I've sent a screenshot of the assignment details in my notepad. (Screenshot 15)

1 answer below ยป
I've sent a screenshot of the assignment details in my notepad. (Screenshot 15)
Answered Same DayApr 29, 2021

Answer To: I've sent a screenshot of the assignment details in my notepad. (Screenshot 15)

Sandeep Kumar answered on Apr 30 2021
159 Votes
reddit/reddit.ipynb
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python385jvsc74a57bd031f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6",
"display_name": "Python 3.8.5 64-bit"
},
"metadata": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" created_date created_timestamp subreddit \\\n",
"0 2008-07-06 16:00:14 1.215349e+09 artificial \n",
"1 2008-08-27 16:26:50 1.219844e+09 artificial \n",
"2 2008-10-12 00:29:40 1.223761e+09 artificial \n",
"3 2008-10-12 00:40:40 1.223761e+09 artificial \n",
"4 2008-10-14 20:31:01 1.224005e+09 artificial \n",
"\n",
" title id author \\\n",
"0 Man-Machine Poker (Solaris 2) Results (July 3-... 6qgmm IhateEverything \n",
"1 History of artificial intelligence 6y98d [deleted] \n",
"2 Minsky's Critics, Selectors and Resources at a... 76liu liamQ \n",
"3 The Single Layer Perceptron 76ljt liamQ \n",
"4 Siri Raises $8.5 Million for Personal Artifici... 773i4 CuteAlien \n",
"\n",
" author_created_utc full_link \\\n",
"0 1.198203e+09 https://www.reddit.com/r/artificial/comments/6... \n",
"1 NaN https://www.reddit.com/r/artificial/comments/6... \n",
"2 1.223677e+09 https://www.reddit.com/r/artificial/comments/7... \n",
"3 1.223677e+09 https://www.reddit.com/r/artificial/comments/7... \n",
"4 1.179241e+09 https://www.reddit.com/r/artificial/comments/7... \n",
"\n",
" score num_comments num_crossposts subreddit_subscribers post \n",
"0 4.0 1.0 0.0 NaN NaN \n",
"1 5.0 0.0 0.0 NaN NaN \n",
"2 1.0 0.0 0.0 NaN NaN \n",
"3 2.0 1.0 0.0 NaN NaN \n",
"4 4.0 0.0 0.0 NaN NaN "
],
"text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
created_datecreated_timestampsubreddittitleidauthorauthor_created_utcfull_linkscorenum_commentsnum_crosspostssubreddit_subscriberspost
02008-07-06 16:00:141.215349e+09artificialMan-Machine Poker (Solaris 2) Results (July 3-...6qgmmIhateEverything1.198203e+09https://www.reddit.com/r/artificial/comments/6...4.01.00.0NaNNaN
12008-08-27 16:26:501.219844e+09artificialHistory of artificial intelligence6y98d[deleted]NaNhttps://www.reddit.com/r/artificial/comments/6...5.00.00.0NaNNaN
22008-10-12 00:29:401.223761e+09artificialMinsky's Critics, Selectors and Resources at a...76liuliamQ1.223677e+09https://www.reddit.com/r/artificial/comments/7...1.00.00.0NaNNaN
32008-10-12 00:40:401.223761e+09artificialThe Single Layer Perceptron76ljtliamQ1.223677e+09https://www.reddit.com/r/artificial/comments/7...2.01.00.0NaNNaN
42008-10-14 20:31:011.224005e+09artificialSiri Raises $8.5 Million for Personal Artifici...773i4CuteAlien1.179241e+09https://www.reddit.com/r/artificial/comments/7...4.00.00.0NaNNaN
\n
"
},
"metadata": {},
"execution_count": 7
}
],
"source": [
"WORK_DIR = 'data/'\n",
"all_data = pd.DataFrame()\n",
"\n",
"for dataset in os.listdir(WORK_DIR):\n",
" all_data = pd.concat([all_data, pd.read_csv(WORK_DIR + dataset, index_col = 0)])\n",
" \n",
"all_data = all_data.reset_index(drop = True)\n",
"all_data['created_date'] = all_data['created_date'].astype('datetime64')\n",
"all_data.head()"
]
},
{
"cell_type": "code",
"execution_count": 153,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" created_date created_timestamp subreddit \\\n",
"162616 2020-01-20 16:00:26 1.579529e+09 dataengineering \n",
"748 2013-09-19 05:07:26 1.379556e+09 artificial \n",
"54980 2016-02-07 00:05:10 1.454796e+09 AskStatistics \n",
"270585 2019-07-29 23:45:21 1.564433e+09 learnmachinelearning \n",
"82331 2021-03-14 03:40:36 1.615686e+09 AskStatistics \n",
"\n",
" title id \\\n",
"162616 SAP cloud Data Warehouse erdjne \n",
"748 Markov extension for Chrome 1moo58 \n",
"54980 Can you apply the same statistic to different ... 44ieeg \n",
"270585 How do Histogram of Oriented Gradients descrip... cjh5ay \n",
"82331 The topic is \"level of satisfaction on governm... m4kvs1 \n",
"\n",
" author author_created_utc \\\n",
"162616 Boozmork NaN \n",
"748 EmoryM 1.211877e+09 \n",
"54980 hello30303049 1.454796e+09 \n",
"270585 EverydayQuestion NaN \n",
"82331 pearsonsigma NaN \n",
"\n",
" full_link score \\\n",
"162616 https://www.reddit.com/r/dataengineering/comme... 1.0 \n",
"748 https://www.reddit.com/r/artificial/comments/1... 19.0 \n",
"54980 https://www.reddit.com/r/AskStatistics/comment... 1.0 \n",
"270585 https://www.reddit.com/r/learnmachinelearning/... 1.0 \n",
"82331 https://www.reddit.com/r/AskStatistics/comment... 1.0 \n",
"\n",
" num_comments num_crossposts subreddit_subscribers \\\n",
"162616 6.0 0.0 9356.0 \n",
"748 7.0 NaN NaN \n",
"54980 5.0 NaN NaN \n",
"270585 0.0 0.0 82047.0 \n",
"82331 2.0 0.0 39909.0 \n",
"\n",
" post author_created_date \n",
"162616 Hi Engineers, \\n\\nThe company I work for is at... NaT \n",
"748 I think the results of markov chains are great... 2008-05-27 08:31:47 \n",
"54980 Sorry if my question is worded badly. Here's a... 2016-02-06 22:00:26 \n",
"270585 I'm looking through this tutorial on creating ... NaT \n",
"82331 NaN NaT "
],
"text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
created_datecreated_timestampsubreddittitleidauthorauthor_created_utcfull_linkscorenum_commentsnum_crosspostssubreddit_subscriberspostauthor_created_date
1626162020-01-20 16:00:261.579529e+09dataengineeringSAP cloud Data WarehouseerdjneBoozmorkNaNhttps://www.reddit.com/r/dataengineering/comme...1.06.00.09356.0Hi Engineers, \\n\\nThe company I work for is at...NaT
7482013-09-19 05:07:261.379556e+09artificialMarkov extension for Chrome1moo58EmoryM1.211877e+09https://www.reddit.com/r/artificial/comments/1...19.07.0NaNNaNI think the results of markov chains are great...2008-05-27 08:31:47
549802016-02-07 00:05:101.454796e+09AskStatisticsCan you apply the same statistic to different ...44ieeghello303030491.454796e+09https://www.reddit.com/r/AskStatistics/comment...1.05.0NaNNaNSorry if my question is worded badly. Here's a...2016-02-06 22:00:26
2705852019-07-29 23:45:211.564433e+09learnmachinelearningHow do Histogram of Oriented Gradients descrip...cjh5ayEverydayQuestionNaNhttps://www.reddit.com/r/learnmachinelearning/...1.00.00.082047.0I'm looking through this tutorial on creating ...NaT
823312021-03-14 03:40:361.615686e+09AskStatisticsThe topic is \"level of satisfaction on governm...m4kvs1pearsonsigmaNaNhttps://www.reddit.com/r/AskStatistics/comment...1.02.00.039909.0NaNNaT
\n
"
},
"metadata": {},
"execution_count": 153
}
],
"source": [
"all_data['author_created_date'] = pd.to_datetime(all_data['author_created_utc'], unit='s')\n",
"all_data['author_created_date'].head()\n",
"\n",
"all_data['created_date'] = pd.to_datetime(all_data['created_date'])\n",
"\n",
"all_data = all_data.sample(1000)\n",
"all_data.head()"
]
},
{
"cell_type": "code",
"execution_count": 154,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" created_timestamp author_created_utc score num_comments \\\n",
"count 1.000000e+03 2.160000e+02 1000.000000 1000.000000 \n",
"mean 1.539772e+09 1.384704e+09 4.006000 4.005000 \n",
"std 6.565712e+07 8.450600e+07 19.502931 12.309691 \n",
"min 1.249206e+09 1.122350e+09 0.000000 0.000000 \n",
"25% 1.501587e+09 1.332197e+09 1.000000 0.000000 \n",
"50% 1.556755e+09 1.407746e+09 1.000000 1.000000 \n",
"75% 1.591825e+09 1.447657e+09 1.000000 4.000000 \n",
"max 1.615972e+09 1.498049e+09 519.000000 207.000000 \n",
"\n",
" num_crossposts subreddit_subscribers \n",
"count 753.000000 6.920000e+02 \n",
"mean 0.009296 2.4
63465e+05 \n",
"std 0.109003 3.605919e+05 \n",
"min 0.000000 1.517000e+03 \n",
"25% 0.000000 4.200400e+04 \n",
"50% 0.000000 9.736050e+04 \n",
"75% 0.000000 2.191938e+05 \n",
"max 2.000000 1.736778e+06 "
],
"text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
created_timestampauthor_created_utcscorenum_commentsnum_crosspostssubreddit_subscribers
count1.000000e+032.160000e+021000.0000001000.000000753.0000006.920000e+02
mean1.539772e+091.384704e+094.0060004.0050000.0092962.463465e+05
std6.565712e+078.450600e+0719.50293112.3096910.1090033.605919e+05
min1.249206e+091.122350e+090.0000000.0000000.0000001.517000e+03
25%1.501587e+091.332197e+091.0000000.0000000.0000004.200400e+04
50%1.556755e+091.407746e+091.0000001.0000000.0000009.736050e+04
75%1.591825e+091.447657e+091.0000004.0000000.0000002.191938e+05
max1.615972e+091.498049e+09519.000000207.0000002.0000001.736778e+06
\n
"
},
"metadata": {},
"execution_count": 154
}
],
"source": [
"all_data.describe()\n"
]
},
{
"source": [
"1. Summarize the data (4 points)\n",
"\n",
"## Which subreddit has the most posts (top 5)? ##\n"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 155,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"MachineLearning 225\n",
