Introduction This assignment focuses on data modelling, a core step in the data science process. You will need to develop and implement appropriate steps, in IPython, to complete the cor- responding...

1 answer below »
Le me know the price


Introduction This assignment focuses on data modelling, a core step in the data science process. You will need to develop and implement appropriate steps, in IPython, to complete the cor- responding tasks. This assignment is intended to give you practical experience with the typical 5th and 6th steps of the data science process: data modelling, and presentation and automation. General Requirements This section contains information about the general requirements that your assignment must meet. Please read all requirements carefully before you start. · You must do all modelling in IPython or Jupyter Notebook (in Anaconda). You must include a plain text file called “readme.txt” with your submission. This file should include your name and student ID, and instructions for how to execute your submitted script files. This is important as automation is part of the 6th step of data science process, and will be assessed strictly.• · Parts of this assignment will include a written report, this must be in PDF format. · Retrieving and Preparing the Data This assignment will focus on data modelling, and you can choose to focus on one ap- proach: Classification or Clustering. For this assignment, you need to select one dataset from the following options, and then work on it: 1. Activity Recognition from Single Chest-Mounted Accelerometer Data Set. More details can be found from the following UCI webpage about this dataset: https://archive.ics.uci.edu/ml/datasets/Activity+Recognition+from+Single+ Chest-Mounted+Accelerometer 2. BLE RSSI Dataset for Indoor localization and Navigation Data Set. More details can be found from the following UCI webpage about this dataset (Please just use the labeled dataset, and ignore the unlabeled dataset): https://archive.ics.uci.edu/ml/datasets/BLE+RSSI+Dataset+for+Indoor+localization and+Navigation 3. Mice Protein Expression Data Set. More details can be found from the following UCI webpage about this dataset (This dataset is provided in xls format, and please covert it to csv format by using Microsoft Excel, which can be obtained from RMIT Mydesktop:https:\mydesktop.rmit.edu.au/vpn/index.html): https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression Being a careful data scientist, you know that it is vital to set the goal of the project, then thoroughly pre-process any available data (each attribute) before starting to analyse and model it. In your report in Task 4, You