Let X, Y have the joint pdf for x? + y? 0, y > 0 fx,y O.w. where c is some constant. Question part 4: find fy (y), the marginal distribution of Y. (Answer choices are given in terms of c) O fy (y) =...


Let X, Y have the joint pdf<br>for x? + y? < 1 and x > 0, y > 0<br>fx,y<br>O.w.<br>where c is some constant.<br>Question part 4:<br>find fy (y), the marginal distribution of Y. (Answer choices are given in terms of c)<br>O fy (y) = ;(1 – y²) for 0 <ys VI- x², and 0 otherwise<br>%3D<br>O fy (y) = c/1 – y²) for 0 <y< VI– z², and 0 otherwise<br>O fy (y) = cxVI – x² for 0 <y< 1, and 0 otherwise<br>%3D<br>O fr (y) = (1– y²) for 0 <y S 1, and 0 otherwise<br>%3D<br>Question part 5:<br>What is fxjy (x|y) ?<br>2x<br>fxjr (x|y)<br>for 0 <x < V1 – y? and 0 < y <1, and O otherwise<br>1– y?<br>O fxyr (x\y)<br>= cx/1 – x2<br>for 0 < æ < V1 – y² and 0 < y <1, and 0 otherwise<br>x/1– x²<br>1 – y?<br>fx|r (x\y) =<br>for 0 < x < 1 and 0 <y < 1, and O otherwise<br>a/1– x²<br>1- y?<br>fx[y (x|y)<br>for 0 <x < V1 – y? and 0 <y <1, and O otherwise<br>

Extracted text: Let X, Y have the joint pdf for x? + y? < 1="" and="" x=""> 0, y > 0 fx,y O.w. where c is some constant. Question part 4: find fy (y), the marginal distribution of Y. (Answer choices are given in terms of c) O fy (y) = ;(1 – y²) for 0 <>< vi–="" z²,="" and="" 0="" otherwise="" o="" fy="" (y)="cxVI" –="" x²="" for="" 0=""><>< 1,="" and="" 0="" otherwise="" %3d="" o="" fr="" (y)="(1–" y²)="" for="" 0="">< v1="" –="" y?="" and="" 0="">< y=""><1, and="" o="" otherwise="" 1–="" y?="" o="" fxyr="" (x\y)="cx/1" –="" x2="" for="" 0="">< æ="">< v1="" –="" y²="" and="" 0="">< y=""><1, and="" 0="" otherwise="" x/1–="" x²="" 1="" –="" y?="" fx|r="" (x\y)="for" 0="">< x="">< 1="" and="" 0="">< 1,="" and="" o="" otherwise="" a/1–="" x²="" 1-="" y?="" fx[y="" (x|y)="" for="" 0="">< v1="" –="" y?="" and="" 0=""><1, and="" o="">

Jun 10, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here