It's a mathematica assignment that I can provide my notes to know what we've done so far
(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 69919, 1456] NotebookOptionsPosition[ 63446, 1355] NotebookOutlinePosition[ 64010, 1374] CellTagsIndexPosition[ 63967, 1371] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[TextData[StyleBox["MAST 232 - Assignment #2", Background->None]], "Title", CellChangeTimes->{{3.693605412278184*^9, 3.693605419557253*^9}, { 3.6948174617557898`*^9, 3.694817461920676*^9}, {3.6958346286192923`*^9, 3.6958346287448883`*^9}, {3.7155156156846857`*^9, 3.715515615792289*^9}, { 3.715531601896414*^9, 3.715531604108605*^9}}, TextAlignment->Center, Background->RGBColor[ 0.88, 1, 0.88],ExpressionUUID->"bc5cbf4b-3435-4f0c-b2ff-e3ddfe6900cb"], Cell["Replace this text with your name.", "Subtitle", CellChangeTimes->{{3.693778716573846*^9, 3.6937787266436853`*^9}, { 3.693784687405916*^9, 3.693784747833568*^9}, {3.6958346319289513`*^9, 3.695834632057251*^9}, 3.715515619169902*^9, 3.725809924946607*^9}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"f154d3ff-783f-45bb-9c15-088399c31e58"], Cell[BoxData[ RowBox[{"Score", "=", RowBox[{"Q1", "+", "Q2", "+", "Q3", "+", "Q4", "+", "Q5", " ", RowBox[{"(*", RowBox[{ "do", " ", "not", " ", "write", " ", "in", " ", "this", " ", "box"}], "*)"}]}]}]], "Input", CellChangeTimes->{{3.69378064521231*^9, 3.693780659514518*^9}, { 3.6937849393063087`*^9, 3.69378494809906*^9}, {3.695850824676855*^9, 3.695850825245131*^9}, {3.715531606916565*^9, 3.715531616133089*^9}, { 3.725810342357717*^9, 3.7258103457300777`*^9}, {3.725810933859384*^9, 3.725810936940415*^9}, {3.778596402510619*^9, 3.7785964038965044`*^9}, 3.7898437832595563`*^9, {3.8112061634905434`*^9, 3.8112061825852995`*^9}, { 3.81123547174629*^9, 3.81123547302159*^9}, 3.822570050866993*^9},ExpressionUUID->"7e01b2cc-4374-4234-906d-\ 3675f8639fa1"], Cell[CellGroupData[{ Cell["Instructions", "Section", CellChangeTimes->{{3.693785144061371*^9, 3.6937851458273363`*^9}},ExpressionUUID->"1e605e99-c89b-4cb7-97db-\ cacb70c5b140"], Cell[TextData[{ "Your solution must be reasonably easy to read, and your final answer must \ be ", StyleBox["clearly indicated.", FontSlant->"Italic"], " Use text cells or comments to clarify your steps as needed." }], "Item", CellChangeTimes->{{3.6937851724954767`*^9, 3.693785251358609*^9}, { 3.693785306598282*^9, 3.693785308366208*^9}, {3.693785363020219*^9, 3.693785384553727*^9}, {3.693785495774434*^9, 3.693785510511162*^9}, { 3.693785556241313*^9, 3.69378560650799*^9}},ExpressionUUID->"36bc9aa8-fbdf-4c30-8362-\ f13d4846dfb5"], Cell[TextData[{ "You ", StyleBox["may not", FontSlant->"Italic"], " use Wolfram|Alpha inputs in your solutions, though you are permitted to \ use this tool to learn how to solve a problem." }], "Item", CellChangeTimes->{{3.6937851724954767`*^9, 3.693785251358609*^9}, { 3.693785306598282*^9, 3.693785308366208*^9}, {3.693785363020219*^9, 3.693785384553727*^9}, {3.693785495774434*^9, 3.693785510511162*^9}, { 3.693785556241313*^9, 3.693785642479808*^9}, {3.693785814588097*^9, 3.693785913095207*^9}, {3.693785948964901*^9, 3.6937860166403913`*^9}, { 3.69481745193926*^9, 3.6948174569045687`*^9}, {3.8123097935657196`*^9, 3.81230979525204*^9}},ExpressionUUID->"b9a708d3-0ed1-4ffc-a90a-\ 87b5bd9262e8"] }, Open ]], Cell[CellGroupData[{ Cell["Helpful commands", "Section", CellChangeTimes->{{3.694880407015019*^9, 3.694880409359136*^9}},ExpressionUUID->"caa20079-5ba3-4689-814f-\ 593e75c58ac4"], Cell["\<\ the="" commands="" below="" might="" be="" helpful.