need to clearly state the goal of your project, and the design/steps of pre-processing your data. Please ensure you understand the data you selected, including the meaning of each attribute. · Data Exploration Explore the selected data, carrying out the following tasks: Explore each column (or at least 10 columns if there are more than 10 columns), using appropriate descriptive statistics and graphs (if appropriate). For each ex- plored column, please think carefully and report in your report in Task 4): 1) the way you used to explore a column (e.g. the graph); 2) what you can observe from the way you used to explore it.• (Please format each graph carefully, and use it in your final report. You need to include appropriate labels on the x-axis and y-axis, a title, and a legend. The fonts should be sized for good readability. Components of the graphs should be coloured appropriately, if applicable.) Explore the relationship between all pairs of attributes (or at least 10 pairs of at- tributes, if there are more in the data), and show the relationship in an appropriate graphs. You may choose which pairs of columns to focus on, but you need to gen- erate a visualisation graph for each pair of attributes. Each of the attribute pair should address a plausible hypothesis for the data concerned. In your report,• for each plot (pair of attributes), state the hypothesis that you are investigating. Then, briefly discuss any interesting relationships (or lack of relationships) that you can observe from your visualisation. Please note you do not need to put all the graphs in your report, and you only need to include the representative ones and/or those showing significant information. 2 · Data Modelling Model the data by treating it as either a Classification or Clustering Task, depending on your choice. You must use two different models (i.e. two Classification models, or two Clustering models), and when building each model, it must include the following steps: · Select the appropriate features · Select the appropriate model (e.g. DecisionTree for classification) from sklearn. · If you choose to do a Classification Task, · Train and evaluate the model appropriately. · Train the model by selecting the appropriate values for each parameter in the model. You need to show how you choose this values, and justify why you choose it. · If you choose to do a Clustering Task, · Train the model by selecting appropriate values for each parameter in the model. Show how do you choose this value, and justify why you choose it (for example, k in the k-means model).