Let A ≥ 1 and x1,...,xn ∈ [−A, A]. Show that, for any c > 0, L > 0, and 0                                     N1  δ,  TLf : f ∈ Ck(R) and  A −A |f(k) (x)| 2 dx ≤ c  , xn 1...


Let A ≥ 1 and x1,...,xn ∈ [−A, A]. Show that, for any c > 0, L > 0, and 0


                                    N1  δ,  TLf : f ∈ Ck(R) and




A −A |f(k) (x)| 2 dx ≤ c  , xn 1


                                   ≤  c1 L δ (2A+2)c2( √c δ )1/k+c3


for some constants c1, c2, c3 ∈ R which only depend on k. Hint: Apply Lemma 20.4 on intervals [i, i + 1] with [i, i + 1] ∩ [−A, A] = ∅.



May 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here