KB/S Solution: Proof [u(x + h) + v(x + h)] – [u(x) + v(x)] dr [u(x) + v(x)] = lim h→0 h и(х + h) — и(х) = lim v(x + h) – v(x) h h u(x + h) – u(x) lim v(x + h) – v(x) + lim du dx dv %3D h→0 h h0 h dx...


KB/S<br>Solution:<br>Proof<br>[u(x + h) + v(x + h)] – [u(x) + v(x)]<br>dr [u(x) + v(x)]<br>= lim<br>h→0<br>h<br>и(х + h) — и(х)<br>= lim<br>v(x + h) – v(x)<br>h<br>h<br>u(x + h) – u(x)<br>lim<br>v(x + h) – v(x)<br>+ lim<br>du<br>dx<br>dv<br>%3D<br>h→0<br>h<br>h0<br>h<br>dx<br>Differentiation Rules<br>Home Work :<br>1. Prove the Derivative Product Rule?<br>d<br>dv<br>du<br>dx<br>+ v<br>(uv) = u<br>dx<br>dx<br>2. Prove the Derivative Quotient Rule?<br>du<br>dx<br>dv<br>d<br>dx<br>и<br>dx<br>Differentiation Rules<br>Example 7: Differentiate the following functions of x.<br>(a) x³<br>1<br>(d)<br>„2+7<br>(b) x/3<br>(c) xV?<br>(e) x~4/3<br>(f)<br>(g) 10<br>Solution:<br>(а)<br>dx<br>:(x³) = 3x³=1 = 3x²<br>(b) 4 (12#) = e/-1 =<br>d<br>dr (xV2) = V2rV2-1<br>(c)<br>%3D<br>d<br>(d)<br>dx<br>d<br>4<br>(x¬4) = -4x¬4-1<br>-4x-5<br>%3D<br>=<br>= -<br>dx<br>(e) (-/3) = -4/3)–1 = --73<br>m (VFF) = ) = (1 + )*/-1 = 2 + m)VF<br>(B)을 (10)3 0<br>dx<br>d<br>(f)<br>dx<br>d<br>yl+(#/2)-1 =<br>dx<br>d<br>dx<br>+<br>

Extracted text: KB/S Solution: Proof [u(x + h) + v(x + h)] – [u(x) + v(x)] dr [u(x) + v(x)] = lim h→0 h и(х + h) — и(х) = lim v(x + h) – v(x) h h u(x + h) – u(x) lim v(x + h) – v(x) + lim du dx dv %3D h→0 h h0 h dx Differentiation Rules Home Work : 1. Prove the Derivative Product Rule? d dv du dx + v (uv) = u dx dx 2. Prove the Derivative Quotient Rule? du dx dv d dx и dx Differentiation Rules Example 7: Differentiate the following functions of x. (a) x³ 1 (d) „2+7 (b) x/3 (c) xV? (e) x~4/3 (f) (g) 10 Solution: (а) dx :(x³) = 3x³=1 = 3x² (b) 4 (12#) = e/-1 = d dr (xV2) = V2rV2-1 (c) %3D d (d) dx d 4 (x¬4) = -4x¬4-1 -4x-5 %3D = = - dx (e) (-/3) = -4/3)–1 = --73 m (VFF) = ) = (1 + )*/-1 = 2 + m)VF (B)을 (10)3 0 dx d (f) dx d yl+(#/2)-1 = dx d dx +
KB/S<br>Solution:<br>Proof<br>[u(x + h) + v(x + h)] – [u(x) + v(x)]<br>dr [u(x) + v(x)]<br>= lim<br>h→0<br>h<br>и(х + h) — и(х)<br>= lim<br>v(x + h) – v(x)<br>h<br>h<br>u(x + h) – u(x)<br>lim<br>v(x + h) – v(x)<br>+ lim<br>du<br>dx<br>dv<br>%3D<br>h→0<br>h<br>h0<br>h<br>dx<br>Differentiation Rules<br>Home Work :<br>1. Prove the Derivative Product Rule?<br>d<br>dv<br>du<br>dx<br>+ v<br>(uv) = u<br>dx<br>dx<br>2. Prove the Derivative Quotient Rule?<br>du<br>dx<br>dv<br>d<br>dx<br>и<br>dx<br>Differentiation Rules<br>Example 7: Differentiate the following functions of x.<br>(a) x³<br>1<br>(d)<br>„2+7<br>(b) x/3<br>(c) xV?<br>(e) x~4/3<br>(f)<br>(g) 10<br>Solution:<br>(а)<br>dx<br>:(x³) = 3x³=1 = 3x²<br>(b) 4 (12#) = e/-1 =<br>d<br>dr (xV2) = V2rV2-1<br>(c)<br>%3D<br>d<br>(d)<br>dx<br>d<br>4<br>(x¬4) = -4x¬4-1<br>-4x-5<br>%3D<br>=<br>= -<br>dx<br>(e) (-/3) = -4/3)–1 = --73<br>m (VFF) = ) = (1 + )*/-1 = 2 + m)VF<br>(B)을 (10)3 0<br>dx<br>d<br>(f)<br>dx<br>d<br>yl+(#/2)-1 =<br>dx<br>d<br>dx<br>+<br>

Extracted text: KB/S Solution: Proof [u(x + h) + v(x + h)] – [u(x) + v(x)] dr [u(x) + v(x)] = lim h→0 h и(х + h) — и(х) = lim v(x + h) – v(x) h h u(x + h) – u(x) lim v(x + h) – v(x) + lim du dx dv %3D h→0 h h0 h dx Differentiation Rules Home Work : 1. Prove the Derivative Product Rule? d dv du dx + v (uv) = u dx dx 2. Prove the Derivative Quotient Rule? du dx dv d dx и dx Differentiation Rules Example 7: Differentiate the following functions of x. (a) x³ 1 (d) „2+7 (b) x/3 (c) xV? (e) x~4/3 (f) (g) 10 Solution: (а) dx :(x³) = 3x³=1 = 3x² (b) 4 (12#) = e/-1 = d dr (xV2) = V2rV2-1 (c) %3D d (d) dx d 4 (x¬4) = -4x¬4-1 -4x-5 %3D = = - dx (e) (-/3) = -4/3)–1 = --73 m (VFF) = ) = (1 + )*/-1 = 2 + m)VF (B)을 (10)3 0 dx d (f) dx d yl+(#/2)-1 = dx d dx +
Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here