∗ · Determine the optimal number of clusters, and justify · Evaluate the performance of the clustering model by: ∗ Checking the clustering results against the true observation labels Constructing a “confusion matrix” to analyse the meaning of each cluster by looking at the majority of observations in the cluster. (You can do this by using a pen and a piece of paper, as we did in Practical Exercise; if you prefer, you can also explore how to do this step directly in IPython.)∗ After you have built two Classification models, or two Clustering models, on your data, the next step is to compare the models. You need to include the results of this comparison, including a recommendation of which model should be used, in your report (see next section). · Report Write your report and save it in a file called report.pdf, and it must be in PDF format, and must be at most 12 (in single column format) pages (including figures and references) with a font size between 10 and 12 points Penalties will apply if the report does not satisfy the requirement. Remember to clearly cite any sources (including books, research papers, course notes, etc.) that you referred to while designing aspects of your programs. Your report must have the following structure: · A cover page, including · Statement of the solution representing your own work as required · Title · Author Information · Affiliations · Contact details · Date of report · Table of Content · An abstract/executive summary · Introduction · Methodology · Results · Discussion · Conclusion · References Please revisit the relevant slides in Week1 lecture if needed. · Presentation · The presentation should · explain the goal of the project. · briefly describe your chosen data set. · describe the data preparation steps. · state the hypotheses/questions that you were investigating. · explain what the modelling steps are, and what the results are. · show the final conclusion and recommendation. figures and references) with a font size between 10 and 12 points. Student ID: Student Name: I certify that this is all my own original work. If I took any parts from elsewhere, then they were non-essential parts of the assignment, and they are clearly attributed in my submission. I will show I agree to this honor code by typing "Yes": Yes. Please start your report since here ….
Answered Same DayJun 04, 2021

Answer To: Introduction This assignment focuses on data modelling, a core step in the data science process. You...

Kshitij answered on Jun 09 2021
134 Votes
59728.ipynb
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "oeCaS606_HHb"
},
"outputs": [],
"source": [
"import numpy as np # used for handling numbers\n",
"import pandas as pd # used for handling the dataset\n",
