Let T : P3 → R® be defined by [ 2а — 2b — с +d] а — 36 + 2с — d т (аг3 + ba? + сӕ + d) Let u = x3 – 2, B = {1,x, x² , x³ }, and -3a + 36 + 2d C = -2 -1 Given [T] -2 , use the Fundamental Theorem of...


Need assistance with the inputs. This is LINEAR ALGEBRA.


Let T : P3 → R® be defined by<br>[ 2а — 2b — с +d]<br>а — 36 + 2с — d<br>т (аг3 + ba? + сӕ + d)<br>Let u = x3 – 2, B = {1,x, x² , x³ }, and<br>-3a + 36 + 2d<br>C =<br>-2 -1<br>Given [T]<br>-2 , use the Fundamental Theorem of Matrix Representations to find<br>-1<br>-1<br>3<br>-4 6<br>-2<br>3<br>Pc(T(u))<br>Ex: 5<br>Pc(T(u))<br>2.<br>

Extracted text: Let T : P3 → R® be defined by [ 2а — 2b — с +d] а — 36 + 2с — d т (аг3 + ba? + сӕ + d) Let u = x3 – 2, B = {1,x, x² , x³ }, and -3a + 36 + 2d C = -2 -1 Given [T] -2 , use the Fundamental Theorem of Matrix Representations to find -1 -1 3 -4 6 -2 3 Pc(T(u)) Ex: 5 Pc(T(u)) 2.

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here