L{cos}{s) = / -st e cos(at) dt U = cos(at) dv e^(-st)dt du -asin(at)du v = (-1/s)e^(-st) 00 (a/s)e^(-st)sin(at)dt - U = als*sin(at) dv e^(-st)dt du (a^2/s)*cos(at)dt v = (-1/s)e^(-st) 00 00 1/s...


L{cos}{s) = /<br>-st<br>e<br>cos(at) dt<br>U =<br>cos(at)<br>dv<br>e^(-st)dt<br>du<br>-asin(at)du<br>v = (-1/s)e^(-st)<br>00<br>(a/s)e^(-st)sin(at)dt<br>-<br>U =<br>als*sin(at)<br>dv<br>e^(-st)dt<br>du<br>(a^2/s)*cos(at)dt<br>v =<br>(-1/s)e^(-st)<br>00<br>00<br>1/s<br>a/s((-1/s)e^(-st)*sin(at))<br>a?<br>00<br>1/s<br>e^(-st)cos(at)dt<br>s2<br>Notice that this last integral is the same as the integral we started with. Treat this like an<br>equation and move the integral to the left hand side:<br>1<br>e-st cos(at) dt -<br>Therefore<br>st<br>cos(at) dt<br>s/(a^2+s^2)<br>||<br>||<br>

Extracted text: L{cos}{s) = / -st e cos(at) dt U = cos(at) dv e^(-st)dt du -asin(at)du v = (-1/s)e^(-st) 00 (a/s)e^(-st)sin(at)dt - U = als*sin(at) dv e^(-st)dt du (a^2/s)*cos(at)dt v = (-1/s)e^(-st) 00 00 1/s a/s((-1/s)e^(-st)*sin(at)) a? 00 1/s e^(-st)cos(at)dt s2 Notice that this last integral is the same as the integral we started with. Treat this like an equation and move the integral to the left hand side: 1 e-st cos(at) dt - Therefore st cos(at) dt s/(a^2+s^2) || ||

Jun 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here