Let X, X1,..., Xn be independent and uniformly distributed on [0, 1]d. Prove
E min i=1,...,n X − Xi ≥ d d + 1 Γ d 2 + 1 1/d √π · 1 n1/d .
Hint: The volume of a ball in Rd with radius t is given by
πd/2 Γ d 2 + 1 · t d,
where Γ(x) = ‑ ∞ 0 t x−1e−t dt (x > 0) satisfies Γ(x + 1) = x · Γ(x), Γ(1) = 1, and Γ(1/2) = √π. Show that this implies
P min i=1,...,n X − Xi ≤ t ≤ n · πd/2 Γ d 2 + 1 · t d.
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here