"import matplotlib.pyplot as plt\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "3CUbe6b5Q4mD"
},
"outputs": [],
"source": [
"data = pd.read_csv(\"iBeacon_RSSI_Labeled.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 394
},
"colab_type": "code",
"id": "tV79vK44RYGS",
"outputId": "c3afc145-f9a4-4cc7-9837-253033bcd329"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
locationdateb3001b3002b3003b3004b3005b3006b3007b3008b3009b3010b3011b3012b3013
0O0210-18-2016 11:15:21-200-200-200-200-200-78-200-200-200-200-200-200-200
1P0110-18-2016 11:15:19-200-200-200-200-200-78-200-200-200-200-200-200-200
2P0110-18-2016 11:15:17-200-200-200-200-200-77-200-200-200-200-200-200-200
3P0110-18-2016 11:15:15-200-200-200-200-200-77-200-200-200-200-200-200-200
4P0110-18-2016 11:15:13-200-200-200-200-200-77-200-200-200-200-200-200-200
\n",
"
"
],
"text/plain": [
" location date b3001 b3002 b3003 b3004 b3005 b3006 \\\n",
"0 O02 10-18-2016 11:15:21 -200 -200 -200 -200 -200 -78 \n",
"1 P01 10-18-2016 11:15:19 -200 -200 -200 -200 -200 -78 \n",
"2 P01 10-18-2016 11:15:17 -200 -200 -200 -200 -200 -77 \n",
"3 P01 10-18-2016 11:15:15 -200 -200 -200 -200 -200 -77 \n",
"4 P01 10-18-2016 11:15:13 -200 -200 -200 -200 -200 -77 \n",
"\n",
" b3007 b3008 b3009 b3010 b3011 b3012 b3013 \n",
"0 -200 -200 -200 -200 -200 -200 -200 \n",
"1 -200 -200 -200 -200 -200 -200 -200 \n",
"2 -200 -200 -200 -200 -200 -200 -200 \n",
"3 -200 -200 -200 -200 -200 -200 -200 \n",
"4 -200 -200 -200 -200 -200 -200 -200 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 272
},
"colab_type": "code",
"id": "y8BeM9YhzA8k",
"outputId": "75a1ba17-a086-40dc-cb9d-3812d59bcf85"
},
"outputs": [
{
"data": {
"text/plain": [
"['location',\n",
" 'date',\n",
" 'b3001',\n",
" 'b3002',\n",
" 'b3003',\n",
" 'b3004',\n",
" 'b3005',\n",
" 'b3006',\n",
" 'b3007',\n",
" 'b3008',\n",
" 'b3009',\n",
" 'b3010',\n",
" 'b3011',\n",
" 'b3012',\n",
" 'b3013']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(data.columns)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 282
},
"colab_type": "code",
"id": "SpVOuY98RdYF",
"outputId": "81573e0c-efb7-4904-b99b-61d8f5e856e8"
},
"outputs": [
{
"data": {
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD4CAYAAAA6j0u4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3SUxfrA8e/sbnaTTS+kQAJpQGih996bAioKIhcEREFE1GsBFH82ELELimKhqAT0ooIQuiCotAChSEuABBLSe906vz82ckEQ5EpIgPmcs+ckk3fezAwHHmbeeecRUkoURVEUpTJpqroBiqIoyq1PBRtFURSl0qlgoyiKolQ6FWwURVGUSqeCjaIoilLpdFXdgKrg5+cnQ0NDq7oZiqIoN5W9e/dmSylr/C91b8tgExoaSlxcXFU3Q1EU5aYihEj+X+uqZTRFURSl0qlgoyiKolQ6FWwURVGUSqeCjaIoilLpV