="" since="" there="" are="" many="" ways="" to="" solve="" each="" \="" problem,="" don\[closecurlyquote]t="" worry="" if="" you="" don\[closecurlyquote]t="" use="" these.\="" \="">", "Text", CellChangeTimes->{{3.694880419086128*^9, 3.6948804517432747`*^9}},ExpressionUUID->"90a535ea-6117-4f86-b4f3-\ 8b5a63c4826a"], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["AppendTo[list, x]", FontWeight->"Bold"], ". You can use this to build up a list one element at a time. " }], "Item", CellChangeTimes->{{3.695841263215674*^9, 3.695841292525581*^9}, { 3.695850765819271*^9, 3.6958508037293243`*^9}},ExpressionUUID->"3ea7e49b-a878-473d-938f-\ f47908caa600"], Cell[BoxData[{ RowBox[{"list", "=", RowBox[{"{", RowBox[{"1", ",", "2", ",", "3"}], "}"}]}], "\[IndentingNewLine]", RowBox[{"AppendTo", "[", RowBox[{"list", ",", " ", "4"}], "]"}]}], "Input", CellChangeTimes->{{3.695841269007736*^9, 3.69584128493524*^9}},ExpressionUUID->"7f019983-bbd1-4f98-b7f4-\ 1c6950056df9"] }, Open ]], Cell[TextData[{ StyleBox["Line[{p1,p2,...}], InfiniteLine[].", FontWeight->"Bold"], " Draws a broken/infinite line from starting point till the last point." }], "Item", CellChangeTimes->{{3.7583823719310102`*^9, 3.758382433286825*^9}, { 3.778596384008848*^9, 3.7785963959433794`*^9}},ExpressionUUID->"c0dd9d9e-9357-4483-ab5f-\ b3b2cab3dddf"], Cell[TextData[{ "Explore ", StyleBox["Help ", FontWeight->"Bold"], " for more information." }], "Text", CellChangeTimes->{{3.7583824414389496`*^9, 3.7583824582533035`*^9}},ExpressionUUID->"33bee1ed-01ab-4b33-9453-\ d819d3b0344a"] }, Open ]], Cell[CellGroupData[{ Cell["Question 1 - Roots - 12 points ", "Section", CellChangeTimes->{{3.6937654564172153`*^9, 3.693765461417946*^9}, { 3.693779090524063*^9, 3.6937790907386713`*^9}, {3.694818677332718*^9, 3.6948186774270897`*^9}, {3.694889513912835*^9, 3.694889517841185*^9}, { 3.7155227055742407`*^9, 3.7155227058278627`*^9}, {3.715523869059318*^9, 3.715523870547695*^9}, {3.715531428478953*^9, 3.7155314294231653`*^9}, { 3.725810462055719*^9, 3.725810462157589*^9}, {3.789839364661864*^9, 3.7898393745316677`*^9}, {3.811196673807248*^9, 3.8111966745023766`*^9}, { 3.8112060153997164`*^9, 3.811206015764927*^9}, {3.822504395300149*^9, 3.822504399042982*^9}, {3.8225044338400884`*^9, 3.822504434608839*^9}, 3.822565762915379*^9, {3.8225699568140154`*^9, 3.822569957148364*^9}, 3.842652740531398*^9, {3.8426901511511726`*^9, 3.8426901513049545`*^9}},ExpressionUUID->"92016b13-d0fd-46fb-864d-\ dffda42c37fa"], Cell[BoxData[ RowBox[{"Q1", "=", RowBox[{"(*", RowBox[{ "do", " ", "not", " ", "write", " ", "in", " ", "this", " ", "box"}], "*)"}]}]], "Input", CellChangeTimes->{{3.693780607716899*^9, 3.69378062452319*^9}, { 3.694881141324004*^9, 3.694881141471815*^9}, {3.715523618329303*^9, 3.7155236185353813`*^9}, {3.7258104637663116`*^9, 3.725810463854074*^9}},ExpressionUUID->"7d41ba42-78e9-44ad-91e6-\ c6b6565e3ce8"], Cell[TextData[{ "Consider a polynomial of fifth degree ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"p", "(", "x", ")"}], "=", RowBox[{ RowBox[{ SubscriptBox["a", "5"], SuperscriptBox["x", "5"]}], "+", RowBox[{ SubscriptBox["a", "4"], SuperscriptBox["x", "4"]}], "+", RowBox[{ SubscriptBox["a", "3"], SuperscriptBox["x", "3"]}], "+", RowBox[{ SubscriptBox["a", "2"], SuperscriptBox["x", "2"]}], "+", RowBox[{ SubscriptBox["a", "1"], "x"}], "+", SubscriptBox["a", "0"]}]}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "b37750df-4f59-4847-9a27-6c672f3204cf"], ". Then, consider the polynomial ", Cell[BoxData[ FormBox[ RowBox[{"q", "(", "x", ")"}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "13ce0fc2-3147-46d7-a7be-603ac579a741"], " related to ", Cell[BoxData[ FormBox[ RowBox[{"p", "(", "x", ")"}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "e170b4c3-2045-4ce4-878e-124b1ed47c45"], " in the following way: \n", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"q", "(", "x", ")"}], "=", RowBox[{ RowBox[{ SubscriptBox["a", "0"], SuperscriptBox["x", "5"]}], "+", RowBox[{ SubscriptBox["a", "1"], SuperscriptBox["x", "4"]}], "+", RowBox[{ SubscriptBox["a", "2"], SuperscriptBox["x", "3"]}], "+", RowBox[{ SubscriptBox["a", "3"], SuperscriptBox["x", "2"]}], "+", RowBox[{ SubscriptBox["a", "4"], "x"}], "+", SubscriptBox["a", "5"]}]}], TraditionalForm]],ExpressionUUID-> "6822c26c-616c-4a63-83a9-90a74c2b6015"] }], "Text", CellChangeTimes->{{3.6937664001331673`*^9, 3.693766487892213*^9}, { 3.693779102121719*^9, 3.693779108857795*^9}, {3.694820163770794*^9, 3.694820168712709*^9}, {3.822504414931288*^9, 3.8225044259557896`*^9}, { 3.8225260214818096`*^9, 3.8225260214818096`*^9}, {3.8426523227663794`*^9, 3.842652361609415*^9}, {3.8426844433788643`*^9, 3.842684606873251*^9}},ExpressionUUID->"2f22d3a7-891c-4445-a115-\ 1eeb326d62ac"], Cell[TextData[{ "a) Create two tables, one for polynomial p(x) and one for q(x), where one \ element of the table is the list of roots, in decimal form, of p(x) and q(x), \ respectively (for given values of the coefficients). The coefficients ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["a", "0"], ",", SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", SubscriptBox["a", "4"], ",", SubscriptBox["a", "5"]}], TraditionalForm]],ExpressionUUID-> "bdd38158-5338-4d3c-9e4e-fce4547d0411"], " must take all possible values from -5 to 5 with a step of 2 (that is, each \ coefficient will parse -5,-3,-1,1,3 and 5). Make sure the elements in the two \ tables are paired up (that is, for example the tenth element in the table for \ p(x) corresponds with the 10th element in the table for q(x) where q(x) is \ created from p(x) as above mentioned)." }], "Text", CellChangeTimes->{{3.822504569375563*^9, 3.8225047442609596`*^9}, { 3.822525045734828*^9, 3.822525045734828*^9}, {3.8225252585032578`*^9, 3.8225252585032578`*^9}, {3.8426523878491955`*^9, 3.8426524791356077`*^9}, {3.842685782772946*^9, 3.842685963809706*^9}, { 3.8426860311444407`*^9, 3.8426861195006742`*^9}, 3.842686231406707*^9, { 3.842691373024412*^9, 3.842691378337366*^9}},ExpressionUUID->"d6336295-c07a-4f7b-982c-\ bdd3a33f822a"], Cell[TextData[{ "b) Randomly create a list of 25 indexes (that is a list of\>