 0 < y < 1, and O otherwise<br>1– y?<br>-<br>2x<br>fx\r(x\y)<br>for 0 < x < /1– y? and 0 < y<1, and 0 otherwise<br>1 – y?<br>x/1 – x²<br>1– y?<br>fx}r (æ\y)<br>for 0 < x < V1 – y² and 0 < y <1, and O otherwise<br>-<br>O fx\y (x\y) = ca/1 – a²<br>for 0 < x < /1 – y? and 0 < y < 1, and 0 otherwise<br>

Extracted text: Let X, Y have the joint pdf Scx fxx = {0 for r? + y² <1 and="" x=""> 0, y > 0 0.w. where c is some constant. Question part 3: find fx (x), the marginal distribution of X. (Answer choices are given in terms of c) O fx(x)= cx/1- x² for 0 < x="">< 1,="" and="" 0="" otherwise="" o="" fx(x)="c(1" –="" y²)="" for="" 0="">< x="">< 1,="" and="" o="" otherwise="" o="" fx(x)="cx/1" –="" x²="" for="" 0="">< x="">< v/1="" –="" y?,="" and="" o="" otherwise="" |="" o="" fx(x)=";" (1="" –="" y?)="" for="" 0="">< x="">< v1-="" y²,="" and="" 0="" otherwise="" |="" question="" part="" 4:="" find="" fy="" (y),="" the="" marginal="" distribution="" of="" y.="" (answer="" choices="" are="" given="" in="" terms="" of="" c)="" fy="" (y)=";(1" –="" y²)="" for="" 0="">< y="">< 1,="" and="" o="" otherwise="" o="" fy="" (y)="c/1-" y²)="" for="" 0="">< y="">< vi-="" x²,="" and="" 0="" otherwise="" fy="" (y)=";(1" –="" y²)="" for="" 0="">< v1–="" a²,="" and="" 0="" otherwise="" o="" fr="" (y)="cx" v1="" –="" x²="" for="" 0=""><>< 1,="" and="" 0="" otherwise="" for="" 0="">< y="">< 1,="" and="" o="" otherwise="" -="" question="" part="" 5:="" what="" is="" fxjy="" (x\y)="" x/1="" –="" x²="" -="" fxjr="" (x\y)="" for="" 0="">< x=""><1 and="" 0="">< y="">< 1,="" and="" o="" otherwise="" 1–="" y?="" -="" 2x="" fx\r(x\y)="" for="" 0="">< x="">< 1–="" y?="" and="" 0=""><><1, and="" 0="" otherwise="" 1="" –="" y?="" x/1="" –="" x²="" 1–="" y?="" fx}r="" (æ\y)="" for="" 0="">< x="">< v1="" –="" y²="" and="" 0="">< y=""><1, and="" o="" otherwise="" -="" o="" fx\y="" (x\y)="ca/1" –="" a²="" for="" 0="">< x="">< 1="" –="" y?="" and="" 0="">< y="">< 1,="" and="" 0="">

Jun 09, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here