LBRFEVRKt0tEWyEEP2EEMeFEIlCiKlV3R5FURTlYjd9sBFCaIEPgf5AQ+B+IUTDqm2VoiiKcqGbPtgAbYBEKeUpKaUZWAYMvlKFtMwzlJcU35DGKYqiKLdGsKkFnL3g+5SKsosIIR4WQsQJIeLytEU8tmgAn73+NJaSkhvWUEVRlNvVrXCCgLhM2SUZ4aSUC4AFAH613eRu11wSnddy8LOT3LVT0Lh9N1xatsTYrBkaV9fKbrOiKMpt5VYINilAyAXfBwPnrlQh1D+KO8vbs0+zlS1eiaR209Ao3YVBEz/F1SZxbtAAY8sWuHbogGv79gi9vlI7oCiKcqsTN3taaCGEDjgB9ARSgT3ACCnl739Vp1WrVjIuLo78/Dxe+OpB4o2JFGsELUq8aJlcl37nrFgOHUKaTDiFhBAwbSpu3bsjxOUmUYqiKLcHIcReKWWr/6nuzR5sAIQQA4D3AC3whZRy5pWu/yPY/GHj9jUsPTiLva4FeNkk0SUR3BV6H61dAsh6/33MiSdx7diRgOnTMEREVG5nFEVRqqnbPthcqz8HGwCLxcKW3zZgcDFgFQKdBCe7HnejJxqTCVtREUiJxtUVjbs7QnMr7K24PGdnZ4KDg3FycqrqpiiKUo38k2BzKzyzuS5SUlJo0agtXl5enMtNolSUYxMCo12Ds9UNL7dQtEVmbHl5CK0WXUAAWi+vW25pTUpJTk4OKSkphIWFVXVzFEW5RahgU6G8vJzQ0FCEENT2j6SopJCcknOUaGyY9KWYy2xIrBj9nHArAktqKtbsbLRubmiMRjSurgjdzT+cQgh8fX3Jysqq6qYoinILufn/dbyOLpyluLt64O7qQXrOOYrteRRrzRg0YLIZKHU2o9VrcDNbMOTmInJyHPX1escym9GIxmhE6PU35cznZmyzoijVmwo2VxHoWxO7PZCU7NOUiTIKdWUYNRq0JmdMGhuFHnasWiuedgOuVi32wkJseXkACJ3u4uDj7Kz+IVcU5bZ06z7lvo40Gg21/SOo5RaGq11LmcZOgUspJjfQWzS4lusp1Fo55VZKXogXThHhOAUFoXF1xV5aiiUtDdPJk5iOHsWUlIQ1Jwdpt1/ye5KSkmjcuPEl5ePGjaNp06ZER0czdOhQiosdR+1IKXn88ceJjIwkOjqaffv2na+zbt066tevT2RkJLNnzz5f/u2339KoUSM0Go1Kja0oyg2jgs01cHNxJdQ/Cl+NL3q7oFhrptjdjNWoxViqxbdET2FJHollZyhy1eAUHIxz/foY6tXDKTgYjacX0mI5H3xsxX/vfLZ3332XAwcOcPDgQWrXrs28efMAWLt2LQkJCSQkJLBgwQImTpwIgM1mY9KkSaxdu5YjR44QExPDkSNHAGjcuDHfffcdXbp0qZxBUhRFuQy1jHYZL//4O0fOFV71OpOlHDs2JKBBoLFrQEqkAJsmBY3QoNca0AgNDWt68H93NgLAVliIJT0dc1ISWg8PdIGBaCpOKbBarYwePZr9+/dTr149lixZgoeHB+CYyZSVlZ1filu5ciWjRo1CCEG7du3Iz88nLS2NpKQkIiMjCQ8PB2D48OGsXLmShg0b0qBBg0oYMUVRlCtTM5t/wODkjEHrggaBHYlVY0NqQUhwsmnALim3lmG2mbDL/y6baT08MERGovP3x1ZUjCkhEUtmJtJu5/jx4zz88MMcPHgQDw8PPvroIwDGjBlDYGAgx44dY/LkyQCkpqYSEvLfk3qCg4NJTU39y3JFUZSqomY2l/HHDORaZOZlUGTJoVwj0UtwsbmgK7GBFgpdrFh1krNFZ/EyeGHUGdFqtDj5+6P18sKanoE1MxNzZiYhwcF06NABgJEjR/LBBx/w9NNPs3DhQmw2G5MnT2b58uWMGTOGy72QK4T4y3JFUZSqomY214m/dwBhflF42I3YkRToyih1tyB1WjyKdfiU6SkzlXCm8AzHco9xMv8kacVpFMkyRK1A9KGhIATYbJiTk7GbTMDFQUKr1TJs2DBWrFgBOGYsZ8/+N7tCSkoKNWvW/MtyRVGUqqKCzXWk0WgI8Q+jjkckrnYd5RpJvnMpJncJFvAs1BJk96CGix9aoSXflE9KUQon8k5w0nKOQn9XzqalseO33zAlJvL155/TsUMHEhMTAcczmx9//JGoqCgABg0axJIlS5BSsnPnTjw9PQkKCqJ169YkJCRw+vRpzGYzy5YtY9CgQVU5NIqi3ObUMlolcDY4E+pfn6z8LIrMWRRrLJjcHEtrsqgcXWk5QZ4eOHmHYLKZKbGWUGopJdlcQHi9cD7dsJrHXn2FyOAQxvbqzR0jR1JUUoKUkqZNmzJ//nwABgwYQGxsLJGRkRiNRhYuXAiATqdj3rx59O3bF5vNxtixY2nUyLE0+P333zN58mSysrIYOHAgzZo1Y/369VU2Voqi3B7UQZwVjh49Wmk7tVKykiilBIsAF7vA2eKCptyKQWvD3d0FnasX6F2xIcg35ZNbnovZZsbd5oRfIQiTGY2rq+PdHWfnSmnjn1XmeCiKcnNSB3FWc8E1QjGZTaTnJ1OisVBuKMXVSQelTpjzzTgVpeGqNWNwccbXxQcft2AKbCayyrI47W3G16THo6AMe+JJdL4+6Pz9EVptVXdLURTlb1PB5gYx6A3U8a9HTkEOBaYMijVWTK5WXOwuaMq05Jm1GOx23MtT0GkkXkKLh5ML+TojuRozeU4SvxKBW04OtoKCW/bUaUVRbk0q2Nxgvp6++OJLSlYypRRTqC3DYhS42D0wl5nIsblhdHXGVW9HYynFp7QYb6BYCLLcnMh3FvgX2ZCpqdhyc3EKqonG6FLV3VIURbkiFWyqSHCNOpgtZtLykijVmCnXFGB01eFmc6ekuIQyrRajRw2Mvp5orOW4m0twM5dQoCkl3Rucy8GvqAz7qZNo3QzoAmuhcTZWdbcURVEuSwWbKqR30lPHvx65Rbnkl6VTorFiErkY3Yy42gwU5+VSVlSIm68fzm7+CCHwkhJ3q4ms0nTOOJfgUyTxKDZhSzyFzk2HrmYdhF7NdBRFqV5UsKkGfNx98HH3ITX7DKUUUagtwyzKcXXzRGOxUZCRTpmzC+5+NXAyGNA6ORPoGYqXtZx0fTr5riX4FYOx2Iot4SRaN2c0XjVumYRuiqLc/NRLndWIpdjOkO734WbXY9bYydXmU6Qv4+kZL9G5V2+aNm3K4DvvpLCgAACD1sDbL7xN/w530mHQ3WxIPYpZL7AWlbM6Job6desSUacOM6c/j624GGmz8cwzzxAVFUV0dDR33XUX+fn5VdxrRVFuByrYVDMCQR3/ugQ5B+Ni11CisfLka5NZt3UNv/38M4H+fsyZNZPSggJiY2NJTEzkZOJJvvj0C15+4XVSfASnakiemD2LH7+YR/yalSxf8R8ObN5M+bFjdG3UiP0bN7L/l1+oGxnJ66+/XtVdVhTlNqDWWC5n7VRIP3R97xnYBPrPvuplf04xMPud19G7u1MoyjDZSim32tBqdRRmZ/JNzFJGDB+OEIKOHTpSUliCsdTIvuP7qBkWgrZpJBqzieF392Ht7l9p0rYNvbt0wV5YiLmggBbBwfzw009YMjPPZxRVW6kVRakMamZTzfw5xcAP36wkzKc+L01+kXZNunL05DGGP3wveg8v0tLS8HDWk5eWSnlxMcHBwWRnZGPLsxERGoEdQZJOi2vtEFLPJeNENoZAL5wbNEAfHs6Xa9bQt0sXx4nTp09jPnkSa37+ZbOIKoqi/BNqZnM5f2MGUllCQkLo2LEjcHGKgW9jVpBbmMvjUyaxYtUa7r1/CFYhMRjdsVos5GekYSkvpyQ/D3N5OU4aJyK9I8kuy6YMOwU6HdlaHT75yWj02cz+aCl6V1cefOopsNmwFRVhzcrCkpKC1WA4f+q0oijK9aBmNtXMn5exLvzex8OH8Q9OYOvqrWgR+NWqwdFzR7E6O+FRI4C09HS83d3wdDZwKuEEpXl5+Dn7Yc21ElwzmAxh55SzkU+WfsPqld/x9YdvIOw2hE6HztsbQ9266GvXBrvElpNDypNPYklLu9FDoCjKLUgFm2rmzJkz7NixA4CYmBg6dep0SYqBZtHNCPONon+f3nz/zUpyRB7rf4nF3dOLxq3a0r1fP04nn+HIwQOcSzzO8pgYRtx1P7U9arN183bmfLiQ+TELcKIUMo9ASTZIiRDCkUW0biQad3eKf9rCyQEDyV7wKXazuSqHRVGUm1ylBRshxEtCiFQhRHzFZ8AFP5smhEgUQhwXQvS9oLylEOJQxc8+EBX/rRdCGIQQyyvKdwkhQi+oM1oIkVDxGV1Z/blRGjRowOLFi4mOjiY3N5eJEycyevRomjRpQpMmTUhLS+PFF19Eq9Hy4IiHqB/ZgIGtB/Dc0y8y/Y1nSck+hUDPhx99xAPjH6Fzn/7c0bcvgR5uUGxi9rTZlJeUM/yeB2nSdzijp83CXnAWsk+AuQQAodGgdXcnfM0aXDt2IOuddzg9aDDF23+p4tFRFOVmVWkpBoQQLwHFUsq3/lTeEIgB2gA1gU1APSmlTQixG5gC7ARigQ+klGuFEI8C0VLKCUKI4cBdUsphQggfIA5oBUhgL9BSSpl3pbbd6BQDN0Ja7jlKbHmYBBgkGO2e+HsHodNrsVmtFOdmU1ZUhFanw83XD62LgYySDArNheg1WgItVtxtFnDxAY+aHD2ReH48irdvJ+O1mZiTk3Hr1ZOAqdPQB9eq4h4rinKj/ZMUA1WxjDYYWCalNEkpTwOJQBshRBDgIaXcIR0RcAkw5II6iyu+/g/Qs2LW0xfYKKXMrQgwG4F+N7Iz1UWQT03CfRvgbnfGiiRPW8DZ/BNkZ+UiNFo8/QPxqRmMRqulICOd4oxMAg3+1PGoA0LLGa3gjLMr5vI8yDwKpiKwWQFw69yZsB9XUePJJyn59TdODRxI1ocfqk0EiqL8bZUdbB4TQhwUQnwhhPCuKKsFnL3gmpSKsloVX/+5/KI6UkorUAD4XuFelxBCPCyEiBNCxGVlZf2zXlVTGo2G2v4RBLuF4mrXUqqxky3OkZJ1kpLCMpycnfGpFYJHDX+sZjM5KWewF5QS7h5GgGsAJdJGol5PppMeWZYHn3SG09sd99br8XvkYSJi1+DWozvZc+dx6o47KfppSxX3WlGUm8E/CjZCiE1CiMOX+QwG5gMRQDMgDXj7j2qXuZW8Qvn/WufiQikXSClbSSlb1ahR4wq9uvm5ubgR6h+Fr8YHnRQUaU2kmU5xLjMFq9mO0cMTv5A6GD09KS0sICflDEaLExFeEXjoPcjCRqaTnp/sxcjFd8CSIZDxOwBOQUEEv/sutRd+gdDrSXn0Uc4+MgFzcnIV91pRlOrsHwUbKWUvKWXjy3xWSikzpJQ2KaUd+BTHMxpwzD5CLrhNMHCuojz4MuUX1RFC6ABPIPcK91KAQJ+giqU1F2xI8rWFpBScIDsjGxB4+PnjG1wbnV5PYVYmhWnpeNuMhBiC0AgNU9