"statistics 118\n",
"datascience 115\n",
"learnmachinelearning 93\n",
"computerscience 82\n",
"Name: subreddit, dtype: int64"
]
},
"metadata": {},
"execution_count": 155
}
],
"source": [
"all_data['subreddit'].value_counts().head(5)"
]
},
{
"source": [
"## Which user has the most posts (top 5)? ##\n",
" \n"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 156,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[deleted] 36\n",
"ai_jobs 14\n",
"aijobs-com 8\n",
"Yuqing7 5\n",
"AutoModerator 5\n",
"Name: author, dtype: int64"
]
},
"metadata": {},
"execution_count": 156
}
],
"source": [
"all_data['author'].value_counts().head(5)"
]
},
{
"source": [
"## Which subreddit has the most distinct post authors? ##"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 157,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" author\n",
"subreddit \n",
"MachineLearning 209\n",
"statistics 114\n",
"datascience 108\n",
"learnmachinelearning 89\n",
"computerscience 78"
],
"text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
author
subreddit
MachineLearning209
statistics114
datascience108
learnmachinelearning89
computerscience78
\n
"
},
"metadata": {},
"execution_count": 157
}
],
"source": [
"grouped_df = all_data.groupby(\"subreddit\")\n",
"\n",
"grouped_df = grouped_df.agg({\"author\": \"nunique\"})\n",
"grouped_df.sort_values('author', ascending=False).head(5)\n"
]
},
{
"source": [
"## Which subreddit contains the greatest percentage of posts with a post body (i.e. contains a value in the post column)? ##"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" post\n",
"subreddit \n",
"datascienceproject 100.000000\n",
"DataScienceJobs 92.000000\n",
"artificial 78.205128\n",
"data 76.923077\n",
"MachineLearning 69.777778"
],
"text/html": "
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
post
subreddit
datascienceproject100.000000
DataScienceJobs92.000000
artificial78.205128
data76.923077
MachineLearning69.777778
\n
"
},
"metadata": {},
"execution_count": 158
}
],
"source": [
"# grouped_df = all_data.groupby(\"subreddit\")\n",
"\n",
"# grouped_df = grouped_df.agg({\"post\": \"isna\"})\n",
"#grouped_df.sort_values('author', ascending=False)\n",
"grouped_df = all_data.groupby(\"subreddit\")\n",
"#all_data['post'].isnull().sum(axis = 0)\n",
"grouped_df = grouped_df.agg({'post': lambda x: x.isnull().sum()*100 / (x.notnull().sum() + x.isnull().sum())})\n",
"grouped_df.sort_values('post', ascending=False).head(5)\n"
]
},
{
"source": [
"## 2. Visualize the data (4 points) ##\n",
"\n",
"### Plot the total number of posts across all subreddits over time (line plot). ### \n"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "
",
"image/svg+xml": "\n\n\n\n \n\n\n\n2021-04-30T13:06:55.222331\nimage/svg+xml\n\n\nMatplotlib v3.3.4, https://matplotlib.org/\n\n\n\n\n \n \n\n \n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n \n\n\n\n \n\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAABrIAAAReCAYAAACb9qDBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACpv0lEQVR4nOzdeXjdd2Hn+89Pki3b0jne7aPYTpw4iY/IHhIKlCU0XSilTQm3XNoOBMoU5sK0HVqmnTtMZ0p7p5cZoNtDS+lwCaULLUMTKC0UKCVsbYHsJPg4K8F2JNuJY0teJFvSuX/EmASyeJH0O8vr9Tx+bI7k8NEf/MM73++3aDabAQAAAAAAgFbTU/YAAAAAAAAAeCJCFgAAAAAAAC1JyAIAAAAAAKAlCVkAAAAAAAC0JCELAAAAAACAliRkAQAAAAAA0JL6yh6QJKtWrWpu3Lix7BkAAAAAAADMs5tuuumhZrO5+om+1hIha+PGjbnxxhvLngEAAAAAAMA8K4rigSf7mqsFAQAAAAAAaElCFgAAAAAAAC1JyAIAAAAAAKAlCVkAAAAAAAC0JCELAAAAAACAliRkAQAAAAAA0JKELAAAAAAAAFqSkAUAAAAAAEBLErIAAAAAAABoSUIWAAAAAAAALUnIAgAAAAAAoCUJWQAAAAAAALQkIQsAAAAAAICWJGQBAAAAAADQkoQsAAAAAAAAWpKQBQAAAAAAQEsSsgAAAAAAAGhJQhYAAAAAAAAtScgCAAAAAACgJQlZAAAAAAAAtCQhCwAAAAAAgJYkZAEAAAAAANCShCwAAAAAAABakpAFAAAAAABASxKyAAAAAAAAaElCFgAAAAAAAC1JyAIAAAAAAKAlCVkAAAAAAAC0JCELAAAAAACAliRkAQAAAAAA0JKELAAAAAAAAFqSkAUAAAAAAEBLErIAAAAAAABoSUIWAAAAAAAALUnIAgAAAAAAoCUJWQAAAAAAALQkIQsAAAAAAICWJGQBAAAAAADQkoQsAAAAAAAAWpKQBQAAAAAAQEsSsgAAAAAAAGhJQhYAAAAAAAAtScgCAAAAAACgJQlZAAAAAAAAtCQhCwAAAAAAgJYkZAEAAAAAANCShKw28/HbHswr3vsvmZlplj0FAAAAAABgTglZbebg4al89f49+daeg2VPAQAAAAAAmFNCVpup16pJksboeMlLAAAAAAAA5paQ1WbOXVtJUSSN0bGypwAAAAAAAMwpIavNLF7YmzNXDqQx4kQWAAAAAADQ2YSsNlQfqjiRBQAAAAAAdDwhqw1tXlvNA3sO5sDkVNlTAAAAAAAA5oyQ1YbqQ5U0m8ldO10vCAAAAAAAdC4hqw0N16pJkq2jQhYAAAAAANC5hKw2tH754gws7E1DyAIAAAAAADqYkNWGenqKbK5VsmVkrOwpAAAAAAAAc0bIalP1oWoao+NpNptlTwEAAAAAAJgTQlabqtcq2XfoSEbHJsqeAgAAAAAAMCeErDZVr1WTJI0R72QBAAAAAACdSchqU5trlSRJY1TIAgAAAAAAOpOQ1aaWLl6QdcsWpzE6VvYUAAAAAACAOSFktbF6reJqQQAAAAAAoGMJWW2sPlTJvbv3Z3JquuwpAAAAAAAAs07IamP1WjVTM83cu+tA2VMAAAAAAABmnZDVxuq1SpJ4JwsAAAAAAOhIQlYbO3PVQBb29qQx6p0sAAAAAACg8whZbayvtyfnrB0UsgAAAAAAgI4kZLW5eq2axoirBQEAAAAAgM4jZLW54aFKdo1P5uH9k2VPAQAAAAAAmFVCVpur16pJkq2uFwQAAAAAADqMkNXmNtcqSZItQhYAAAAAANBhhKw2t7rSn1WDC72TBQAAAAAAdBwhqwPUa9Vs3elEFgAAAAAA0FmErA5Qr1WydXQ80zPNsqcAAAAAAADMGiGrA9SHqpmcmsk3Hz5Q9hQAAAAAAIBZI2R1gHqtkiRpjLheEAAAAAAA6BxCVgc4e81genuKNEbHyp4CAAAAAAAwa4SsDrBoQW/OXDWQLU5kAQAAAAAAHUTI6hD1WsWJLAAAAAAAoKMIWR1ieKia7Y8cyvjEkbKnAAAAAAAAzAohq0PUa5UkyV07XS8IAAAAAAB0BiGrQ9SHqkninSwAAAAAAKBjCFkd4rSli1JZ1OedLAAAAAAAoGMIWR2iKIrUa5U0nMgCAAAAAAA6hJDVQeq1araOjqfZbJY9BQAAAAAA4JQJWR2kPlTJ+ORUduw9VPYUAAAAAACAUyZkdZB6rZokrhcEAAAAAAA6gpDVQTbXKkmSxuhYyUsAAAAAAABOnZDVQQb7+3L6iiXZMupEFgAAAAAA0P6ErA6zuVZJY8SJLAAAAAAAoP0JWR1muFbJ/Q8dyMSR6bKnAAAAAAAAnBIhq8PUh6qZaSb37Npf9hQAAAAAAIBTImR1mHqtkiTZ4npBAAAAAACgzQlZHeaMlQNZtKAnjdHxsqcAAAAAAACcEiGrw/T2FNm8tpLGqBNZAAAAAABAexOyOtDmWiVbRsbTbDbLngIAAAAAAHDShKwOVK9Vs+fA4ezeP1n2FAAAAAAAgJMmZHWg+lAlSdIY8U4WAAAAAADQvoSsDlSvVZMkW0eFLAAAAAAAoH0JWR1oxcDCrK32Z8voWNlTAAAAAAAATpqQ1aHqtaqrBQEAAAAAgLYmZHWo+lAl9+zanyPTM2VPAQAAAAAAOClCVoeq1yo5PD2T+x86UPYUAAAAAACAkyJkdah6rZok2TLinSwAAAAAAKA9CVkdatPqwfT1FNk66p0sAAAAAACgPQlZHWphX0/OXjOYhpAFAAAAAAC0KSGrg9VrlTRcLQgAAAAAALQpIauD1YeqeXDfRPYdPFL2FAAAAAAAgBMmZHWwzbVKkqQx6lQWAAAAAADQfoSsDjZcqyaJd7IAAAAAAIC2JGR1sLXV/ixbskDIAgAAAAAA2pKQ1cGKoki9VnG1IAAAAAAA0JaErA5Xr1WzdXQ8MzPNsqcAAAAAAACcECGrww0PVXLw8HS2PXKw7CkAAAAAAAAnRMjqcPVaNUmyZcQ7WQAAAAAAQHsRsjrcuWsrKYp4JwsAAAAAAGg7QlaHW7ywNxtXDqThRBYAAAAAANBmhKwuUK9VsnWnkAUAAAAAALQXIasL1GvVfPPhAzl4eKrsKQAAAAAAAMdNyOoC9aFKms3krp37y54CAAAAAABw3ISsLjBcqyZJGiNjJS8BAAAAAAA4fkJWF1i/fHGWLOxNY9Q7WQAAAAAAQPsQsrpAT0+RzbVKtjiRBQAAAAAAtBEhq0vUa9Vs3TmeZrNZ9hQAAAAAAIDjImR1ieGhSvYePJKdY5NlTwEAAAAAADguQlaXqNeqSZIto64XBAAAAAAA2oOQ1SU21ypJksbIeMlLAAAAAAAAjo+Q1SWWLl6Q05YuSsOJLAAAAAAAoE0IWV2kPlR1IgsAAAAAAGgbQlYXqdcquXf3/hyemil7CgAAAAAAwNMSsrpIfaiaqZlm7t29v+wpAAAAAAAAT0vI6iLDtUqSeCcLAAAAAABoC0JWFzlz1UAW9vZ4JwsAAAAAAGgLQlYX6evtyTlrB7NlVMgCAAAAAABan5DVZTbXKmmMuFoQAAAAAABofUJWlxmuVbNrfDJ7DhwuewoAAAAAAMBTErK6TH2okiRpjDqVBQAAAAAAtDYhq8vUa9UkSWPEO1kAAAAAAEBrE7K6zOpKf1YNLnQiCwAAAAAAaHlCVheq16ppjDqRBQAAAAAAtDYhqwttrlWydXQ80zPNsqcAAAAAAAA8KSGrC9VrlUxOzeSbDx8oewoAAAAAAMCTErK60PBQNUmy1fWCAAAAAABACxOyutDZawbTUySNkbGypwAAAAAAADwpIasLLVrQm7NWD2aLE1kAAAAAAEALE7K6VL1WSWPUiSwAAAAAAKB1CVldql6rZNueQxmfOFL2FAAAAAAAgCckZHWpeq2aJLlrp+sFAQAAAACA1iRkdan6UCVJ0vBOFgAAAAAA0KKErC61btniVPr70hgRsgAAAAAAgNYkZHWpoihSH6qkMTpW9hQAAAAAAIAnJGR1sXqtmsbIeJrNZtlTAAAAAAAAvoeQ1cXqQ5WMT05lx95DZU8BAAAAAAD4Hk8bsoqi2FAUxeeKovhGURR3FkXxS0c/X1EUxWeKorj76O/Lj35eFEXxB0VR3FMUxe1FUVw61z8EJ6deqySJd7IAAAAAAICWdDwnsqaS/Eqz2XxGkmcneVNRFM9I8p+SfLbZbJ6T5LNH/3OS/GiSc47+en2S98z6ambFuWuPhizvZAEAAAAAAC3oaUNWs9kcaTabNx/983iSLUnWJbkqyZ8e/bY/TfKTR/98VZIPNh/1r0mWFUUxNNvDOXWVRQuyYcXiNEadyAIAAAAAAFrPCb2RVRTFxiSXJPlKkrXNZnPk6JdGk6w9+ud1SbY95q9tP/rZd/+zXl8UxY1FUdy4e/fuE93NLKnXqkIWAAAAAADQko47ZBVFMZjkb5L8h2az+bi76JrNZjNJ80T+i5vN5p80m83Lms3mZatXrz6Rv8osGq5Vct/u/Zk4Ml32FAAAAAAAgMc5rpBVFMWCPBqx/qLZbF539OOd374y8Ojvu45+viPJhsf89fVHP6MF1YeqmWkm9+zaX/YUAAAAAACAx3nakFUURZHk/0uypdls/s5jvvS3Sa45+udrknzsMZ+/unjUs5Pse8wVhLSYzbVKkmTLyNjTfCcAAAAAAMD86juO7/n+JK9K8vWiKG49+tl/TvL2JB8uiuJ1SR5I8oqjX/tEkpckuSfJwSSvnc3BzK6NKwfS39fjnSwAAAAAAKDlPG3IajabX0pSPMmXr3yC728medMp7mKe9PYU2VyrZKuQBQAAAAAAtJjjeiOLzlavVdIYdbUgAAAAAADQWoQsUq9V89D+w9k9Pln2FAAAAAAAgGOELFIfqiSJU1kAAAAAAEBLEbJIvVZNkjRGvJMFAAAAAAC0DiGLrBhYmDWV/mxxIgsAAAAAAGghQhZJkvpQ1YksAAAAAACgpQhZJEmGa5Xcs2t/pqZnyp4CAAAAAACQRMjiqPpQJYenZ3L/QwfKngIAAAAAAJBEyOKoeq2aJNky6npBAAAAAACgNQhZJEk2rR5MX0+RxshY2VMAAAAAAACSCFkctbCvJ5tWD6bhRBYAAAAAANAihCyOqQ9VnMgCAAAAAABahpDFMfVaNQ/um8i+Q0fKngIAAAAAACBk8R31oUqSZKvrBQEAAAAAgBYgZHHMcK2aJGmMul4QAAAAAAAon5DFMWur/Vm2ZEG2jDiRBQAAAAAAlE/I4piiKLJ5bcWJLAAAAAAAoCUIWTzO8FA1W0fHMzPTLHsKAAAAAADQ5YQsHqdeq+Tg4elsf+RQ2VMAAAAAAIAuJ2TxOPWhapJki+sFAQAAAACAkglZPM65awdTFEljZLzsKQAAAAAAQJcTsnicJQv7snHlQBpOZAEAAAAAACUTsvge9VoljVEnsgAAAAAAgHIJWXyPzbVKvvnwgRw8PFX2FAAAAAAAoIsJWXyPeq2aZjO5a+f+sqcAAAAAAABdTMjiewwPVZIkW72TBQAAAAAAlEjI4ntsWL4kSxb2ZsuId7IAAAAAAIDyCFl8j56eIptrlTScyAIAAAAAAEokZPGE6rVqGqPjaTabZU8BAAAAAAC6lJDFE6rXKtl78Eh2jk2WPQUAAAAAAOhSQhZPqF6rJEm2uF4QAAAAAAAoiZDFE6rXqkmSraPjJS8BAAAAAAC6lZDFE1q6ZEFOW7oojREnsgAAAAAAgHIIWTyp+lA1DSeyAAAAAACAkghZPKl6rZJ7du3P4amZsqcAAAAAAABdSMjiSW2uVTI108y9u/eXPQUAAAAAAOhCQhZPaniomiRpjHonCwAAAAAAmH9CFk/qzFUDWdjb450sAAAAAACgFEIWT2pBb0/OXjOYxoiQBQAAAAAAzD8hi6dUH6q4WhAAAAAAACiFkMVTGq5Vs3NsMnsOHC57CgAAAAAA0GWELJ5SfaiSJE5lAQAAAAAA807I4iltrh0NWd7JAgAAAAAA5pmQxVNaPdiflQMLncgCAAAAAADmnZDFUyqKIvWhSraOOpEFAAAAAADMLyGLp1WvVbN153imZ5plTwEAAAAAALqIkMXTqtcqmTgykwcePlD2FAAAAAAAoIsIWTyt4aFqkqThekEAAAAAAGAeCVk8rbPXDKanSBojY2VPAQAAAAAAuoiQxdNatKA3Z64ayBYnsgAAAAAAgHkkZHFc6kPVbBWyAAAAAACAeSRkcVyGa5V8a8/B7J+cKnsKAAAAAADQJYQsjku9Vk0Sp7IAAAAAAIB5I2RxXOpDlSRJY3Ss5CUAAAAAAEC3ELI4LuuWLU6lvy+NESeyAAAAAACA+SFkcVyKosjmWsWJLAAAAAAAYN4IWRy3+lAljdHxNJvNsqcAAAAAAABdQMjiuNVr1YxPTOXBfRNlTwEAAAAAALqAkMVxGx6qJEkaI64XBAAAAAAA5p6QxXE7d+3RkDU6XvISAAAAAACgGwhZHLfKogXZsGJxtjiRBQAAAAAAzAMhixOyeW3ViSwAAAAAAGBeCFmckOGhSu5/6EAmjkyXPQUAAAAAAOhwQhYnpF6rZnqmmXt27S97CgAAAAAA0OGELE5IfaiSJK4XBAAAAAAA5pyQxQnZuHIg/X09aYyMlT0FAAAAAADocEIWJ6S3p8jmWsWJLAAAAAAAYM4JWZywzWsraYw6kQUAAAAAAMwtIYsTVh+q5qH9h7N7fLLsKQAAAAAAQAcTsjhhw7VKkmSr6wUBAAAAAIA5JGRxwjYfDVmuFwQAAAAAAOaSkMUJWznYnzWV/mwZcSILAAAAAACYO0IWJ6U+VHUiCwAAAAAAmFNCFielXqvk7p37MzU9U/YUAAAAAACgQwlZnJR6rZLD0zO5/6EDZU8BAAAAAAA6lJDFSanXqkmSLaPeyQIAAAAAAOaGkMVJ2bRmIH09RbZ6JwsAAAAAAJgjQhYnpb+vN5tWD6Yx4kQWAAAAAAAwN4QsTlp9qJKGqwUBAAAAAIA5ImRx0uq1anbsPZR9h46UPQUAAAAAAOhAQhYnrV6rJEm2OpUFAAAAAADMASGLk1YfejRkNUbHSl4CAAAAAAB0IiGLk1arLsrSxQu8kwUAAAAAAMwJIYuTVhRF6rVKGiNOZAEAAAAAALNPyOKUDA9Vs3V0PDMzzbKnAAAAAAAAHUbI4pTUa5UcODyd7Y8cKnsKAAAAAADQYYQsTsnmWiVJsmXU9YIAAAAAAMDsErI4JeeuraQoksbIeNlTAAAAAACADiNkcUoG+vtyxool2brTiSwAAAAAAGB2CVmcsnqt6kQWAAAAAAAw64QsTll9qJL7Hz6QQ4eny54CAAAAAAB0ECGLU1avVdNsJnftdCoLAAAAAACYPUIWp6xeqyRJGqPeyQIAAAAAAGaPkMUpO33Fkixe0Jst3skCAAAAAABmkZDFKevpKbK5VnEiCwAAAAAAmFVCFrNieKiSraPjaTabZU8BAAAAAAA6hJDFrKjXqnnk4JHsGp8sewoAAAAAANAhhCxmRb1WSZJsGXG9IAAAAAAAMDuELGZFvVZNkjRGx0teAgAAAAAAdAohi1mxdMmCDC1dlIYTWQAAAAAAwCwRspg19VrFiSwAAAAAAGDWCFnMmvpQNffu3p/DUzNlTwEAAAAAADqAkMWsqdcqOTLdzH0P7S97CgAAAAAA0AGELGbN8FA1SdIYcb0gAAAAAABw6oQsZs2ZqwaysLcnW0bHyp4CAAAAAAB0ACGLWbOgtyeb1gw6kQUAAAAAAMwKIYtZNVyrpOFEFgAAAAAAMAuELGZVfaiSnWOTeeTA4bKnAAAAAAAAbU7IYlbVa9UkSWPU9YIAAAAAAMCpEbKYVfWhSpK4XhAAAAAAADhlQhazavVgf1YOLExjxIksAAAAAADg1AhZzKqiKFIfqjiRBQAAAAAAnDIhi1m3eW01W3eOZ3qmWfYUAAAAAACgjQlZzLr6UCUTR2bywMMHyp4CAAAAAAC0MSGLWTdcqyZJto56JwsAAAAAADh5Qhaz7py1g+kpki1CFgAAAAAAcAqELGbdogW9OXPVQBojY2VPAQAAAAAA2piQxZyoD1XTcCILAAAAAAA4BUIWc6K+tpJv7TmY/ZNTZU8BAAAAAADalJDFnKgPVZMkW53KAgAAAAAATpKQxZyo1ypJhCwAAAAAAODkCVnMifXLF2ewvy+N0bGypwAAAAAAAG1KyGJOFEWReq2SxogTWQAAAAAAwMkRspgz9aFKtoyOpdlslj0FAAAAAABoQ0IWc2ZzrZrxiak8uG+i7CkAAAAAAEAbErKYM8O1SpKkMeKdLAAAAAAA4MQJWcyZc78dska9kwUAAAAAAJw4IYs5U120IOuXLxayAAAAAACAkyJkMafqtaqrBQEAAAAAgJMiZDGnhocque+hA5k4Ml32FAAAAAAAoM0IWcypeq2a6Zlm7tm1v+wpAAAAAABAmxGymFOba5Uk8U4WAAAAAABwwoQs5tTGlUvS39fjnSwAAAAAAOCECVnMqb7enpy7tpKtO53IAgAAAAAAToyQxZyr1yrZMiJkAQAAAAAAJ0bIYs7Vh6p5aP9kdo9Plj0FAAAAAABoI0IWc264VkmSbB11KgsAAAAAADh+QhZzbvPRkNUYHSt5CQAAAAAA0E6ELObcysH+rK70eycLAAAAAAA4IUIW86Jeq2TrTieyAAAAAACA4ydkMS+Gh6q5a+f+TE3PlD0FAAAAAABoE0IW86Jeq+Tw1Ey++fCBsqcAAAAAAABtQshiXtRr1STxThYAAAAAAHDchCzmxaY1A+ntKdIY9U4WAAAAAABwfIQs5kV/X282rR5Iw4ksAAAAAADgOAlZzJt6rZrGqJAFAAAAAAAcHyGLeVMfqmTH3kMZmzhS9hQAAAAAAKANCFnMm+FaNUmy1aksAAAAAADgOAhZzJv6UCVJ0hgZK3kJAAAAAADQDoQs5k2tuihLFy/IFieyAAAAAACA4yBkMW+KosjmWsWJLAAAAAAA4LgIWcyr4VolW0fHMzPTLHsKAAAAAADQ4oQs5lV9qJoDh6ezY++hsqcAAAAAAAAtTshiXtVrlSTJFtcLAgAAAAAAT0PIYl6du7aSokgao+NlTwEAAAAAAFqckMW8GujvyxkrlqQx6kQWAAAAAADw1IQs5t3mWiWNESeyAAAAAACApyZkMe/qtWruf/hADh2eLnsKAAAAAADQwoQs5t3wUCXNZnL3LqeyAAAAAACAJydkMe/qtWqSuF4QAAAAAAB4SkIW8+70FUuyeEFvtoyOlT0FAAAAAABoYUIW866np8jmWsWJLAAAAAAA4CkJWZSiXqukMTqWZrNZ9hQAAAAAAKBFCVmUol6r5JGDR7JrfLLsKQAAAAAAQIsSsihFfaiaJNky4p0sAAAAAADgiQlZlKJeqyRJto56JwsAAAAAAHhiQhalWLZkYYaWLkpDyAIAAAAAAJ6EkEVp6rWKqwUBAAAAAIAnJWRRmvpQNffu3p/DUzNlTwEAAAAAAFqQkEVp6rVKjkw3c99D+8ueAgAAAAAAtCAhi9LUa9UkSWPEO1kAAAAAAMD3ErIozVmrB7Kgt0hjVMgCAAAAAAC+l5BFaRb09uTsNZU0RsfKngIAAAAAALQgIYtSDdcqrhYEAAAAAACekJBFqepDlYyOTeSRA4fLngIAAAAAALQYIYtSba5Vk8Q7WQAAAAAAwPcQsijVcK2SJN7JAgAAAAAAvoeQRalWV/qzYmBhtjqRBQAAAAAAfBchi1IVRZF6rZItQhYAAAAAAPBdhCxKV69Vc9foeKZnmmVPAQAAAAAAWoiQRenqQ5UcOjKdb+05WPYUAAAAAACghQhZlG64Vk2SNEbGSl4CAAAAAAC0EiGL0p2zdjA9RbyTBQAAAAAAPI6QRekWLejNxlUDTmQBAAAAAACPI2TREoZr1Wzd6UQWAAAAAADwHUIWLaFeq+SBhw/mwORU2VMAAAAAAIAWIWTREupD1SRxKgsAAAAAADhGyKIl1GuVJEljRMgCAAAAAAAeJWTREtYvX5zB/r40RsfKngIAAAAAALQIIYuWUBRFNtcqTmQBAAAAAADHCFm0jHqtksboWJrNZtlTAAAAAACAFiBk0TLqQ9WMTUxlZN9E2VMAAAAAAIAWIGTRMoZrlSTxThYAAAAAAJBEyKKFnHs0ZG3xThYAAAAAABAhixZSXbQg65YtTmNUyAIAAAAAAIQsWszwUCWNEVcLAgAAAAAAQhYtpl6r5r6HDmRyarrsKQAAAAAAQMmELFpKfaiS6Zlm7tm1v+wpAAAAAABAyYQsWkq9Vk2SNEa8kwUAAAAAAN1OyKKlbFy5JP19PWmMeicLAAAAAAC6nZBFS+nr7cm5aytpjDqRBQAAAAAA3U7IouVsrlWyxdWCAAAAAADQ9YQsWk69VslD+yfz0P7JsqcAAAAAAAAlErJoOcND1STJVtcLAgAAAABAVxOyaDn1WiVJsmVkrOQlAAAAAABAmYQsWs7Kwf6srvSn4UQWAAAAAAB0NSGLllSvVdIYdSILAAAAAAC6mZBFS6rXKrlr5/5MTc+UPQUAAAAAACiJkEVLqteqOTw1k28+fKDsKQAAAAAAQEmELFpSfaiSJN7JAgAAAACALiZk0ZLOXjOY3p4ijREhCwAAAAAAupWQRUvq7+vNptUDaYyOlT0FAAAAAAAoydOGrKIo3l8Uxa6iKO54zGe/URTFjqIobj366yWP+dr/XRTFPUVRbC2K4kfmajidr16rZosTWQAAAAAA0LWO50TWB5K8+Ak+/91ms3nx0V+fSJKiKJ6R5JVJzjv6d/6oKIre2RpLd9lcq2TH3kMZmzhS9hQAAAAAAKAETxuyms3mF5LsOc5/3lVJ/qrZbE42m837k9yT5FmnsI8uNjxUSZJsHXUqCwAAAAAAutGpvJH174uiuP3o1YPLj362Lsm2x3zP9qOffY+iKF5fFMWNRVHcuHv37lOYQaeq16pJkoaQBQAAAAAAXelkQ9Z7kmxKcnGSkSTvOtF/QLPZ/JNms3lZs9m8bPXq1Sc5g042tHRRqov60hgZK3sKAAAAAABQgpMKWc1mc2ez2ZxuNpszSf5XvnN94I4kGx7zreuPfgYnrCiK1IeqTmQBAAAAAECXOqmQVRTF0GP+48uS3HH0z3+b5JVFUfQXRXFmknOSfPXUJtLNhmuVbB0dz8xMs+wpAAAAAADAPOt7um8oiuJDSa5Isqooiu1J/luSK4qiuDhJM8k3k7whSZrN5p1FUXw4yTeSTCV5U7PZnJ6T5XSF+lA1+ycfyI69h7JhxZKy5wAAAAAAAPPoaUNWs9n86Sf4+P97iu//70n++6mMgm/bXKskSbaMjAlZAAAAAADQZU7qakGYL5vXPhqyvJMFAAAAAADdR8iipQ309+WMlUuyVcgCAAAAAICuI2TR8uq1SraMjpU9AwAAAAAAmGdCFi2vXqvmmw8dyKHD02VPAQAAAAAA5pGQRcsbHqpkppncvcv1ggAAAAAA0E2ELFre5lo1SdIYEbIAAAAAAKCbCFm0vNNXLMniBb3eyQIAAAAAgC4jZNHyenuKnFurZOuoE1kAAAAAANBNhCzawnCtki0jY2k2m2VPAQAAAAAA5omQRVuo1yp55OCR7B6fLHsKAAAAAAAwT4Qs2kJ9qJok2eJ6QQAAAAAA6BpCFm2hXqskSRojYyUvAQAAAAAA5ouQRVtYtmRhatVFaTiRBQAAAAAAXUPIom3UhyrZ4kQWAAAAAAB0DSGLtlGvVXPv7v05Mj1T9hQAAAAAAGAeCFm0jeGhSo5MN3Pf7gNlTwEAAAAAAOaBkEXbqNeqSZLGqOsFAQAAAACgGwhZtI2zVg9kQW+RLSPjZU8BAAAAAADmgZBF21jQ25NNqwedyAIAAAAAgC4hZNFWhoeqaTiRBQAAAAAAXUHIoq3Ua5WMjk1k78HDZU8BAAAAAADmmJBFW6kPVZMkjVGnsgAAAAAAoNMJWbSV4VolSdIY8U4WAAAAAAB0OiGLtrK60p8VAwudyAIAAAAAgC4gZNFWiqLI5rWVbBGyAAAAAACg4wlZtJ36UCV3jY5nZqZZ9hQAAAAAAGAOCVm0neFaNYeOTOdbew6WPQUAAAAAAJhDQhZtpz5USZI0RsdKXgIAAAAAAMwlIYu2c86aSnqKZMuId7IAAAAAAKCTCVm0ncULe7Nx1YATWQAAAAAA0OGELNpSvVZJY9SJLAAAAAAA6GRCFm2pXqvmgYcP5sDkVNlTAAAAAACAOSJk0ZbqtUqSZOtOp7IAAAAAAKBTCVm0peGhapJkq+sFAQAAAACgYwlZtKV1yxZnsL8vjZGxsqcAAAAAAABzRMiiLfX0FNlcq2SLE1kAAAAAANCxhCzaVr1WSWNkLM1ms+wpAAAAAADAHBCyaFv1WiVjE1MZ2TdR9hQAAAAAAGAOCFm0rfpQNUnSGPVOFgAAAAAAdCIhi7a1uVZJkjS8kwUAAAAAAB1JyKJtVRctyLpli9MYEbIAAAAAAKATCVm0teGhiqsFAQAAAACgQwlZtLV6rZp7dx/I5NR02VMAAAAAAIBZJmTR1jbXKpmeaeaeXfvLngIAAAAAAMwyIYu2NjxUSRLvZAEAAAAAQAcSsmhrG1cOZGFfT7buFLIAAAAAAKDTCFm0tb7enpy7djBbRsbKngIAAAAAAMwyIYu2V69V0xh1IgsAAAAAADqNkEXbq9cq2T0+mYf2T5Y9BQAAAAAAmEVCFm1veKiaJNnqVBYAAAAAAHQUIYu2t7lWSRLvZAEAAAAAQIcRsmh7qwb7s2qw3ztZAAAAAADQYYQsOsLwUMXVggAAAAAA0GGELDpCvVbJXTvHMzU9U/YUAAAAAABglghZdIR6rZrJqZl88+GDZU8BAAAAAABmiZBFR6gPVZIkjdGxkpcAAAAAAACzRciiI5y9ZjC9PUUaI97JAgAAAACATiFk0RH6+3pz1qoBJ7IAAAAAAKCDCFl0jPpQNY1RJ7IAAAAAAKBTCFl0jHqtku2PHMrYxJGypwAAAAAAALNAyKJjDA9VkiR3OZUFAAAAAAAdQciiY9Rr1STJFiELAAAAAAA6gpBFxxhauiiVRX1pjIyVPQUAAAAAAJgFQhYdoyiKDNeqaTiRBQAAAAAAHUHIoqPUhyrZOjqeZrNZ9hQAAAAAAOAUCVl0lHqtmv2TU9n+yKGypwAAAAAAAKdIyKKj1IcqSeJ6QQAAAAAA6ABCFh1l89qjIWtkrOQlAAAAAADAqRKy6CgD/X05Y+USJ7IAAAAAAKADCFl0nM1rK9ky6kQWAAAAAAC0OyGLjlMfquabDx3IxJHpsqcAAAAAAACnQMii4wzXKplpJnfv3F/2FAAAAAAA4BQIWXSc+lA1SVwvCAAAAAAAbU7IouOcvmJJFi/oTWNkvOwpAAAAAADAKRCy6Di9PUXOrVXScCILAAAAAADampBFR6qvrWTLyFiazWbZUwAAAAAAgJMkZNGR6kOVPHLwSHaPT5Y9BQAAAAAAOElCFh2pXqsmSRqj3skCAAAAAIB2JWTRkeq1SpJ4JwsAAAAAANqYkEVHWj6wMLXqojRGnMgCAAAAAIB2JWTRsepDlWxxtSAAAAAAALQtIYuOtblWyT27xnNkeqbsKQAAAAAAwEkQsuhYw7Vqjkw3c9/uA2VPAQAAAAAAToKQRceqD1WSJI3RsZKXAAAAAAAAJ0PIomOdtWowC3qLNLyTBQAAAAAAbUnIomMt7OvJptWDaYw4kQUAAAAAAO1IyKKjDQ9VncgCAAAAAIA2JWTR0eq1Skb2TWTvwcNlTwEAAAAAAE6QkEVH21yrJIlTWQAAAAAA0IaELDra8FA1SbyTBQAAAAAAbUjIoqOtqfRn+ZIF2brTiSwAAAAAAGg3QhYdrSiK1GvVbBkRsgAAAAAAoN0IWXS8+lAlW0fHMzPTLHsKAAAAAABwAoQsOt5wrZpDR6bzrT0Hy54CAAAAAACcACGLjre5VkmSNEbHSl4CAAAAAACcCCGLjnfu2kqKIt7JAgAAAACANiNk0fEWL+zNmSsHsnVUyAIAAAAAgHYiZNEV6kMVVwsCAAAAAECbEbLoCvVaNQ/sOZgDk1NlTwEAAAAAAI6TkEVXqNcqaTaTu3a6XhAAAAAAANqFkEVXqNeqSZKGd7IAAAAAAKBtCFl0hfXLF2dgYW8aI97JAgAAAACAdiFk0RV6eopsrlWyxYksAAAAAABoG0IWXaM+VM3W0fE0m82ypwAAAAAAAMdByKJrDNcq2XfoSEbHJsqeAgAAAAAAHAchi65RH6omSRojrhcEAAAAAIB2IGTRNTbXKkmSLaNjJS8BAAAAAACOh5BF16guWpB1yxY7kQUAAAAAAG1CyKKr1GuVNJzIAgAAAACAtiBk0VXqQ5Xct/tAJqemy54CAAAAAAA8DSGLrlKvVTM108y9uw6UPQUAAAAAAHgaQhZdZXiokiSuFwQAAAAAgDYgZNFVNq4cyMK+njRGx8ueAgAAAAAAPA0hi67S19uTc9YMZsuIE1kAAAAAANDqhCy6Tr1WdSILAAAAAADagJBF1xkeqmT3+GQe3j9Z9hQAAAAAAOApCFl0nXqtmiTZ6lQWAAAAAAC0NCGLrlMfqiRJtghZAAAAAADQ0oQsus6qwf6sGuxPY2Ss7CkAAAAAAMBTELLoSsNDlTScyAIAAAAAgJYmZNGVNq+t5K6d45manil7CgAAAAAA8CSELLpSfaiayamZfPPhg2VPAQAAAAAAnoSQRVeq1ypJkq2uFwQAAAAAgJYlZNGVzl4zmN6eIo3RsbKnAAAAAAAAT0LIoistWtCbs1YNZMuIE1kAAAAAANCqhCy6Vn2o6kQWAAAAAAC0MCGLrlWvVbL9kUMZmzhS9hQAAAAAAOAJCFl0rXqtkiS5a9T1ggAAAAAA0IqELLpWfaiaJGkIWQAAAAAA0JKELLrWaUsXpbKozztZAAAAAADQooQsulZRFBmuVdMYcSILAAAAAABakZBFV6sPVdIYHU+z2Sx7CgAAAAAA8F2ELLra5lol+yensv2RQ2VPAQAAAAAAvouQRVer16pJksao6wUBAAAAAKDV9JU9AMq0uVZJkvzFVx7I+MSRbFo9mE1rBjPY738aAAAAAABQNv9vPV1tsL8vP3Le2vzjll25YevuY5/Xqouyac3Ao2Hr27/WDKRWXZSiKEpcDAAAAAAA3UPIouu991WX5fDUTL6152Du3b3/0V+7DuTe3ftz/c07Mj45dex7Bxb25qzVg9m0euDY6a1NqwezcdWS9Pf1lvhTAAAAAABA5xGyIMnCvp6cvWYwZ68ZfNznzWYzu/dP5p5d+3Pv7gO5d9ejoetr33wkH731wWPf11Mkp69Y8pi49Z3TXMsHFs73jwMAAAAAAB1ByIKnUBRF1lQWZU1lUZ67adXjvnbw8FTu233g6Cmuo7/v2p8v3vNQDk/NHPu+FQMLHxe2vn1l4frlS9Lb45pCAAAAAAB4MkIWnKQlC/ty/rqlOX/d0sd9Pj3TzI5HDn3nmsKjVxV+5hs781cHth37voV9PTlr1bcD18CxawrPXDWQgX7/0wQAAAAAAP9vOcyy3p4ip69cktNXLsmL6mse97VHDhzOfQ995w2ue3fvzzdGxvLJO0Yy0/zO9522dNGxsPXY97jWVPpTFE5xAQAAAADQHYQsmEfLBxbmmQMr8swzVjzu88mp6Tzw8MFjb3B9+6rC/33jthw4PH3s+yr9fTnru97gOnvNQE5fMZCFfT3z/eMAAAAAAMCcErKgBfT39ebctZWcu7byuM+bzWZ2jk0+5orCRyPXP9/zcK67ecex7+vtKXLGiiU56zFvcG1aPZizVw9m6ZIF8/3jAAAAAADArBCyoIUVRZHa0kWpLV2U7z971eO+tn9yKvc95g2ub8euL9y1O4enZ45936rB/se9wfXt01zrli1OT49rCgEAAAAAaF1CFrSpwf6+XLh+WS5cv+xxn09Nz2T7I4cec4rrQO7ZvT9/f/tI9h06cuz7+vt6Hj3B9Zg3uDatHshZqwazeGHvPP80AAAAAADwvYQs6DB9vT3ZuGogG1cN5Mrhtcc+bzab2XPg8LH3t779Htft2/fl778+kmbzO/+MdcsW5+xvn+B6zFWFqwYXpiic4gIAAAAAYH4IWdAliqLIysH+rBzsz7POXPG4r00cmc43Hz5w7IrCe45Grq/evyeHjkwf+77qor7HXFE4eOzKwtNXLMmC3p75/pEAAAAAAOhwQhaQRQt6U69VU69VH/f5zEwzI2MTx05vffuqwi/ctTsfuWn7se/r6ylyxsol2bR6MGevGcyF65flR85b6/QWAAAAAACnRMgCnlRPT5F1yxZn3bLFecG5qx/3tbGJI7lv94Hcu2t/7nnMVYX/1NiVqZlmfvmHzs0vXnlOScsBAAAAAOgEQhZwUqqLFuTiDcty8YZlj/v8yPRMfu0jt+d3PnNX1i9fnKsvXV/OQAAAAAAA2p6QBcyqBb09efvLL8zIvon82t/cnlp1UZ579qqyZwEAAAAA0IZ6yh4AdJ6FfT3541c9MxtXDuQNf35T7t45XvYkAAAAAADakJAFzImlixfk2tdenkULevOaa7+WXeMTZU8CAAAAAKDNCFnAnFm/fEnef83l2XPgcF73gRtzYHKq7EkAAAAAALQRIQuYUxesX5p3/8wlufPBffnFD92SqemZsicBAAAAANAmhCxgzl05vDZvu+r8fLaxK2/7+DfSbDbLngQAAAAAQBvoK3sA0B1e9ewzsn3Pwbz3C/dlw4rFef0LNpU9CQAAAACAFidkAfPm115cz/a9h/Lbn2hk3bIl+bELh8qeBAAAAABACxOygHnT01PkXT91UXbum8ibP3xr1lb7c9nGFWXPAgAAAACgRXkjC5hXixb05n+9+rKsW7Y4P//BG3P/QwfKngQAAAAAQIsSsoB5t3xgYT7w2stTFEVec+1X8/D+ybInAQAAAADQgoQsoBRnrBzI+665LKP7JvJvP3hjJo5Mlz0JAAAAAIAWI2QBpbn09OX5/VdenFu37c2b//rWzMw0y54EAAAAAEALEbKAUr34/KG89SXD+eQdo/ntT2wpew4AAAAAAC2kr+wBAK973pnZ/sihvO9L92fDiiW55rkby54EAAAAAEALELKA0hVFkV9/6TOyY++hvO3jd+a0ZYvzQ89YW/YsAAAAAABK5mpBoCX09hT5/VdenAvWLc0vfOjm3LZtb9mTAAAAAAAomZAFtIwlC/vyvmsuz6rB/rzuT7+WbXsOlj0JAAAAAIASCVlAS1ld6c8HXnt5Dk/N5DXXfjX7Dh4pexIAAAAAACURsoCWc/aaSv7k1Zdl255Def2f3ZjJqemyJwEAAAAAUAIhC2hJzz5rZd7xUxfmK/fvya9+5PbMzDTLngQAAAAAwDzrK3sAwJO56uJ12f7IobzjU1uzfvni/McfqZc9CQAAAACAeSRkAS3tjVdsyrY9B/OHn7s365cvyU8/6/SyJwEAAAAAME+ELKClFUWR3/rJ8/Pgvon8l4/ekaGli3LF5jVlzwIAAAAAYB54IwtoeQt6e/JHP3tpzl1byZv+4ubc+eC+sicBAAAAADAPhCygLQz29+Xa11ye6uIF+bkPfC0P7j1U9iQAAAAAAOaYkAW0jdrSRXn/ay7Pgcnp/NwHvpbxiSNlTwIAAAAAYA4JWUBbGR6q5j3/5tLcs2t/3vgXN+fI9EzZkwAAAAAAmCNCFtB2nn/O6vz21Rfki3c/lLde//U0m82yJwEAAAAAMAf6yh4AcDJecdmGbN9zMH/wT/dkw/Il+YUrzyl7EgAAAAAAs0zIAtrWm3/o3Gx/5FDe9Zm7sn7F4rzskvVlTwIAAAAAYBYJWUDbKooib3/5hRnZN5Ff/cjtWVtdlOduWlX2LAAAAAAAZok3soC2trCvJ3/8qmdm48qBvOHPbsrdO8fLngQAAAAAwCwRsoC2t3Txglz72suzaEFvXnPt17JrfKLsSQAAAAAAzAIhC+gI65cvyfuvuTx7DhzO6z5wYw5MTpU9CQAAAACAUyRkAR3jgvVL8+6fuSR3Prgvv/ihWzI1PVP2JAAAAAAAToGQBXSUK4fX5m1XnZ/PNnblbR//RprNZtmTAAAAAAA4SX1lDwCYba969hnZvudg3vuF+7JhxeK8/gWbyp4EAAAAAMBJELKAjvRrL65n+95D+e1PNLJu2ZL82IVDZU8CAAAAAOAECVlAR+rpKfKun7ooO/dN5M0fvjVrq/25bOOKsmcBAAAAAHACvJEFdKxFC3rzv159WdYtW5yf/+CNuf+hA2VPAgAAAADgBAhZQEdbPrAwH3jt5SmKIq+59qt5eP9k2ZMAAAAAADhOQhbQ8c5YOZD3XXNZRvdN5N9+8MZMHJkuexIAAAAAAMdByAK6wqWnL8/vv/Li3Lptb97817dmZqZZ9iQAAAAAAJ6GkAV0jRefP5S3vmQ4n7xjNL/9iS1lzwEAAAAA4Gn0lT0AYD697nlnZvsjh/K+L92fDSuW5Jrnbix7EgAAAAAAT0LIArpKURT59Zc+Izv2HsrbPn5nTlu2OD/0jLVlzwIAAAAA4Am4WhDoOr09Rf7glZfkgnVL8wsfujm3bdtb9iQAAAAAAJ6AkAV0pcULe/O+ay7P6kp/XvenX8u2PQfLngQAAAAAwHcRsoCutbrSn2tf86wcmW7mNdd+NfsOHil7EgAAAAAAjyFkAV3t7DWD+ZNXPTPb9hzK6//sxkxOTZc9CQAAAACAo4QsoOt931kr846fujBfuX9PfvUjt2dmpln2JAAAAAAAkvSVPQCgFVx18bpsf+RQ3vGprdmwfEne8iOby54EAAAAAND1hCyAo954xaZsf+Rg3v25e7J++eK88lmnlz0JAAAAAKCrCVkARxVFkd+66vw8uHcib/3oHRlatjgvPHd12bMAAAAAALqWN7IAHqOvtyd/+LOX5ty1lbzxz2/KNx4cK3sSAAAAAEDXErIAvstgf1+ufc3lqS5ekJ/7wNcysu9Q2ZMAAAAAALqSkAXwBGpLF+X9r7k8+yen8tprv5bxiSNlTwIAAAAA6DpCFsCTGB6q5j3/5tLcs2t/3vgXN+fI9EzZkwAAAAAAuoqQBfAUnn/O6vz21Rfki3c/lLde//U0m82yJwEAAAAAdI2+sgcAtLpXXLYh2/cczB/80z3ZsHxJfuHKc8qeBAAAAADQFZ72RFZRFO8vimJXURR3POazFUVRfKYoiruP/r786OdFURR/UBTFPUVR3F4UxaVzOR5gvrz5h87N1Zesy7s+c1euv2V72XMAAAAAALrC8Vwt+IEkL/6uz/5Tks82m81zknz26H9Okh9Ncs7RX69P8p7ZmQlQrqIo8vaXX5jnnLUyv/qR2/PP9z5U9iQAAAAAgI73tCGr2Wx+Icme7/r4qiR/evTPf5rkJx/z+Qebj/rXJMuKohiapa0ApVrY15M/ftUzs3HlQN7wZzfl7p3jZU8CAAAAAOhox3Mi64msbTabI0f/PJpk7dE/r0uy7THft/3oZwAdYeniBbn2tZdn0YLevObar2XX+ETZkwAAAAAAOtbJhqxjms1mM0nzRP9eURSvL4rixqIobty9e/epzgCYN+uXL8n7r7k8ew4czus+cGMOTE6VPQkAAAAAoCOdbMja+e0rA4/+vuvo5zuSbHjM960/+tn3aDabf9JsNi9rNpuXrV69+iRnAJTjgvVL8+6fuSR3Prgvv/ihWzI1PVP2JAAAAACAjnOyIetvk1xz9M/XJPnYYz5/dfGoZyfZ95grCAE6ypXDa/O2q87PZxu78raPfyOPHlAFAAAAAGC29D3dNxRF8aEkVyRZVRTF9iT/Lcnbk3y4KIrXJXkgySuOfvsnkrwkyT1JDiZ57RxsBmgZr3r2Gdm+52De+4X7smHF4rz+BZvKngQAAAAA0DGeNmQ1m82ffpIvXfkE39tM8qZTHQXQTn7txfVs33sov/2JRtYtW5Ifu3Co7EkAAAAAAB3haUMWAE+tp6fIu37qouzcN5E3f/jWrK3257KNK8qeBQAAAADQ9k72jSwAHmPRgt78r1dflnXLFufnP3hj7n/oQNmTAAAAAADanpAFMEuWDyzMB157eYqiyGuu/Woe3j9Z9iQAAAAAgLYmZAHMojNWDuR911yW0X0T+bcfvDETR6bLngQAAAAA0LaELIBZdunpy/P7r7w4t27bmzf/9a2ZmWmWPQkAAAAAoC0JWQBz4MXnD+WtLxnOJ+8YzW9/YkvZcwAAAAAA2lJf2QMAOtXrnndmtj9yKO/70v3ZsGJJrnnuxrInAQAAAAC0FSELYI4URZFff+kzsmPvobzt43fmtGWL80PPWFv2LAAAAACAtuFqQYA51NtT5A9eeUkuWLc0v/Chm3Pbtr1lTwIAAAAAaBtCFsAcW7ywN++75vKsrvTndX96Y7btOVj2JAAAAACAtiBkAcyD1ZX+XPuaZ+XI9Exe+4GvZd/BI2VPAgAAAABoeUIWwDw5e81g/uRVz8y3Hj6Y1//ZjZmcmi57EgAAAABASxOyAObR9521Mu/4qQvzlfv35Nc+cnuazWbZkwAAAAAAWlZf2QMAus1VF6/L9kcO5R2f2pr1y5fkLT+yuexJAAAAAAAtScgCKMEbr9iU7Y8czLs/d0/WL1+cVz7r9LInAQAAAAC0HCELoARFUeS3rjo/D+6dyFs/ekeGli3OC89dXfYsAAAAAICW4o0sgJL09fbkD3/20mxeW8kb//ymfOPBsbInAQAAAAC0FCELoESD/X259rWXp7p4QX7uA1/LyL5DZU8CAAAAAGgZQhZAydZWF+Xa116eA5NTee21X8v4xJGyJwEAAAAAtAQhC6AF1GvVvOffPDP37NqfN/7FzTkyPVP2JAAAAACA0glZAC3ieeesyv979QX54t0P5a3Xfz3NZrPsSQAAAAAApeorewAA3/FTl23ItkcO5Q8+e3c2LF+SX7jynLInAQAAAACURsgCaDFv/sFzsv2Rg3nXZ+7K+hWL87JL1pc9CQAAAACgFEIWQIspiiJvv/rCjOydyK9+5PasrS7KczetKnsWAAAAAMC880YWQAta2NeTP37VM7Nx5UDe8Gc3ZevoeNmTAAAAAADmnZAF0KKWLl6Qa197eRYt6M2Pv/tLeeentubA5FTZswAAAAAA5o2QBdDC1i9fkr/999+fl5xfy7s/d09e9M4b8pGbtmdmpln2NAAAAACAOSdkAbS4oaWL83uvvCTXvfG5GVq2OG/537flZX/05dz0wJ6ypwEAAAAAzCkhC6BNXHr68lz/fz03v/OKizI6NpGXv+df8osfuiUP7j1U9jQAAAAAgDkhZAG0kZ6eIldfuj7/9CtX5Bd+4Ox86s7R/MC7bsjvfuauHDo8XfY8AAAAAIBZJWQBtKGB/r78yg9vzmd/5YW5cnhtfv+zd+cH3nVDPnbrjjSb3s8CAAAAADqDkAXQxtYvX5I//JlL8+E3PCcrBxfml/7q1rz8Pf+c27btLXsaAAAAAMApE7IAOsCzzlyRj73pefmfL78w39pzKFf94Zfzyx++NTvHJsqeBgAAAABw0oQsgA7R21PkFZdvyOfe8sL8uxduyt/dNpIXvfOGvPuf7s7EEe9nAQAAAADtR8gC6DCVRQvyn360ns/88gvy/HNW5Z2fvitXvuvz+fvbR7yfBQAAAAC0FSELoEOdsXIg733VZfnLn/++VBb15U1/eXP+zz/519yxY1/Z0wAAAAAAjouQBdDhnrtpVf7+F5+f//6y83PPrv358Xd/Kb/2kduze3yy7GkAAAAAAE9JyALoAr09RX72+87I595yRV73/Wfmb27enhe984b88efvzeSU97MAAAAAgNYkZAF0kaWLF+S/vPQZ+fSbX5Bnn7Uib/9kIz/8u1/Ip+4c9X4WAAAAANByhCyALnTW6sG875rL88Gfe1YW9vbkDX92U372fV9JY3Ss7GkAAAAAAMcIWQBd7AXnrs4nf+n5+c2rzss3Rsbykt//Yt56/dfz8H7vZwEAAAAA5ROyALpcX29PXv2cjbnhLVfk1c/ZmL/62rZc8c4b8r4v3pfDUzNlzwMAAAAAupiQBUCSZNmShfmNnzgvn/oPz8+lpy/P//P3W/Li3/tCPrtlp/ezAAAAAIBSCFkAPM7Zayr50597Vq59zeVJkbzuT2/Mq9//1dy9c7zsaQAAAABAlxGyAHhCL6qvyaf+wwvy6y99Rm7btjcv/v0v5r997I7sPXi47GkAAAAAQJcQsgB4Ugt6e/K6552ZG/7ji/LTz9qQP/vXB/LCd9yQD3z5/hyZ9n4WAAAAADC3hCwAntaKgYX5f37ygnzil56f89dV8xsf/0Z+9Pe/mM/ftbvsaQAAAABABxOyADhu9Vo1f/6678ufvOqZOTI9k2ve/9X83Ae+lvt27y97GgAAAADQgYQsAE5IURT54fNq+fSbX5D/+0fr+er9e/LDv/uF/NbffSP7Dh0pex4AAAAA0EGELABOSn9fb97wwk353FuuyP/xzPV5/5fvz4veeUP+/F8fyPRMs+x5AAAAAEAHELIAOCWrK/15+8svzMf//fNy9prB/JeP3pEf+4Mv5p/veajsaQAAAABAmxOyAJgV569bmr9+/bPzRz97afZPTuVn3veVvP6DN+aBhw+UPQ0AAAAAaFNCFgCzpiiKvOSCofzjL78w//FHNudL9zyUH/qdL+T//eSWjE94PwsAAAAAODFCFgCzbtGC3rzpRWfnc2+5Ij9+0Wl57+fvy4ve+fn89de+5f0sAAAAAOC4CVkAzJm11UV51ysuyt/+++/PGSuX5Nf+5uv5iXd/KV+9f0/Z0wAAAACANiBkATDnLly/LB/5d8/JH/z0JXnkwOG84r3/kjf9xc3Ztudg2dMAAAAAgBYmZAEwL4qiyE9cdFo++ytX5M0/eG4+29iZK3/n83nnp7bmwORU2fMAAAAAgBYkZAEwrxYv7M0v/eA5+dxbrshLzq/l3Z+7Jy965w35yE3bM+P9LAAAAADgMYQsAEoxtHRxfu+Vl+S6Nz43Q8sW5y3/+7a87I++nJse8H4WAAAAAPAoIQuAUl16+vJc/389N+/6qYsysm8iL3/Pv+QXP3RLHtx7qOxpAAAAAEDJhCwAStfTU+Tlz1yfz73livzCD5ydT905mh941w35vX+8K4cOT5c9DwAAAAAoiZAFQMsY6O/Lr/zw5nz2V16YK4fX5vf+8e5c+a4b8rFbd6TZ9H4WAAAAAHQbIQuAlrN++ZL84c9cmg+/4TlZMbgwv/RXt+b/+ON/yW3b9pY9DQAAAACYR0IWAC3rWWeuyMfe9Lz8z5dfmAcePpir/vDL+eUP35qdYxNlTwMAAAAA5oGQBUBL6+0p8orLN+Rzb3lh/t0LN+XvbhvJi955Q979T3dn4oj3swAAAACgkwlZALSFyqIF+U8/Ws9nfvkFef45q/LOT9+VK9/1+fz97SPezwIAAACADiVkAdBWzlg5kPe+6rL85c9/XyqL+vKmv7w5/+ef/Gvu2LGv7GkAAAAAwCwTsgBoS8/dtCp//4vPz39/2fm5Z9f+/Pi7v5Rf+8jt2T0+WfY0AAAAAGCWCFkAtK3eniI/+31n5HNvuSKv+/4z8zc3b8+L3nlD/vjz92ZyyvtZAAAAANDuhCwA2t7SxQvyX176jHz6zS/Is89akbd/spEf/t0v5FN3jno/CwAAAADamJAFQMc4a/Vg3nfN5fngzz0rC3t78oY/uyk/+76vpDE6VvY0AAAAAOAkCFkAdJwXnLs6n/yl5+c3rzov3xgZy0t+/4t56/Vfz8P7vZ8FAAAAAO1EyAKgI/X19uTVz9mYG95yRV79nI35q69tyxXvvCHv++J9OTw1U/Y8AAAAAOA4FK3wdshll13WvPHGG8ueAUAHu3vneH7r77fkC3ftzhkrl+RFm9fkwvVLc9GGZTlz5UB6eoqyJwIAAABAVyqK4qZms3nZE35NyAKgWzSbzdywdXfe+4V7c/v2fTl4eDpJUunvy4UblubC9cty0dG4VasuSlGIWwAAAAAw154qZPXN9xgAKEtRFHlRfU1eVF+T6Zlm7t29P7du25vbt+/Nbdv25X1fvC9Hph/9FzxWV/pz0WPC1oXrl2bZkoUl/wQAAAAA0F2ELAC6Um9PkXPXVnLu2kpecdmGJMnEkelsGRnL7dv35bZte3Pb9r35xy07j/2djSuXPHpqa8Ojgeu805Zm8cLesn4EAAAAAOh4QhYAHLVoQW8uOX15Ljl9+bHPxiaO5I7t+3Lb0bh14zf35G9vezDJd2LYY09tnbu2kgW9PWX9CAAAAADQUbyRBQAnaNf4RG7fti+3b9+bW7c/+vveg0eSJP19PTl/3dJcuH5pLt6wLBeuX5aNK5d4bwsAAAAAnsRTvZElZAHAKWo2m/nWnoPHTm3dvn1vvr5jXyaOzCRJli5ekAvXL81F65cdC1xrqotKXg0AAAAAreGpQparBQHgFBVFkTNWDuSMlQP5iYtOS5JMTc/k7l37j7619eiprfd8/t5Mzzz6L5DUqosejVsbluWi9ctywfqlWbp4QZk/BgAAAAC0HCELAOZAX29PhoeqGR6q5pXPevSziSPTufPBsWOntm7bvi+f/sbOY3/nrFUDx97aunD9spx3WjWLFvSW9BMAAAAAQPmELACYJ4sW9OaZZyzPM89YfuyzfQeP5PYde3P79n25ddve/PO9D+X6W3YkSfp6imyuVY6e2nr09NY5ayrp7fHeFgAAAADdwRtZANBiRvdN5LbtR09tbduX27bvzfjEVJJk8YLeXLBu6aOntjYsy8Xrl2XDisUpCnELAAAAgPb0VG9kCVkA0OJmZpr55sMHjp3aun373tz54Fgmp2aSJMuXLMiF679zauvC9cuyutJf8moAAAAAOD5PFbJcLQgALa6np8hZqwdz1urB/OQl65IkR6ZnsnV0PLdv35fbtu3Nbdv35t2f252Zo/9+yrpli4+9tXXRhqW5YN3SVBYtKPGnAAAAAIAT50QWAHSIg4encueDY0fD1r7cvn1vHnj4YJKkKJJNqwdz4fqlufjoqa3hoUr6+3pLXg0AAABAt3MiCwC6wJKFfbl844pcvnHFsc8eOXA4t+949NTW7dv35gt3PZTrbt6RJFnQW2R4qJoL1y/NReuX5aINy7Jp9WB6e7y3BQAAAEBrcCILALpIs9nMyL6JY6e2btu2N1/fsS/7J6eSJAMLe3P+uu+c2rpow9KsW7Y4RSFuAQAAADA3nMgCAJIkRVHktGWLc9qyxfnRC4aSJDMzzdz30IFjp7Zu3b4v1375mzk8PZMkWTmw8NFTWxuW5aL1y3Lh+qVZOdhf5o8BAAAAQJcQsgCgy/X0FDl7zWDOXjOYlz9zfZLk8NRMGqNjx05t3b59b264a3e+fZB7/fLFR68jXProya31y7J4ofe2AAAAAJhdrhYEAI7L/smp3LFjX27fvje3bduX27bvzfZHDiVJlizszYvPr+XqS9bnOZtWemcLAAAAgOPmakEA4JQN9vfl2WetzLPPWnnss4f3T+a27Xvz6Tt35u9vH8l1N+9IrbooV11yWl5+6fqcu7ZS4mIAAAAA2p0TWQDArJg4Mp1/3LIz1928I5+/a3emZ5o577Rqrr50fX7iotOyuuJdLQAAAAC+11OdyBKyAIBZ99D+yfztrQ/m+lt25Os79qW3p8gLzlmVqy9dnx96xtosWuA9LQAAAAAeJWQBAKW5e+d4rrtlRz56y46M7JtIpb8vL7lgKC+7dF2etXFFerynBQAAANDVhCwAoHTTM838630P57qbd+STd4zk4OHprFu2OC+7ZF1edum6bFo9WPZEAAAAAEogZAEALeXg4al8+s6d+Zubt+fL9zyUmWZy0YZlefml6/LSC0/LioGFZU8EAAAAYJ4IWQBAy9o5NpGP3boj1928I43R8fT1FHlRfU2uvmRdfmB4Tfr7vKcFAAAA0MmELACgLXzjwbFcf8v2fPTWB7N7fDJLFy/Ij104lJdfui6Xnr48ReE9LQAAAIBOI2QBAG1lanomX7734Vx38/Z86s7RTByZyRkrlzz6ntYl63LGyoGyJwIAAAAwS4QsAKBt7Z+cyie/PpLrb9mRf7nv4TSbyWVnLM/Vl67Pj10wlKVLFpQ9EQAAAIBTIGQBAB3hwb2H8tGj72nds2t/Fvb25AefsSYvu2R9Xnju6izs6yl7IgAAAAAnSMgCADpKs9nMHTvG8jc3b8/f3vZg9hw4nBUDC/PjFw7l6kvX58L1S72nBQAAANAmhCwAoGMdmZ7JF+7anetu3pHPbNmZw1MzOWv1QF5+6fpcdfFpWb98SdkTAQAAAHgKQhYA0BX2HTqST3x9JNffvCNf/eaeJMmzz1qRqy9Znx+9oJbKIu9pAQAAALQaIQsA6Drb9hzM9bfsyHU3b883Hz6Y/r6e/PB5tVx96bo8/+xV6ev1nhYAAABAKxCyAICu1Ww2c8u2vbnu5u35+G0j2XfoSFYN9ueqi0/Lyy5Zl/NOq3pPCwAAAKBEQhYAQJLJqel8rrE719+yPf/U2JUj081sXlvJyy5dl5+8eF1qSxeVPREAAACg6whZAADf5ZEDh/N3Xx/JdTdvzy3f2puiSJ539qq87JJ1+ZHzahno7yt7IgAAAEBXELIAAJ7C/Q8dyPU3b891t+zI9kcOZcnC3rz4vFquvnR9nrNpZXp7XD0IAAAAMFeELACA4zAz08yNDzyS62/Znr+7fSTjE1NZW+3PT16yLldfsj6ba5WyJwIAAAB0HCELAOAETRyZzj9u2Znrb96RG+7anemZZs47rZqXXbIuV128Lqsr/WVPBAAAAOgIQhYAwCl4aP9kPn7bg7nu5h35+o596e0p8vxzVuXqS9fnh5+xNosW9JY9EQAAAKBtCVkAALPk7p3jue6WHfnoLTsysm8ig/19eckFtbzskvX5vjNXpMd7WgAAAAAnRMgCAJhlMzPN/Ot9D+e6W3bkk18fyYHD01m3bHF+8pLT8rJL1ufsNYNlTwQAAABoC0IWAMAcOnh4Kp/5xs78zc078qW7d2emmVy0YVmuvmRdfvyi07JiYGHZEwEAAABalpAFADBPdo1N5GO3PpjrbtmRLSNj6espcsXmNXn5pevyA8Nr0t/nPS0AAACAxxKyAABKsGVkLNffsiPX37Iju8cnU13Ul5dedFquvmRdnnnG8hSF97QAAAAAhCwAgBJNTc/ky/c+nOtv3p5/uHM0E0dmcsbKJfnJi9fl6kvX5YyVA2VPBAAAACiNkAUA0CL2T07lH+4YzXU3b8+/3Pdwms3ksjOW52WXrstLLzgtS5csKHsiAAAAwLwSsgAAWtCDew/lo7fuyPU378jdu/ZnYW9Prhxek5dfuj5XDq9x9SAAAADQFYQsAIAW1mw2c8eOsVx3y/b87a0P5uEDh/O2nzgv1zx3Y9nTAAAAAObcU4WsnvkeAwDA4xVFkQvWL81/+/Hz8q//+co8/5xVeeent2b3+GTZ0wAAAABKJWQBALSQBb09+Y2fOC8TR6bz9k82yp4DAAAAUCohCwCgxWxaPZh/+/yz8jc3b89ND+wpew4AAABAaYQsAIAW9As/cHaGli7Kr3/0zkxNz5Q9BwAAAKAUQhYAQAtasrAvv/7SZ+QbI2P5i698q+w5AAAAAKUQsgAAWtSPnl/L885elXd+emse2j9Z9hwAAACAeSdkAQC0qKIo8hs/cV4mjkznf3yyUfYcAAAAgHknZAEAtLCz1wzm5553Zv73Tdtz0wOPlD0HAAAAYF4JWQAALe4Xf+Cc1KqL8l8/dkemZ5plzwEAAACYN0IWAECLG+jvy3956XDufHAsf/mVB8qeAwAAADBvhCwAgDbwYxcM5bmbVuYdn9qah/dPlj0HAAAAYF4IWQAAbaAoivzmVefl4OHp/I9/aJQ9BwAAAGBeCFkAAG3i7DWVvO55Z+bDN27Pzd96pOw5AAAAAHNOyAIAaCO/cOU5WVvtz3/92B2ZnmmWPQcAAABgTglZAABtZLC/L2/9sWfkjh1j+dBXv1X2HAAAAIA5JWQBALSZH79wKM85a2Xe8amt2XPgcNlzAAAAAOaMkAUA0GaKoshvXnVeDkxO5X/+Q6PsOQAAAABzRsgCAGhD56yt5LXfvzF/feO23PKtR8qeAwAAADAnhCwAgDb1Sz94btZU+vNfP3ZnpmeaZc8BAAAAmHVCFgBAmxrs78t/fslwvr5jX/7qa98qew4AAADArBOyAADa2E9cdFq+78wVecentmbPgcNlzwEAAACYVUIWAEAbK4oiv3nV+RmfmMo7PtUoew4AAADArBKyAADa3OZaJa997sb81de25bZte8ueAwAAADBrhCwAgA7wSz94TlYN9ue/fuyOzMw0y54DAAAAMCuELACADlBZtCBvfclwbtu+L39947ay5wAAAADMCiELAKBDXHXxaXnWmSvyP/6hkUcOHC57DgAAAMApE7IAADpEURT5/9u78/A4qjPf47+3uyW1dsnWZkvebTC2AdsYkpAATgImZMFAkkkymQnMZGXmZruTTGZuZghLcm8yW+4kmYQkTEK2mx3CloCBYCDsxrtsA7axsWxr8SLJkqy1z/2jSlJL6pZlq6VqSd/P8+hRd3V11Vunq04tb51Tt61dphPt3frXdS8FHQ4AAAAAAMCokcgCAACYRM6uyNf1b5irnz//mrbWNAYdDgAAAAAAwKiQyAIAAJhkPnPFIk3PzdI/31OtWMwFHQ4AAAAAAMAZI5EFAAAwyRREM/TFdyzWlgON+tWGA0GHAwAAAAAAcMZIZAEAAExC1yyv1EVzp+lrD+5SY1tn0OEAAAAAAACcERJZAAAAk5CZ6Za1S9Xc3q1/W/dS0OEAAAAAAACcERJZAAAAk9Q5Mwr0oTfM0c+ee03bapqCDgcAAAAAAOC0kcgCAACYxD57xVmanpulf75nu2IxF3Q4AAAAAAAAp4VEFgAAwCRWEM3QP161WJsPNOo3L9YEHQ4AAAAAAMBpIZEFAAAwyV23slKr5hTrqw/uUmNbZ9DhAAAAAAAAjBiJLAAAgEnOzHTr2mVqbOvUv697OehwAAAAAAAARoxEFgAAwBSwZGaBPvSGufrZc/u1/WBT0OEAAAAAAACMCIksAACAKeKzV5ylabmZuume7YrFXNDhAAAAAAAAnBKJLAAAgCmiMDtD/3DVOdr4WqN+s7Em6HAAAAAAAABOiUQWAADAFHLdikpdMKdYX/vDLjW1dQUdDgAAAAAAwLBIZAEAAEwhoZDp1rVLdbytU//x8EtBhwMAAAAAADAsElkAAABTzNKZhfqL18/RT57dr+pDTUGHAwAAAAAAkBSJLAAAgCno7644W8U5mbrpnmrFYi7ocAAAAAAAABIikQUAADAFFeZk6AtXLdaL+4/rrk0Hgw4HAAAAAAAgIRJZAAAAU9R7VlZpxewiffUPO9V0sivocAAAAAAAAIYgkQUAADBFhUKm29Yu07HWTn394ZeDDgcAAAAAAGAIElkAAABT2LLKQn3wdXP042f2aceh5qDDAQAAAAAAGIBEFgAAwBT3uTVnqygnUzfds13OuaDDAQAAAAAA6EMiCwAAYIorzMnQF952tjbsP667Nh4MOhwAAAAAAIA+JLIAAACg914wS8tnFen//GGXmtu7gg4HAAAAAABAEoksAAAASAqFTLetXaajrR36+sMvBx0OAAAAAACAJBJZAAAA8J1bVag/v2i2fvzMfu083Bx0OAAAAAAAACSyAAAA0O/zV56tgmhEN92zXc65oMMBAAAAAABTHIksAAAA9CnKydQX3rZYL+w7rt9tPhh0OAAAAAAAYIojkQUAAIAB/mzVLJ0/q0j/+/e71NzeFXQ4AAAAAABgCiORBQAAgAFCIdNta5fqSEuH/u/DrwQdDgAAAAAAmMJIZAEAAGCI86qK9IGLZutHz+zTrtrmoMMBAAAAAABTFIksAAAAJPT5NWcrPxrRTfdUyzkXdDgAAAAAAGAKIpEFAACAhIpzM/X3Vy7W868e071bDgUdDgAAAAAAmIJIZAEAACCp9104S+dXFerLD+zUifauoMMBAAAAAABTDIksAAAAJBUOmW5du0xHWjr0n4+8EnQ4AAAAAABgiiGRBQAAgGGdP6tI779wln749D69VHsi6HAAAAAAAMAUQiILAAAAp/T5KxcrPxrRTfdsl3Mu6HAAAAAAAMAUQSILAAAApzQtN1Ofv/JsPffqMd275VDQ4QAAAAAAgCmCRBYAAABG5P0Xzta5lYX6ygM71dLRHXQ4AAAAAABgCiCRBQAAgBEJh0y3rl2q+hMd+s9HXg46HAAAAAAAMAWQyAIAAMCIrZhdrPdfOEs/fGqfXqk7EXQ4AAAAAABgkiORBQAAgNPy929brNysiG66p1rOuaDDAQAAAAAAkxiJLAAAAJyWabmZ+tyVZ+uZvUd1/9bDQYcDAAAAAAAmMRJZAAAAOG1/ftFsLass0Jcf2KGWju6gwwEAAAAAAJMUiSwAAACctnDIdOvaZapr7tA3H30l6HAAAAAAAMAkRSILAAAAZ2Tl7GL92aoq/fefXtXu+hNBhwMAAAAAACYhElkAAAA4Y19422LlZIZ10z3Vcs4FHQ4AAAAAAJhkSGQBAADgjE3Py9LnrzxbT+85qge2HQ46HAAAAAAAMMmQyAIAAMCo/Pnr5mjpzAJ9+f6dau3oDjocAAAAAAAwiZDIAgAAwKiEQ6Zb1y5TbXO7vvnH3UGHAwAAAAAAJhESWQAAABi1C+YU6z0XVOmOJ/dqd31L0OEAAAAAAIBJgkQWAAAAUuIfrlqs7Mywbr63Ws65oMMBAAAAAACTAIksAAAApERJXpY+t+Zs/Wn3Ef1he23Q4QAAAAAAgEmARBYAAABS5oOvm61zZhTotvt3qLWjO+hwAAAAAADABEciCwAAACkTCYd029qlOtzUrm89tjvocAAAAAAAwARHIgsAAAAptWruNL17ZZXueHKv9jS0BB0OAAAAAACYwEhkAQAAIOX+4arFimaEdfO91XLOBR0OAAAAAACYoEhkAQAAIOVK87P0P684S0++ckQPbq8NOhwAAAAAADBBkcgCAADAmPjL18/R4op83Xb/DrV1dgcdDgAAAAAAmIBIZAEAAGBMRMIh3XbNMh1qatd/PbY76HAAAAAAAMAERCILAAAAY+bCudN03YpKfe+Jvdrb0BJ0OAAAAAAAYIIhkQUAAIAx9Q9vX6xoJKyb79sh51zQ4QAAAAAAgAlkVIksM9tnZtvMbLOZbfCHTTOzh83sFf9/cWpCBQAAwERUlh/VZ684S0+83KCHquuCDgcAAAAAAEwgqWiR9Wbn3HLn3Cr//T9IetQ5t0jSo/57AAAATGEfesMcLa7I123379DJzp6gwwEAAAAAABPEWHQtuFbSj/zXP5J0zRjMAwAAABNIJBzSLVcv1cHGk/qvx3YHHQ4AAAAAAJggRpvIcpLWmdmLZvYxf1i5c+6w/7pWUnmiL5rZx8xsg5ltaGhoGGUYAAAASHevmz9d166o1Pee2KtXj7QGHQ4AAAAAAJgARpvIepNzbqWkqyT9rZldGv+h857mnfCJ3s657znnVjnnVpWWlo4yDAAAAEwE/3jVYmVGQrrlvmp5h4oAAAAAAADJjSqR5Zw76P+vl3S3pIsk1ZnZDEny/9ePNkgAAABMDmUFUX3m8kVa/1KD1u2oCzocAAAAAACQ5s44kWVmuWaW3/ta0hpJ2yXdK+l6f7TrJd0z2iABAAAweVx/8VydXZ6vW+/boZOdPUGHAwAAAAAA0thoWmSVS/qTmW2R9LykB5xzD0r6qqQrzOwVSZf77wEAAABJUkY4pFvXLtXBxpP6zvrdQYcDAAAAAADSWORMv+ic2yvp/ATDj0p662iCAgAAwOT2uvnTtXb5TN3+xF5dt7JKc0tygw4JAAAAAACkoVE9IwsAAAA4U//r7ecoI2S65b5qOeeCDgcAAAAAAKQhElkAAAAIRHlBVJ+94iw99lKDHtlZH3Q4AAAAAAAgDZHIAgAAQGCuv3iuzirP0y33Vau9qyfocAAAAAAAQJohkQUAAIDAZIRDuuXqZao5flLfXr8n6HAAAAAAAECaIZEFAACAQL1hwXRdff5M3f74Hu0/2hp0OAAAAAAAII2QyAIAAEDgvviOc5QRMt16346gQwEAAAAAAGmERBYAAAACV14Q1acvX6RHd9XrkR11QYcDAAAAAADSBIksAAAApIW/euM8LSrL0y33V6u9qyfocAAAAAAAQBogkQUAAIC0kBEO6Za1S3Xg2End/vieoMMBAAAAAABpgEQWAAAA0sbFC0r0zvNm6Dvr9+i1o21BhwMAAAAAAAJGIgsAAABp5YvvOEfhkOnW+6uDDgUAAAAAAASMRBYAAADSyozCbH36rYv0yM56/XFXXdDhAAAAAACAAJHIAgAAQNr5qzfO04LSXN187w61d/UEHQ4AAAAAAAgIiSwAAACkncxISLeuXabXjrXpu4/vDTocAAAAAAAQEBJZAAAASEtvXFiid5w3Q99ev1sHjrUFHQ4AAAAAAAgAiSwAAACkrX96xzkKh0y33r8j6FAAAAAAAEAASGQBAAAgbc0ozNYn37JID++o02O76oMOBwAAAAAAjDMSWQAAAEhrH37TPM0vzdXN91Wrvasn6HAAAAAAAMA4IpEFAACAtJYZCemWq5dq/9E2ff+JvUGHAwAAAAAAxhGJLAAAAKS9SxaV6u3nVui/1u/WgWNtQYcDAAAAAADGCYksAAAATAj/9I4lMpluu39H0KEAAAAAAIBxQiILAAAAE8LMomx98q0LtW5Hnda/VB90OAAAAAAAYByQyAIAAMCE8ZE3zdf8klzdfG+1Orp7gg4HAAAAAACMMRJZAAAAmDAyIyHdfPVS7TvapjuefDXocAAAAAAAwBgjkQUAAIAJ5dKzSvW2pRX65h9fUc3xtqDDAQAAAAAAY4hEFgAAACacf37XEknSl+/fGXAkAAAAAABgLJHIAgAAwIRTWZStT75lkR6srtXjLzcEHQ4AAAAAABgjJLIAAAAwIX3kknmaV5Krm++tVkd3T9DhAAAAAACAMUAiCwAAABNSViSsL71riV490qo7nnw16HAAAAAAAMAYIJEFAACACWv12WW6cmm5vvXH3TrYeDLocAAAAAAAQIqRyAIAAMCE9s/vXCInp688sCPoUAAAAAAAQIqRyAIAAMCEVlWco79dvVC/31arJ19pCDocAAAAAACQQiSyAAAAMOF99NL5mjs9R1+6t1qd3bGgwwEAAAAAAClCIgsAAAATXjQjrC9dvVR7G1r13396NehwAAAAAABAipDIAgAAwKTw5rPLdMWScn3j0Vd0qPFk0OEAAAAAAIAUIJEFAACASeOmdy5RzDl95YGdQYcCAAAAAABSgEQWAAAAJo1Z03L0t29eqAe2HdafXjkSdDgAAAAAAGCUSGQBAABgUvnYpfM1Z3qOvnTvdnV2x4IOBwAAAAAAjAKJLAAAAEwq0YywvvSuJdrT0KofPPVq0OEAAAAAAIBRIJEFAACASecti8t1+Tnl+sajr+hw08mgwwEAAAAAAGeIRBYAAAAmpS+9a4l6Yk5feWBn0KEAAAAAAIAzRCILAAAAk9KsaTm6cfUC3b/1sJ7afSTocAAAAAAAwBkgkQUAAIBJ6xOXLdDsaTm68acv6qZ7tmvzgUY554IOCwAAAAAAjFAk6AAAAACAsRLNCOv7H1qlbz22W7984YB+/Mx+zS/J1XUrK3XNikpVFecEHSIAAAAAABiGpcMdqatWrXIbNmwIOgwAAABMYs3tXfrDtsO6a+NBPffqMUnS6+ZN03UrK3XVuTNUEM0IOEIAAAAAAKYmM3vRObcq4WcksgAAADDVHDjWpns2H9RdGw9q75FWZUVCumJJud69skqXLCpRJEwP3AAAAAAAjBcSWQAAAEACzjltqWnSXRtrdN+WQzre1qWSvExdfX6lrltZqaUzC2RmQYcJAAAAAMCkRiILAAAAOIXO7pjWv1Svuzcd1KM769XZE9NZ5Xm6dkWVrlkxUzMKs4MOEQAAAACASYlEFgAAAHAaGts69YD/PK0X9x+XmXTxgum6bkWV3rasQrlZkaBDBAAAAABg0iCRBQAAAJyhfUdadfemg7p700G9dqxN2RlhvW1Zha5bWamLF5QoHKLrQQAAAAAARoNEFgAAADBKzjm9uP+47tp0UPdvOaTm9m6VF2TpmuWVunZlpRZXFAQdIgAAAAAAExKJLAAAACCF2rt69Niuev1240Gtf6le3TGnJTMKdN3KSl29fKbK8qNBhwgAAAAAwIRBIgsAAAAYI0dbOnT/1sO6a2ONttQ0KWTSJYtKdd3KSq1ZUqHszHDQIQIAAAAAkNZIZAEAAADjYHd9i+7eVKPfbTqkg40nlZcV0VXLKnTtykq9ft50hXieFgAAAAAAQ5DIAgAAAMZRLOb03KvHdPemGv1+W61aOrpVWZSttctn6rqVlVpYlh90iAAAAAAApA0SWQAAAEBATnb26OGddbprY42efOWIemJO51UV6roVlXrX+TM1PS8r6BABAAAAAAgUiSwAAAAgDdSfaNe9mw/p7k0HVX2oWZGQafXZpbp2RZXeek6Zohk8TwsAAAAAMPWQyAIAAADSzEu1J3TXphr9btNB1TV3KD8a0TvPm6HrVlZp1ZximfE8LQAAAADA1EAiCwAAAEhTPTGnZ/Yc1V0ba/Rgda3aOns0e1qOrllRqetWVGpuSW7QIQIAAAAAMKZIZAEAAAATQGtHtx6qrtVdGw/qqT1H5Jy0cnaRrltZpXeeN0NFOZlBhwgAAAAAQMqRyAIAAAAmmMNNJ3XP5kO6a2ONXq5rUWY4pLcsLtO1Kyv15rPLlBkJBR0iAAAAAAApQSILAAAAmKCcc6o+1Ky7Nx3UPZsP6khLp4pyMvSu82bqupWVWj6riOdpAQAAAAAmNBJZAAAAwCTQ3RPTk7uP6K6NB7WuulYd3THNL8nVtSsqdc2KSs2alhN0iAAAAAAAnDYSWQAAAMAkc6K9S3/YVqu7NtXo2b3HJEkXzZum61ZU6u3nzVBBNCPgCAEAAAAAGBkSWQAAAMAkVnO8TfdsPqTfbqzR3oZWZUVCunxJud69slKXLCpVRpjnaQEAAAAA0heJLAAAAGAKcM5pa02T7tpYo3u3HNLxti5Nz83U1ctn6roVVVpWWcDztAAAAAAAaYdEFgAAADDFdHbH9PjLDbp7U40e2VGvzp6YFpXl6dqVlbpmeaVmFmUHHSIAAAAAAJJIZAEAAABTWlNblx7Ydlh3bazRhv3HZSZdvGC6rl1Rpbctq1BeViToEAEAAAAAUxiJLAAAAACSpP1HW3X3poO6a+NBvXasTdkZYV25tFzXrqzSmxaWKByi60EAAAAAwPgikQUAAABgAOecNr52XL/deFD3bzmk5vZuleVnae3ymbpuZZXOmVEQdIgAAAAAgCmCRBYAAACApDq6e/THnfW6a9NBPbarXt0xp3NmFOi6FZVau3ymygqiQYcIAAAAAJjESGQBAAAAGJFjrZ26f+sh/XbjQW050KiQSW9aVKp3r6zUmiUVys4MBx0iAAAAAGCSIZEFAAAA4LTtaWjR3RsP6u5NB3Ww8aRyM8O66twZum5FpVbOKVY0g6QWAAAAAGD0SGQBAAAAOGOxmNPz+47p7o0H9cC2w2rp6JaZVFmUrQWled5fWW7f65K8TJlZ0GEDAAAAACYIElkAAAAAUqK9q0ePv9ygl2pPaE9Di/dX36qTXT194xREI1pQ5iW1Fvr/F5Tmava0HEXCoQCjBwAAAACkIxJZAAAAAMZMLOZU29yu3fUtA5JbexpaVH+io2+8jLBpzvRcLSjNjWvJlaf5pbkqiGYEuAQAAAAAgCANl8iKjHcwAAAAACaXUMg0syhbM4uydelZpQM+a27v0t6GVu2JT3I1tOrRnfXqjvXfVFeWnzWgi8LellwzCqN0UwgAAAAAUxiJLAAAAABjpiCaoeWzirR8VtGA4V09Mb12rM1PcLX2Jbnu2XxIJ9q7+8bLyQxrfnwLLj/ZNXd6rqIZ4XFeGgAAAADAeCORBQAAAGDcZYRDfYmpeM45HWnpHNJF4Yv7j+uezYf6xjOTZhXn9HdTGPdMrmm5meO9OAAAAACAMUIiCwAAAEDaMDOV5mepND9Lr58/fcBnJzt7tPeI34Krvr+bwqf3HFVHd6xvvOKcjAGtt3pfVxVnKxIOjfciAQAAAABGgUQWAAAAgAkhOzOspTMLtXRm4YDhsZjTwcaTfYktryVXix7dVadfbujsGy8zHNLckpyESa7cLE6NAAAAACAdcbYGAAAAYEILhUyzpuVo1rQcrT574GeNbZ0DnsG1p75VL9We0LoddeqJub7xZhRG/aRWbl83hQtK81RekCUzG+clAgAAAAD0IpEFAAAAYNIqysnUBXMydcGc4gHDO7tjeu1Yq3bX97fg2tPQot9uPKiWju6+8XIzw3GJrf7ncc2ZnqOsSHi8FwcAAAAAphwSWQAAAACmnMxISAvL8rWwLH/AcOec6k90DHgG156GFj2396ju3nSwb7xwyDR7Wk5/ciuuq8KinMzxXhwAAAAAmLRIZAEAAACAz8xUXhBVeUFUFy8sGfBZa0e3Xj3Sqt19SS6vq8InXj6izp5Y33jTczOHPINrQWmeKouzFQ7RTSEAAAAAnA4SWQAAAAAwArlZES2rLNSyysIBw3tiTjXH2/oSW71Jroeq63Ss9UDfeJmRkOaX5A7pqnB+aa5yMjk1AwAAAIBEOFsCAAAAgFEIh0xzpudqzvRcvWXxwM+OtXYOeAbXnoZWbT/YpD9sO6yY6x+vsihb8+OewbWgNFcLS/NUmp8lM1pxAQAAAJi6SGQBAAAAwBiZlpupabnTdOHcaQOGt3f1aP/Rtr4k1+6GFu1taNWvNhxQW2dP33j50ciQZ3AtKM3TnOk5ygiHxntxAAAAAGDckcgCAAAAgHEWzQjr7Ip8nV2RP2C4c061ze3ec7jqvRZcexpa9KfdDfrtxpq+8SIh0+zpOXHP4OrvsrAwO2O8FwcAAAAAxgyJLAAAAABIE2amGYXZmlGYrUsWlQ747ER7l/Y29D+Dq/d5XOtfqldXT38/haX5WX3P34rvqnBmYbZCIbopBAAAADCxkMgCAAAAgAkgP5qh82cV6fxZRQOGd/fEdOD4yb4uCnufx3XflkNqbu/uGy+aEdL8kv7E1oLSPC0sy9O8klxFM8LjvDQAAAAAMDIksgAAAABgAouEQ5pXkqt5Jbm6XOV9w51zOtraOaCLwj0NLdp84Lju33pIzm/EZSZVFWfHdVPY31Xh9NxMmdGKCwAAAEBwSGQBAAAAwCRkZirJy1JJXpZeN3/6gM/au3r06hEvubW7N9FV36Jn9x5Ve1esb7zC7AwtKM3VwrK8AV0VzirOViQcGu9FAgAAADAFkcgCAAAAgCkmmhHWOTMKdM6MggHDYzGnQ00n+xJbva24HnupQb/aUNM3XkbYNHe6/xyusv7ncc0vzVV+NGO8FwcAAADAJEYiCwAAAAAgSQqFTFXFOaoqztFlZ5UO+KzpZJf2NvR3U7i7vkUv15/Qwzvr1BNzfeOVF2QNbMHlJ7sqCqJ0UwgAAADgtJHIAgAAAACcUmF2hlbMLtaK2cUDhnd2x/Tasba+1lt76r1E190bD+pER3ffeLmZYc3vff6W30XhwrI8zZmeo6xIeLwXBwAAAMAEQSILAAAAAHDGMiMhLfSTUvGcc2po6ehLbO3xW3O9sO+4frf5UN94IZNmT8vpS271JbpK81ScmzneiwMAAAAgzZDIAgAAAACknJmpLD+qsvyo3rBg+oDP2jq7tbehtS+55bXkatGTu4+oszvWN9603My+xFZ8d4WVxdkKh+imEAAAAJgKSGQBAAAAAMZVTmZEyyoLtayycMDwnpjTocaT2u0ntvY0tGpPfYse3lGnX7xwoG+8zEhI80t6W27l+i258jS/NFc5mZzmAgAAAJMJR/gAAAAAgLQQDplmTcvRrGk5evPZZQM+O97aqb1HWgZ0VbjjcLP+sP2wYq5/vJmFUS0oy9P03EzlRSPKzYooLzPS/9r/63sd9T7PzQorEg6N8xIDAAAAOBUSWQAAAACAtFecm6kLcqfpgjnTBgzv6O7Ra0fb+rsprPeSXPuPtqmlo1stHd0DuiscTjQjNCDRlZsVUX7862hEuX7SKz9ZYsx/nRkhKQYAAACkAoksAAAAAMCElRUJa1F5vhaV5ycdp7M7plY/qdXS0Z3gdY9a2rvV2ukPb/eGn+joVm1z+4Dx27tGlhTLjIT8pFZYeVkZyssKD0h2DW4V5r32xvW+0z9OViQkM54JBgAAgKmJRBYAAAAAYFLLjISUGclUcW7mqKfV3RNTa0ePWjr9ZJef9OpNfLX6ibDez1vavURZa0e3jrZ06rW4lmJtnT0jmmckZF6yKzPS1xKsv7VYeJiWY5EhLceiGSTFAAAAMLGQyAIAAAAAYIQi4ZAKc0IqzMkY9bR6Yk5tnf0tw7ykWM8wLce6+1qONZ3s0sHjbX3jt3Z2y7lTzzMcMuVmhvtbhEX9ll+Zca/jWpH1JtAKsjNUXhBVRUFU2ZnhUS87AAAAMFIksgAAAAAACEA4ZMqPZig/OvqkWCzmdLJrUBKsvbsvyRXfMqxlUFKspaNbtU0Du1CMDZMUy49GVFEQVUVhVOUFUZUXZKmioPe1N7wkL0vhEC2/AAAAMHoksgAAAAAAmOBCIevrWrB8lNNyzqm9KzYgKdbY1qW65nbVnWhXXVO7apvbVdvcod31R1R/okM9gzJf4ZCpNC9L5QVZfcmtvkRXQVQVhVkqK4gqPytCV4cAAAAYFoksAAAAAADQx8yUnRlWdmZYpflZpxy/J+Z0tKVDtc3tqmv2/ze1q67ZS3jtO9qqZ/ceVXN795Dv5mSGVVEQVVlvq67C6JDWXaV5WcqMhMZiUQEAADABkMgCAAAAAABnLBwylRVEVVYQHXa8k509fcmtOv+vtqmj7/WG/cdV39yhzp7YkO+W5GX2JbcGt+qq8P+KcjJo3QUAADAJkcgCAAAAAABjLjszrLkluZpbkpt0HOecjrd1qTauRVd/0sv723KgUUdbO4d8NzMSGvq8rgGtvLxuDqMZ4bFcTAAAAKQYiSwAAAAAAJAWzEzTcjM1LTdTS2YWJB2vo7tHDSc6+lp11Ta3q95PfNU2tav6ULMe3Vmvk109Q75blJOh8vzeBFfWoFZeXjeHJblZCoVo3QUAAJAOSGQBAAAAAIAJJSsSVlVxjqqKc5KO45xTc3v3gBZd/a28vCTYrsPNOtLSoZgb+N1IyFSWH9d1YWFvK6/+Z3mVF0SVl8VlFQAAgLHGERcAAAAAAJh0zEyF2RkqzM7QWeX5Scfr7onpSEtnX2uu+hN+N4bN7apv7tDuhhY9tfuITnR0D/luXlbES24VRuNaefV3Y1hRGFVpXpYi4dBYLioAAMCkRiILAAAAAABMWZFwSBWFXtJJs5KP19rRPei5XR19rbzqmtv13KvHVNfcru5BzbvMpJK8+Gd3ea8Xlefr/FmFqiiIyoxuDAEAAJIhkQUAAAAAAHAKuVkRzS/N0/zSvKTjxGJOR1s7+7sz7O3G0G/hVXO8TS/uP6bjbV193ynLz9J5VUU6v6pQ588q0nlVhSrKyRyPRQIAAJgQSGQBAAAAAACkQChkKs3PUml+lpZVFiYdr72rRzsPN2trTZO2HGjUlppGPbKzru/zudNzvOTWLC/BtXRmobIzw+OxCAAAAGmHRBYAAAAAAMA4imaEtWJ2sVbMLu4b1tzepe01TdriJ7c27Dume7cckiSFQ6azyvMHtNo6uzyfZ28BAIApwZxzpx5rjK1atcpt2LAh6DAAAAAAAADSRv2Jdm090KStNY3aXOP9b/S7JYxmhLR0ZqHOryrS+bO8/3Om5/C8LQAAMCGZ2YvOuVUJPyORBQAAAAAAkP6cc3rtWFtfq62tNY3adrBJ7V0xSVJhdobOq/KSWudVFWr5rCKVFUQDjhoAAODUhktk0bUgAAAAAADABGBmmjM9V3Om5+rq82dKkrp7YnqlvsV/1pbXaus7j+9RT8y7cbmiIOolt2YV6fyqIp1bVajC7IwgFwMAAOC0kMgCAAAAAACYoCLhkM6ZUaBzZhTo/Rd5w9q7elR9qLmv1daWmiat21HX9535Jbl9z9o6r6pIS2cWKJoRDmgJAAAAhkciCwAAAAAAYBKJZoR1wZxiXTCnuG9YU1uXth5s1NaaJm0+0Kin9xzR3ZsOSpIiIdPZFfl+qy2v9daisnyFQzxvCwAABI9nZAEAAAAAAExBtU3t2lLjt9o60KQtNY060d4tScrOCOvcysIB3RLOmpYtM5JbAAAg9YZ7RhaJLAAAAAAAACgWc9p3tLWv1dbWmkZtP9Sszu6YJKk4J0PnVfW32jqvqkil+VkBRw0AACaD4RJZdC0IAAAAAAAAhUKm+aV5ml+ap2tWVEqSunpieqn2hLbWNGnLgUZtqWnUtx5rUMy/L7qyKLvvWVvnzyrUuZWFyo9mBLgUAABgsqFFFgAAAAAAAEasrbNb1Yea/cRWk7bWNGr/0TZJkpm0oDRP51UVarnfauucGfnKioQDjhoAAKQzWmQBAAAAAAAgJXIyI7pw7jRdOHda37DjrZ3aetBrtbW1plFPvHxEd208KEnKCJvOmVHgPW+rqkjnzyrSgtI8hUM8bwsAAJwaLbIAAAAAAACQUs45HW5q72u1teVAo7YdbFJLR7ckKTczrGWV/a22zp9VqMqibJmR3AIAYCqiRRYAAAAAAADGjZlpZlG2ZhZl66pzZ0iSYjGnvUda+1ptba5p0g+f2qfOnpgkaXpuptdqa1aRzq8q0nlVhZqelxXkYgAAgDRAIgsAAAAAAABjLhQyLSzL08KyPL37gipJUmd3TLtqm/tabW2tadT6lxvU24FQVXG2n9gq1HlVRTq3slC5WVzOAgBgKqFrQQAAAAAAAKSNlo5ubT/YpK01jdpyoElbahpVc/ykJClk0sKyPK/F1qwiLa8q0tkV+cqMhAKOGgAAjAZdCwIAAAAAAGBCyMuK6PXzp+v186f3DTvS0qFtNU3a7LfaenRXvX79Yo0kKTMc0rLKAr1lcZnWLK3QorI8nrUFAMAkQossAAAAAAAATCjOOdUcP6mtNV6LredePaYtBxolSfNKcrVmSbnWLC3XilnFCoVIagEAkO6Ga5FFIgsAAAAAAAATXm1Tux7eWad11bV6Zs9RdcecSvKydMUSr6XWxQumKysSDjpMAACQAIksAAAAAAAATBlNJ7u0/qV6rdtRp/W76tXa2aPczLBWLy7TmiXlevPiMhVEM4IOEwAA+EhkAQAAAAAAYEpq7+rRM3uOat2OWj28o05HWjqVETa9fv50Xbm0QlcsKVd5QTToMAEAmNJIZAEAAAAAAGDK64k5bT5wXOuq6/RQda32HW2TJC2fVaQ1S8u1ZkmFFpblBRwlAABTD4ksAAAAAAAAII5zTq/Ut2hdda3W7ajT1pomSdL80lxdubRCa5aU6/yqIoVCFnCkAABMfiSyAAAAAAAAgGEcajypR3bWaV11nZ7de1TdMaey/CxdsaRca5ZW6A3zpyszEgo6TAAAJiUSWQAAAAAAAMAINbV16Y8veUmtx19uUFtnj/KzInrz4jKtWVquy84qVX40I+gwAQCYNEhkAQAAAAAAAGegvatHT+0+onXVdXpkZ52OtnYqMxzSxQuna82SCl2+pExl+dGgwwQAYEIjkQUAAAAAAACMUk/M6cX9x/ueq/XasTaZSStnF2uN3wXhvJLcoMMEAGDCIZEFAAAAAAAApJBzTi/VndC66jqt21Gr7QebJUmLyvK0Zmm51iyp0HlVhTKzgCMFACD9kcgCAAAAAAAAxlDN8TY9vMN7rtbz+46pJ+ZUURDtS2q9bv40ZYRDQYcJAEBaIpEFAAAAAAAAjJPjrZ364656rdtRq8dfblB7V0wF0YjesrhMa5ZW6LKzSpWbFQk6TAAA0gaJLAAAAAAAACAAJzt79OQrDVq3o06P7qzT8bYuZUZCumRhidYsLddbzylXSV5W0GECABCo4RJZ3PoBAAAAAAAAjJHszLDWLK3QmqUV6u6JacP+41pXXaeHqmv16K56mW3TqjnFWrOkQmuWlmvO9NygQwYAIK3QIgsAAAAAAAAYZ8457Tx8Qg9V12rdjjrtPNwsSVpcka81S8q1ZmmFls4skJkFHCkAAGOPrgUBAAAAAACANHbgWJvW7ajTuupavbDvmGJOmlkY9VtzleuiudMUCYeCDhMAgDFBIgsAAAAAAACYII61duqRnXVaV12nJ19pUEd3TEU5GXrL4jKtWVKhS88qUU4mTwwBAEweJLIAAAAAAACACaits1tPvHxE63bU6tGd9Wo62aWsSEiXLCrVlUvL9dZzyjUtNzPoMAEAGJXhElncugEAAAAAAACkqZzMiN62rEJvW1ahrp6YXth3TOuqvS4IH9lZp5BJF86d5nVBuKRcs6blBB0yAAApRYssAAAAAAAAYIJxzqn6ULPWVddq3Y467ao9IUk6Z0aB1iwp15VLK3TOjHyZWcCRAgBwanQtCAAAAAAAAExi+4+26uEddXqoulYb9h+Xc1JVcbbWLKnQmqXlWjWnWJFwKOgwAQBIiEQWAAAAAAAAMEUcaenQozvrtK66Tk/uPqLO7piKczL01nO8llqXLCpRNCMcdJgAAPQhkQUAAAAAAABMQa0d3Xri5QY9VF2rR3fV60R7t7Izwrr0rBKtWVKht55TpqKczKDDBABMccMlsiLjHQwAAAAAAACA8ZGbFdFV587QVefOUFdPTM/tPaZ1O2q1rrpOD1XXKRwyvW7eNK1ZUq4rllaosig76JABABiAFlkAAAAAAADAFOOc07aDTX5Cq1av1LdIkpZVFmjNkgqtXT5Tc6bnBhwlAGCqoGtBAAAAAAAAAEntbWjRwzvqtG5HnTa+dlwm6apzZ+jGyxZoWWVh0OEBACY5ElkAAAAAAAAARqSuuV13Pr1PP31mv050dOvSs0p142UL9Pr502RmQYcHAJiESGQBAAAAAAAAOC3N7V366bP79YM/vaojLZ1aPqtIN65eoCvOKVcoREILAJA6JLIAAAAAAAAAnJH2rh795sUaffeJPTpw7KQWluXpE5ct0NrlM5URDgUdHgBgEiCRBQAAAAAAAGBUuntiemDbYX1n/R7tqj2hmYVRfeSS+Xr/RbOUkxkJOjwAwARGIgsAAAAAAABASjjntP7lBn3nsT16ft8xFedk6IaL5+n6i+eoKCcz6PAAABMQiSwAAAAAAAAAKbdh3zHd/vgePbKzXjmZYX3gotn6yCXzNKMwO+jQAAATCIksAAAAAAAAAGPmpdoTuv3xPbp3yyGFTLp2RaU+ftkCLSjNCzo0AMAEQCILAAAAAAAAwJg7cKxNdzy5V7944YA6e2K6ckmFbly9QOfPKgo6NABAGiORBQAAAAAAAGDcHGnp0J1P7dOPn9mn5vZuvXHhdN142UK9ceF0mVnQ4QEA0gyJLAAAAAAAAADj7kR7l37+/Gu648lXVX+iQ+dVFerGyxZozdIKhUMktAAAHhJZAAAAAAAAAALT0d2juzYe1Hcf36N9R9s0vyRXH79svq5ZUamsSDjo8AAAASORBQAAAAAAACBwPTGnB7fX6tvrd6v6ULMqCqL6yCXz9P6LZisvKxJ0eACAgJDIAgAAAAAAAJA2nHN68pUj+s76PXpm71EVZmfo+jfM0fUXz9X0vKygwwMAjDMSWQAAAAAAAADS0qbXjuv2x/fooeo6RTNCev+Fs/XRS+ersig76NAAAOOERBYAAAAAAACAtLa7/oRuf3yvfrfpoCTp6uUz9YnLFuis8vyAIwMAjDUSWQAAAAAAAAAmhEONJ3XHk6/q58+/ppNdPbpiSbluXL1AK2cXBx0aAGCMkMgCAAAAAAAAMKEca+3Uj57epx89s0+NbV163bxpunH1Al12VqnMLOjwAAApRCILAAAAAAAAwITU2tGtX7xwQHc8uVeHm9q1ZEaBbly9QG8/d4bCIRJaADAZkMgCAAAAAAAAMKF1dsf0u80Hdfvje7S3oVVzpufoY5fO17tXVimaEQ46PADAKJDIAgAAAAAAADApxGJO63bU6Tvrd2tLTZNK87P04TfN0wdfN1v50YygwwMAnAESWQAAAAAAAAAmFeecntlzVN95fI+efOWI8qMR/eXr5+iv3jhPpflZQYcHADgNJLIAAAAAAAAATFrbapr0ncd36w/ba5UZDunPVs3Sxy6dr1nTcoIODQAwAiSyAAAAAAAAAEx6exta9L0n9uq3G2sUc9I7z5uhG1cv0OKKgqBDAwAMg0QWAAAAAAAAgCmjtqld//2nvfp/z72m1s4evWVxmW5cvUAXzp0WdGgAgARIZAEAAAAAAACYchrbOvWTZ/brh0/v07HWTq2aU6y/efMCvfnsMplZ0OEBAHwksgAAAAAAAABMWSc7e/TLF17T9598VQcbT2pxRb4+cdkCvfO8GYqEQ0GHBwBTHoksAAAAAAAAAFNeV09M9205pO+s36NX6ltUVZytj186X+9dNUvRjHDQ4QHAlEUiCwAAAAAAAAB8sZjTo7vq9e31u7XptUZNz83UX79pnv7i9XNUmJ0RdHgAMOWQyAIAAAAAAACAQZxzev7VY/rO43u0/qUG5WVF9MHXz9aH3zhPZQXRoMMDgCmDRBYAAAAAAAAADKP6UJNuf3yvHth6SJFQSO++oEofv3S+5pbkBh0aAEx6JLIAAAAAAAAAYAT2H23Vd5/Yq99sqFF3LKa3nztDn7hsgZZVFgYdGgBMWiSyAAAAAAAAAOA01De36wdP7dNPn92vlo5uXXpWqW68bIFeP3+azCzo8ABgUiGRBQAAAAAAAABnoOlkl3767H798KlXdaSlUytmF+nGyxbo8nPKFQqR0AKAVCCRBQAAAAAAAACj0N7Vo1+/WKPvPbFHB46d1MKyPH3isgVau3ymMsKhoMMDgAmNRBYAAAAAAAAApEB3T0wPbDus76zfo121JzSzMKqPXjpf77twlnIyI0GHBwATEoksAAAAAAAAAEgh55zWv9Sgb6/frRf2HVdxToZuuHierr94jopyMoMODwAmFBJZAAAAAAAAADBGXth3TLev36NHd9UrJzOsP79otj58yTzNKMwOOjQAmBBIZAEAAAAAAADAGNtV26zb1+/RfVsPK2TStSsq9fHLFmhBaV7QoQFAWiORBQAAAAAAAADj5MCxNn3/yb365QsH1NkT05vPLlNZflbQYU0qkbApLytDeVlh5WZFlNf7F40MeN/7OhyyoEMGMAwSWQAAAAAAAAAwzo60dOjOp/bpni0H1dkdCzqcSaWzO6bWjh519oysXLMzehNeYS/ZlTkw8ZXvJ70Gvg4r3/88NzPS9zojHBrjpQOmHhJZAAAAAAAAAIBJp6O7R60dPWrt6FZL3F9rR7da2ntf96ilo0stHT39n/mft3Z670+0d6tjhMnGrEhoQGuvPD/plRf1W4hlegmyweMMTaCFlRUJj3EJARPDcImsyHgHAwAAAAAAAABAKmRFvGTQtNzMUU+rqyemto4enejoGpD8GpgUG5Qs8/8aWjq072hbX4LsZFfPiOaZEbYESbFBr6ORIV0oDn6dH40oKxKSGV0oYvIhkQUAAAAAAAAAmPIywiEV5oRUmJMx6mn1xJxaO/1WX0OSXz1qae9Sa2ePTvift3Z064T/v7GtUweOt/nDvVZkIxEO2cAWYskSZH3PEQsrLytDuVlhFUQzVJqfpZK8LJ4nhrRDIgsAAAAAAAAAgBQKh0wF0QwVREefFIvFnNq6evq6QEzWKqy/5Vh/V4sn2rt1uKl9wHjDPW0oZFJpfpYqCqIq9/8qCntf+8MLo8rPitD6C+OGRBYAAAAAAAAAAGkqFNfSqrxgdNNyzulkV0//M8L8Fl/N7V1qONGhuuZ21Ta1q7a5XfuPtum5V4+p6WTXkOnkZIaHJLfK8wcmvcryo8qMhEYXMCASWQAAAAAAAAAATAlmppzMiHIyIyrLH9l3Tnb2qK653Uty+f/rmju8103t2rD/uOqbO9TZExvy3ZK8zL6WXeUFUVUURFVRmKWy3tcFURXlZNC6C8MikQUAAAAAAAAAABLKzgxrbkmu5pbkJh3HOafjbV2qbWpPnPRqateWA4062to55LuZkVB/y664hJfXyiurr5VXNCM8louJNEYiCwAAAAAAAAAAnDEz07TcTE3LzdSSmcn7P+zo7onrwtBr1VXvJ71qm9pVfahZj+6s18muniHfLcrJUHm+l+Cq8BNffS27CqMqK8hSSW6WQiFad002JLIAAAAAAAAAAMCYy4qEVVWco6rinKTjOOfU3N7d37KrKb6Fl5cE23W4WUdaOhRzA78bCZnK8rOGPLOrojArLgkWVW4WqZGJhF8LAAAAAAAAAACkBTNTYXaGCrMzdFZ58gd5dffEdKSls681V/0J739vl4a7G1r01O4jOtHRPeS7eVkRrzvDwkHdGRb0Jr+yVJqXpUg4NJaLihEikQUAAAAAAAAAACaUSDikikIv8aRZycdr7ege8Myu2qaOAc/xenbPUdWf6FD3oOZdIZNK8rL6E12FQ7szLM+PqiA7IjO6MxxLJLIAAAAAAAAAAMCklJsV0fzSPM0vzUs6TizmdLS1c0CCq66pvzvDmuNt2rD/mBrbuoZ8N5oR6mvN1d+iK6pZxdlas7RiLBdtyiCRBQAAAAAAAAAApqxQyFSan6XS/CwtqyxMOl57V4/qmzu87gyb21XfPLA7w80HGlVb3a7O7pjmleSSyEqRMUtkmdnbJP2npLCkO5xzXx2reQEAAAAAAAAAAIylaEZYs6fnaPb0nKTjOOfU2NalE+1Dn82FMzMmTyozs7Ck/5J0laQlkj5gZkvGYl4AAAAAAAAAAADpwMxUnJs5bLILp2dMElmSLpK02zm31znXKekXktaO0bwAAAAAAAAAAAAwCY1VIqtS0oG49zX+MAAAAAAAAAAAAGBExiqRdUpm9jEz22BmGxoaGoIKAwAAAAAAAAAAAGlqrBJZByXNintf5Q/r45z7nnNulXNuVWlp6RiFAQAAAAAAAAAAgIlqrBJZL0haZGbzzCxT0vsl3TtG8wIAAAAAAAAAAMAkFBmLiTrnus3sf0h6SFJY0g+cc9VjMS8AAAAAAAAAAABMTmOSyJIk59zvJf1+rKYPAAAAAAAAAACAyW2suhYEAAAAAAAAAAAARoVEFgAAAAAAAAAAANISiSwAAAAAAAAAAACkJRJZAAAAAAAAAAAASEsksgAAAAAAAAAAAJCWSGQBAAAAAAAAAAAgLZHIAgAAAAAAAAAAQFoikQUAAAAAAAAAAIC0RCILAAAAAAAAAAAAaYlEFgAAAAAAAAAAANISiSwAAAAAAAAAAACkJRJZAAAAAAAAAAAASEsksgAAAAAAAAAAAJCWSGQBAAAAAAAAAAAgLZHIAgAAAAAAAAAAQFoikQUAAAAAAAAAAIC0RCILAAAAAAAAAAAAaYlEFgAAAAAAAAAAANISiSwAAAAAAAAAAACkJRJZAAAAAAAAAAAASEsksgAAAAAAAAAAAJCWSGQBAAAAAAAAAAAgLZHIAgAAAAAAAAAAQFoikQUAAAAAAAAAAIC0RCILAAAAAAAAAAAAaYlEFgAAAAAAAAAAANISiSwAAAAAAAAAAACkJRJZAAAAAAAAAAAASEsksgAAAAAAAAAAAJCWSGQBAAAAAAAAAAAgLZHIAgAAAAAAAAAAQFoikQUAAAAAAAAAAIC0RCILAAAAAAAAAAAAaYlEFgAAAAAAAAAAANISiSwAAAAAAAAAAACkJRJZAAAAAAAAAAAASEsksgAAAAAAAAAAAJCWSGQBAAAAAAAAAAAgLZHIAgAAAAAAAAAAQFoikQUAAAAAAAAAAIC0ZM65oGOQmTVI2h90HBNIiaQjQQcxyVCmqUV5ph5lmlqUZ+pRpqlHmaYW5Zl6lGlqUZ6pR5mmFuWZepRpalGeqUeZphblmXqUaepRpqlFeZ6eOc650kQfpEUiC6fHzDY451YFHcdkQpmmFuWZepRpalGeqUeZph5lmlqUZ+pRpqlFeaYeZZpalGfqUaapRXmmHmWaWpRn6lGmqUeZphblmTp0LQgAAAAAAAAAAIC0RCILAAAAAAAAAAAAaYlE1sT0vaADmIQo09SiPFOPMk0tyjP1KNPUo0xTi/JMPco0tSjP1KNMU4vyTD3KNLUoz9SjTFOL8kw9yjT1KNPUojxThGdkAQAAAAAAAAAAIC3RIgsAAAAAAAAAAABpiURWHDNzZvbTuPcRM2sws/vPcHr7zKwkwfCrzewfRhFny5l+9wzn9/R4zu90mdlnzCzndMczs9+bWVGqxp8ozOxmM/vcMJ9fY2ZLUjzPO1I9zWHmNa7bR6qY2Q1m9q0kn53xuneq3ztV0qmeMLPlZvb2MZ7HqOrxiWS4utDMPmVmO83sZyMpk5GsJ+m4Dfv1ojOzxacYb0jsZhYys2+Y2XYz22ZmL5jZPP+z/zXC+f+vQe+HLcfTHX8iCGjfNdfM/jyV05zohttXDRpnZtz7cTsGmGgGl9Vox0t3qT4m8bfR7ama3jDzudXMLh/r+fjz6jGzzWZWbWZbzOzvzGzYc/aR1lXD7Y+SjD9uxzojrFvuNLP3jEc8YyXVx6hmtsrMvjHM5zPN7Depmt9Ineq6SrLf28wKzezHZrbbzPb4x5fFKY5ttZldHPf+E2b2oVTOYyIK4jhrvKTjso3XfmU05wCT/brRaJ3pb3im5xdpuh4nvOY9gu9NuGurY33Mmepj5MmMRNZArZKWmVm2//4KSQdTPRPn3L3Oua+merpnyswiw33unLt4uM/TwGcknTKRNXg859zbnXONKRx/srhGUkp3gM65jzjndqRymmPNzMJBx9ArHda9CVZPLJd0WhcJTrV8g6VbPT5W/O3gM0peF/6NpCuccx8cSZmk2XpyOj4g6U/+/9P1PkkzJZ3nnDtX0rWSGv3PRpTIGjzeCMrxdMefDK5RivddkuZKIpF1+m6Qt85LmpjHAKlmnkTnXTcorqyGMdLxcAaG+X0kSc65m5xzj4xTOCedc8udc0vlnYteJelLp/jOXI2srhpufzTEVDnWGWfLlcJjVOfcBufcp4b5/JBzLojk35leV/lvSXudcwudcwsk7ZZ0Z4pjWy2p77jIOXe7c+7HKZ7HZHSNUn+clS6u0Tgv21jvV3rrjTE+B7hGk/y60Snq3zP9DedqbM4vrtEE2UbT4foWJi4SWUP9XtI7/NcfkPTz3g/M7CIze8bMNpnZ02Z2tj88bGb/5t/dttXMPhk3vU+a2Ub/rrfF/vh9dyD5d5Z9w5/e3vi7zMzs8/6dclvN7JbhgjazBWb2oJm9aGZPxs3rXWb2nB/zI2ZW7g+/2cx+YmZPSfqJ//4HZrbej+NTcdNu8f+v9j//jZnt8u+QMv+zt/vDXvSX54xasZ2KmeWa2QPm3aG43cy+JO+E7DEze8wf5ztmtsG8Oxlv8Yd9KsF4+8ysJME03zfc+P7rD/m/yxYz+4k/7L3+97eY2RNjsfxnysy+aGYvm9mfJPWutx/1168tZvZbM8sx7+60qyX9q3l3gy5INJ7//SHLm2xb8NebVf7rNf52tNHMfm1mef7wfWZ2S4LtJc/MfugP22pm7x5uOoOWO+E2ZGa/89fVajP7WNzwFjP7dzPbIukN/vuv+Mv4bNz2c6e/nj3rby+r/e1np5ndGTe9IeuiP/xC87b5LWb2vJnl+x/NNG87fsXM/iVu/N51da4/j+/701xn/gmiJakDBpXHeNUTO82s0cza/fHmmtkfzexVM2v1f49vmNmBEZZji5l93V/mR82sNMF6VeKXU6akWyW9z7x1+H3mbeM/8Mt6