Let mn(x) be the k-NN regression estimate. Prove that, for fixed k,
n→∞ E (mn(x) − m(x))2 µ(dx) = E(Y − m(X))2 k
for all distributions of (X, Y ) with EY 2 <>
mn(x) = 1 k k i=1 m(X(i,n)(x)) + 1 k k i=1 (Y(i,n)(x) − m(X(i,n)(x))).
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here