Let Fn be a class of functions f : Rd → R and define the estimator mn by
mn(·) = arg min f∈Fn 1 n n i=1 |f(Xi) − Yi| 2 .
Assume EY 2 <>
inf f∈Fn |f(x) − m(x)| 2 µ(dx) → 0 (n → ∞)
and
sup f∈Fn 1 n n i=1 |f(Xi) − TLYi| 2 − E |f(X) − TLY | 2 → 0 (n → ∞) a.s.
for all L > 0 imply
|mn(x) − m(x)| 2 µ(dx) → 0 (n → ∞) a.s.
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here