k5mt9b9zg5nda2Z/lPSomc0wsyf87203s0v88d7mr2dbzOzRuO/21uOl5m0bL/h/b4wrv2TllagOSTidsWQJtgUbuB18UcnrztslzZf0BzP77KAyKTezu/3l22L+na9x60me/1v2bu9rx3pZz5R5dcubJH1Y0vv9YQnXlbjvlJhXP71D0gxJh51zMUlyztU4546b2VclZfvT+Jn/vUS/R6LxWpLFMdz4/usv+GW+xR9X5rWs2+Gvk78Yu9I8PTa++65/tf79xcf9EL4q6RJ/mp81s6Xm1SOb/fEWBVAsZ2yY7T3Rfi7hfiFuWvnm1ekZ/vsC//17Ja2S9DO/nLJtYF2dqD69zB93sz+/fE0C5u37XjKzH0vaIW8/09sS5rPmHfMPLqub/PVwu5l9zzyJxvtq3Db7b0Eu56kk2Y6THY8Mtz/9iXn16itm9tEE80m4HVuS/c2g32e7vG092THWnf7vMNzxaqmZPex/9w4z229ncJdyPOdcvaSPSfof/row1y+vjf5f7wXKwXVVsvES7o/8+NPmWMf6jxu3+r/d7LiPLzfv2PplM3unP/6I6+bBMSWbl438WH+8jlF/Yd4xheLie48fV28rpyF1qcXdQW5mUes/p9pkZm+Om9ddluAcZJSSXldJxMwWSrpA0m1xg2+VdL6ZnR2/rP743zKzG/zXF5jZ4+bVKQ+Z2Qx/+IDjGzObK+kTkj7rl9MlFncXvHkt5p71x7/b/NZg/u/5Nf93etn6zxEm+nFByo+z0sVYLJudWT34z+bta/5kZj+PW9dGsl9JVj8k29+tNq/uv1fecUf8OcNqG9m1vKfNq9cm/XUjfzr/4o//vHl1UO9vc7uZPSfpXyx5vRD/Gyargxaadxy9xZ//Ag3aZwewHg937SfZevw7S3D9LO7zW83sM3Hvv2Jmn7bk11f2WZJrscOVR7ows/l++b3OEucIcszsV+btf+72y7t3vf6w/5s+b94xZ6LWyae8tjelOef48/8ktUg6T9JvJEUlbZZ3x879/ucFkiL+68sl/dZ/faP/nd7Ppvn/90n6pP/6byTd4b++QdK3/Nd3Svq1vKTiEkm7/eFrJH1Pkvmf3S/p0t44E8T+qKRF/uvXSfqj/7pYkvmvPyLp3/3XN0t6UVJ23PunJWVJKpF0VFJG/Pz8smiSVOXH9Iy8i3tRSQckzfPH+3lvmY3Bb/RuSd+Pe1/ol3NJ3LDe8g9LWi/vrkMlGG+fv6xDpnmK8ZdKern3s7j5bZNU6b8uCnp9jov7Aj+2HH8d3i3pc5Kmx43z5bh19U5J74n7LNl4Q5ZXybeF9fIuwpRIekJSrj/8C5JuOsX28jVJ/zcuhuJTTKd3fR1uG+qNK1vexYvp/nsn6c/i5uUkvct//S+S/imujH7hT3utpGZJ5/rzeVHS8mTroqRMSXslXRhfr8irF/bKW6ejkvZLmjVo3ZsrqTtu+r+S9BenqANulvS5cawnbpDUE1ceL0h6yp/uAUl/L+l38uqJAyMsRyfpg/7rm9Rff66XtMp/XSJpX1wM34r7Hf93XDkVydt+c/3xauJ+p7+T9MW43yxfUqkG1m/TBs9D0v+T9Cb/9WxJO4crLyWvQxJOZ4zrhyHbgoZuB/uUoC5M8Dq+TH4p6TNxZVk4aD2JSCqI++12q38dHLKPC/JP0gcl/bf/+ml5deqQdaU3dknlkp6T11JN8vaZ++QdU/y7pBVx024ZNK9kddPg8XrLMWkcSca/yl+GnEHzOyQpq3cbCbrM/TjGc9/1MfXX71mSNkiap7hjQP+zb6q/LsqUXzdOlL9E65eS7+eS7RduUP92/kNJ18SVYe846+XXzfHvlbw+vU/SG/3XefKPISb6n7x9dkzS6/31+eG4z3rXvcFlNS3u9U/ifpu+8fzf7aW436co6GUdpgySbcfJjkeG259u8dfdEn89mumX8fa4dTDRdpxwfxP/+8T9XsmOse6UX78o+fHqtyT9o//6bfK2rZIzKLNE53mN8vYtOZKi/rBFkjb4r1drYF2VbLyE+yOlwbHOoHndJ+l6//VfS/pd3O/woLzjxEXyjuGiGmHdnCimU8wrnY5Rr5X0o7hlPCBve1it/msVQ+pSDdxG/k7SD/zXiyW95pffDUpyDjKKbf9U11UGlIM/7GpJdyeY1t3yWhr0fT9um7tB3vr2tKRSf/j74pZzyPGN4s6NBr+XtFXSZf7rW+Wfg/q/Z+8+7u2SHvFfT9jjAo3RcVY6/I3Vsun068EL/XU/Ku+88pW4da1vnkq+X0lWPwx33Noqvy7v3Rb9/6t1imt5frk1yktCT4XrRvvUfx71IfXXT3fKu3YU9t8nqxfulPQeDV8HPSfpWv91VN46uVojuF6qsVuPh7v2k+xaT7Jz1H3qv0610R8WkrRH3vFqsnPV3u8lvBabjn/+Mm6Xl1DcJOl8Jc8RfE7Sd/3Xy+QdX66Sd+y6T97xR4akJ9V/3HCzTnHdjj/v77S6UpoKnHNbzbtT5wPyKvB4hZJ+ZN6dNk7eiid5K+ztzrlufxrH4r5zl///RUnXJZnt75x3Z9wO67/jdY3/t8l/nyfvgH1ISx//joKLJf3avJsqJK/ykbwd1S/9OwIyJb0a99V7nXMn494/4JzrkNRhZvXyTphqBs3ueedcjT/fzfI25hZ5XQD0Tvvn8nauY2GbpH83s6/Jq/yfjFvmXn/m3yUQkXfn4RJ5O58RT/MUMbxF0q+dc0ekAb/3U5LuNLNfqf93TweXyDspaJMk8+7QkbzuHr4s76AoT9JDSb6fbLxEyzvctiB5F3OWSHrK/90y5R1E9Uq0vVwuvxWEP83j5t2BOdx0pOG3oU+Z2bX+8Fn+8KPyEjC/jZtGp7yDmN6Yroj77D7nnDOzbZLqnHPbJMnMquVtF5uVeF108u6GfcFfnmb/e5L0qHOuyX+/Q9IceQeW8V51zm2Oi2nuKeoA+dMbr3pihaT9ceWxQdJf+OWxV9LX5SWz/lrewfNIyjEmLzEiST/V6W9fayRdbf19DkflnXxI3oXF3vX0BUk/MK+Fwe+cc5vNbLWkJ3rrtwTrtOSto0viyrXA+lsIJiqvZHVIwuk45/pa04yBRNvC4O3gTLxF3gmBnHM98k6c4pmk/21ml8r7fSvllU3tKOc7Fj4g6T/917/w39+rQeuK/3mGvAPPv3XOPS55d7z7d2e9xf971Mze65x7NMG8ktVNyQxZZ0+xLJdL+mHv/iBu3dsqr7XH7+QlmtPBeO671kg6z/pbxRfKK/vOQdN8RtIXzaxK0l3OuVfOfPECkWj9SrafG26/0OsO9d+c8FeShrSSGeT1SlyfPiXpP8xrQXhX73HmJLHfOfeseXfvzjezb0p6QNK6JOO/2cz+Xt5Fi2mSquVdnI7XJKld0n+b1zrhfqWvRNtxVMmPR4bbn97jH4+cNK+F8EXyjhF6JduOa5R4fyP5v0/cNIYcYyVZrkTHq2+Sl2yQc+5BMzue5LujkSHpW2a2XN6++qzTGS/Z/kje+hbosc6geb1B/eX6E3lJ9l6/8s+bXzGzvfISMiOtm4fEZGbDzSudjlH/IOk/zSxLXqL0CefcyUHnwUPq0kGfv0le4kXOuV1mtl/969BIzkFOyymuq6TS2fIuFD7sL29Y0mH/sxEf35hZobyL7I/7g34k74bjXvHb/Vz/9UQ+Lhir46x0MFbLdrr14Bvl7bvaJbWb2eD9ebxE+5Vk9cNwx63Px12XG2zYa3nmtfh6UFKec655ilw3+nnc/6/HDf+1c65nBPWClKQOMq+HgUrn3N1+PO1S33WfkRir9Xi4Y/xk13qGPUd1zu0zs6NmtsL/zibn3FEzO9W56uleiw1aqaR7JF3nnNthZrOUOEfwJvnXD5xz282s93r0RZIe713fzezXGnQsN5Jre1MdiazE7pX0b/Iy5dPjht8m6THn3LX+Qdn6EUyrw//fo+Tl3RH32uL+/x/n3HdHMI+QpEbn3PIEn31T0n845+71L8jeHPdZ6zBxJIt3JOOMGefcy2a2Ut6dUF82v+uLXuY9sPhz8lq7HDev64fo6U7TOXfrGcT2CTN7nbwuFF40swucc8NdgAzanfLupN5iXrcMq09nvETLO4J5mryTsmTPmRnJ9jKS6fSOM2Qb8reDyyW9wTnXZmbr1b+OtPsX3Xt1OefdBpEgpt5YYxq4XcQkRc5kXdSZbYPZGr4O6DWe9URPkteJDFuOSb7T+5t0q7+L3OHK1iS92zn30oCB3vrbt3zOuSf8C13vkHew/R+SRnIhKiTvju72QdOXTq/OTDidsTLMtjB4OxgLH5R3IHiBc67LzPbp1NvHuDOzafIufJ1rZk7eiYmT9HlJA9YV5z1foVveCdWVknpPeOSfEPxBXjeMdfLuLB68/1qt5HVTQonWWXdmz3l4h78875J3Qebc3hPLNHSnUr/vMnl3KQ44EfR/kz7Ouf9nXjcj75D0ezP7uHPujylZqjE2zPqVbD833H5BkuSce8q8bqtWy7trdfuZxOac+6qZPSDvOOwpM7vSObfrTKaVhlqlvosp58urGz4h6c/k3dDRx8yikr4trxXHATO7WQnqAOdct5ldJOmt8u4E/h/y6qmJYrjjkeH2p27QuIPfJ9uOb1Dy/c2pjnGyldhIj1dHzczm+/Opl/esrDp5dwGH5CU0E/lssvGS7I+SJVbjjemxzmlc2BuyHoxh3ZxOx6jtfr19pby7/Yd0A5yoLlXydWSwsTrHT3ZdJZEdkpabWchPVsq8Z9edL2mjvAv48Y/G6C1Xk1TtnHtDgmkOOb45w+WQEmz3E/m4YBh3ahTHWWnuTo1u2VJVDyaSaL+SrH4Y7rh18H4t0TxON8Y7NXmvG7kkr4crx0TzGFIH2dh1lX2nRrceD3eMP2QdOY1z1DvktZKtkPQD6dTnqqm6FjuOmuS1Zn6TvH3WmeQITmUk1/amNJ6RldgPJN3i/Luu4hSq/yGlN8QNf1jSx81/EKB/4Wu0HpL019bff2ulmZUlGtF5LTp6n0sg85yfIObrUxBXIi/Ju8t0rv9+zPo1NbOZktqccz+V9K+SVko6Ia+ptuQ17WyV1GRe67ar4r4eP96pppl0fEl/lPReM5vuf3+a/3+Bc+4559xNkhrk3amQDp6QdI15z1TIl3cgL3nLdti8uyM+GDf+4OVOOF6S5T3VtvCspDdaf//DuWaW7G7SXg9L+tu4+RaPcDrJtqFCScf9nfBieXf7jIVk6+JLkmaY2YV+XPk2zENER+IUdcBIxkllPbFJ3vL1nqxmyWsGf5685yl9Wl4T6tOpJ0LyLtZJ3oNR/+S/3ievyb3iPpeGrsMPyXteoUmSeXcKDWFmc+Tdcft9eQdiK+Wta5eal5hMVr+vk/TJuOksP8XyJKxDzmA6ozXSbSFZXTicR+V1GdHbB3phgnnX+xcV3yzvzt909B5JP3HOzXHOzXXOzZJ319qlGrquSN4J0F9LWmxmX5AkM1vp72d6L8icJ6/bHknq8utWafjfI368PknW2aTjy6tP/8r6+0if5sc0yzn3mLzuNgrl3bUXtPHcdz0k6Ubrf97TWWaWO3ia5l1Q3uuc+4a8u/HOS+kSj63T3feNdL/wY3ld7fwwbliyOiNhfer/Jtucc1+T18pw0vUDb96zkkLOud9K+iclPtbsvShwxD92Sbhf8z8rdM79Xl7CYsD+Ps0k2o7blPx4ZLj94FrznvEzXd7FmBcGzSvZdjxe+5un5CUoZWZr5HXdMyrmPW/pdnndzjh5y9L7jKu/lHdzhTR0m0s43jD7o3Q71nla/XfVf1DecWOv95pZyLznjMyX9NJp1M2JYhpuXiMxLseovl/Ka/16ibxWEwOMoC59Uv7+0D9vmi3vvGQsJbuuMoRzbre884h/ihv8T/Jai70mb11dYmZZZlYkL5kvectQal7rOplZhnnPrkp2fJNwH+W8FmnHrf+5p3+puJuSEpngxwVjcpyVJsZq2U63HnxK0rv8fVeepHee5nIkqx+S7e/ORPy1vCfkJctD43DsnS7Xjd4X939wDz8jrRcS1kHOuROSaszsGn94ln8ONtJz67Faj0/32s9IzyHultdi+EL5rb+GOVeV/3mya7HpqlNe6/sPmdmfK3mOIP6YcIm8roklb998mZkV++v+uwfPYCTX9qY6ElkJOO/Bt99I8NG/SPo/ZrZJA7P+d8jLym41sy3yDmJHG8M6eRcGnjGvO4PfqL9SyjGzmri//ymvYvqwP/9qeX15S152/ddm9qKkI6ONK0msJ+X1TfugP58TGtqNVKqcK+l585pCf0leX6/f8+f9mHNui7wD4F3yyu+puO/2jTeCaSYd3zlXLekrkh73y/s//I/+1bwHRW6Xd1K0JQXLO2rOuY3yTny2yLsDs/fE/5/l9dn7lLzy6vULSZ8374GFC4YZL9HyDrstOOca5FXwPzevee0zOvUFqy9LKjb/AaGS3jyS6QyzDT0o786SnfIetBnfpUzKJFsXnXOd8g6Uvukvz8NKTUuUZHXASMa5WamrJ/bJS1z1bh9vktfVyl/Iuzv1FkkL5NUTg7vtSqZV0kX+uvYWeX1TS94dnjf6dXJJ3PiPyTvR3WzeA0Nvk9fMe6t53cHclmQ+qyVt8af3Pkn/6a9rH5N0l788v0zwvU9JWmXeA2B3yLvbPqlh6pDTmk4KjHRbSFZ3DufT8rrI2iavhdKSQZ//TN6ybpPXBWG6tr74gLyD8ni/lXeH24B1pfdD57Vm+4Ckt5jZ30gqk3Sfv/5ulbcdfMsf/Xvy1sufafjfI368eKuTxJFwfOfcg/Lujt7g7/M+J+8C50/932KTpG845xpHUjhjKYB91w5JG/3h35V3nLdVUo95DyD+rLwTku1+2S2Tl8SZKE5333ezRrZf+Jm8C/Y/jxt2p6Tb/Tq4r0XLMPXpZ/x9/FZJXfJ+78mmUtJ6f935qaR/9IffKb+s5N0F+315/e8/pIGJmvjx8iXd75fXnyT9zzGP/gwNsx0nOx4Zbj+4Vd7+/VlJtznnDg2aXbLteLz2N7dIWuPP+73yuso9cQbTyfa3nWpJj8i7cHqL/9m3JV3vl9ti9d8xPriuSjZewv1RmhzrRNR/J/gn5d10sVXeRcNPx036NUnPy1ufPuG3jBhR3ZwkpuHmNRLjdYwqeevCZfKez5ToGPpUdem35V2g3ibvN77Bb6E3Zoa5riJJNwy6plEl72agRWa2x8wa5F0w/YQ/rQPynl233f+/yR/eKS9Z+DX/d90sr1umZMc390m61v8NLtFA18s7Ttgqabn6f89kJuxxwRgeZwVuDJftdOvBF+Qdd2/149im07tOlqx+SLa/O23x1/LkHYO8LO/8fapcNyr2h39a3s1BiQxXL7hh6iDJ2698yv/u0/JaKw3eZyc0huvxzTq9az8jOofwy+ExeV0A9/buslpJzpl9ya7Fpi3nXKu8pPRn5f3WiXIE35aX3Nwhb5mqJTU55w7Ke/bd8/J+l31KXCeM5NrelNX7gDdgVMx/jouZmaT/kvSKc+7rp/oegKnjTOsJM2txzqVDCxEAQBzzns+w1jn3l0HHgsnLvG4WW5xz/xZ0LMmY9+yiHud1/fgGSd+hW5iRM7Ovyzsu/HbQsZwOjlHHjnnPc3tA0qf8FqjAhBN3/psjr4XNx/wERdqYqtfyzOtqeJXzn5t4Bt+/T14Xfadzs+ekZV4r2I2S3usm1vMCU87MwpIynNct8AJ5Nyad7ZzrjNveIvJumP2B85+jhpHhGVlIlY+a2fXyHha4Sd5dIQAQj3oCACYJM/umvG5z3x50LEAamC3pV/6FnE5JHw04ngnDzP4g79jw5oBDQRpx3nOBFgYdBzBK3zOva7GopB+lWxLLxzn6aTKzH0jKUX93slOav47fL+nuqZ7E8uVIesy8bh1N0t/EtaS+2cwul1cnrJP0u2BCnLhokQUAAAAAAAAAAIC0xDOyAAAAAAAAAAAAkJZIZAEAAAAAAAAAACAtkcgCAAAAAAAAAABAWiKRBQAAAAAAAAAAgLREIgsAAAAAAAAAAABpiUQWAAAAAAAAAAAA0tL/B8Y6bLjGQCh0AAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
],
"source": [
"plt.rcParams[\"figure.figsize\"]=30,20\n",
"plt.plot(all_data['subreddit'].value_counts())\n",
"plt.show()"
]
},
{
"source": [
"### Plot a histogram showing the distribution of post scores. ### \n",
"\n"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 160,
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "
",
"image/svg+xml": "\n\n\n\n \n\n\n\n2021-04-30T13:06:56.111341\nimage/svg+xml\n\n\nMatplotlib v3.3.4, https://matplotlib.org/\n\n\n\n\n \n \n\n \n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n \n\n\n\n \n\n",
"image/png":...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions ยป

Submit New Assignment

Copy and Paste Your Assignment Here