zh0UYdSM44AB93gtVPQUkOAK7t2xP+w/f4P/sspXv2cOqOO8l8/33sZWVV22lFUaqlytyNFnTBt3cBhyu+XgUMr9hhFgbUBXZLKdOAIiFEu4rnMaOAlRfU+WOn2VDgp4rnOuuBPkII74pluj4VZUoFx9JaOMHu4bjatZRp7GRp0zmbc5KS3BJ0ej3eQbXwCggEKSnKyaE0MwdDCTy0NxoRZ2EyQbwf1ZnSfYthbnP45V3IPIrQavEdO4bwdWtx79ePnPkfc3LgQAo3bKCyNp4oinJzqszdaF/iWEKTQBLwSEVAQQjxPDAWsAJPSCnXVpS3AhYBLsBaYLKUUgohnIEvgeY4ZjTDpZSnKuqMBaZX/NqZUsqFV2vbrbgb7e/KyM+g2JxNuQb0Eox2d2q4BqJ30wNgs1mxlps4evQoJzesIuX4Eazl5ZQarCRF2bjHX9I/ZY9j/dLFB+p0gHr9IKI7pSfSSH/1NUwnTuDaoQMBL7yAITysSvurKMr18092o1VasKnOqmuwSUpK4o477uDw4cMXlY8bN464uDiklNSrV49Fixbh5uaGlJIpU6YQGxuL0Whk0aJFtGjRAoB169YxZcoUbDYbDz30EFOnTgVgxowZrFy5EpvdipefF6/Nm0mofyCeNl88XDzReugRGnF+PGxWC8mH4tmyYgn5CaexCUlRhJ4RPdrToCjJsYGg4Iyjof6NkJ3+TV58CVlz52EvL8d39Ch8J0xE6+Z6I4dSUZRKcLNtfVau0bvvvsuBAwc4ePAgtWvXZt68eQCsXbuWhIQEEhISWLBgARMnTgTAZrMxadIk1q5dy5EjR4iJieHIkSMAPPPMMxw8eJDfDx/h7kH38Nmbn1CmsZPhlEmq+QxlaYXYSiznt1lodU6EN2/N2Fc/YNgrc/BoHYXHSTM/fLGVtzMMFE34BSb8An1fB7sF8d1YfEo+IWLBS3jeeSc5n33OqQEDKFizRi2tKcptTB3EeRlv7H6DY7nHrus9o3yieK7Nc1e97s8pBpYsWYKHhwfgOK6mrKzs/HlpK1euZNSoUQghaNeuHfn5+aSlpZGUlERkZCTh4eEADB8+nJUrV9KwYcPz9wIwm8x4GL3xc6pBkSmbYo0Zsz4FY7Eb1iIz5tRi9LXcAMcZbcH1GzKh/tucOnWYb+fPgp8SeCvufhoNG8K9PSci2jwMR36ATS+jW3k/NVvcg/eA90l/5xPO/ftp8pd/Q8ALz+Ncr951HVtFUao/NbOpZv6cYuCjjz4CYMyYMQQGBnLs2DEmT54MQGpqKiEh/92MFxwcTGpq6l+W/+H5558nJCSEr7/+mldeeQV/T3/CazTAQ7piR5KvLSZf5LBi8adkxBzDXmq5qI3h4Y15ds7XNB0/EoNNy9lPV/HitHuIT9oLTYbCpF3QbRocW4PLz6MJfbwNgTOex3T8OKfvupuM12djKyqqzGFUFKWaUTOby/g7M5DK8lcpBhYuXIjNZmPy5MksX76cMWPGXHZZSgjxl+V/mDlzJjNnzuT1119n3rx5vPzyywghCKkRSrnZRHp+EhlC8m7QZ2zLWcf41ybhFBaGT9daBEV6o9EIhBD06jWczp0G8+Wimdh+3s+6GS+zoUM448e+gne3qdBsBKx/HrF1Ft5edXCf+wJZqw+Tu2QJBWvW4P/0v/EcPFglbFOU24Ca2VQzV0oxoNVqGTZsGCtWrAAcM5azZ/97gEJKSgo1a9b8y/I/GzFixPl7/cFZbyDUvz7uWg8iyg384n6O6WHTWV7yPrkLDvHD9F/55dsEMpIKkVJicHbhoQmvcf+c99CE+qLdnsQHk0fydexc7J7BMOxLGLUSnFzQxY4nqO5hQhe8iVOtmqRNnUbyAyMpP3r0uoydoijVlwo21czfSTEQFRUFwKBBg1iyZAlSSnbu3ImnpydBQUG0bt2ahIQETp8+jdlsZtmyZQwaNAiAhISE879r1apV5+/1Z24ubsRM3Ec/WwfsQrLSexezI56iyHsHYsc5Vr0Rxzez9rDrx1MUZJURElKXZ2d9SatJ49BpdKQvXs//PXM3e45vh/Bujk0E/WZDShwuW0YReqedoNGdMZ9M4PQ9Q0l/5VVsBQWVN7CKolQptfW5QnXZ+jxgwAC6dOnCb7/9Rt26dfnyyy/p3bs3hYWOmUTTpk2ZP38+Hh4eSCl57LHHWLduHUajkYULF9KqlWNXYmxsLE888QQ2m42xY8fy/PPPA3DPPfdw/PhxNBoNderU4eOPP6ZWrUuPk7twPJIyzjJrxTj2uTgOZ2hVEsS47EmUawI5lFaK0AiadAumeZ/auHoaMJtNLP3qDTI27QIpka1DeOihV/Hz8IfiLNj+FiRuhpwEbGZB1um65MWXoPVww//pZ/G8526ERv0/SFGqG/WezTWqrsGmOrnceHy9ZSmxx97hoNFEkEXStLQ5D5rGUujhy/74bKQErwAjdZr40rxXbQrL0/jqo5fRHM+ixGij9uCejLzzCXTaikeFJTmw/0v4/TvKjxwhfa8HZdkGnMMDCHzuKVw63wEq6ChKtaGCzTVSwebqrjQe0xZNZr9lC6l6QeNSJxoX92aYz70UBfiQmlzEmd9zEQKiuwfTemAYcQc2sGXhJzjn28ivqaX/uMl0aNzr4puW5iKP/kjh4g/I2FaErVyDVz07NQY3QxfVEULaQc1moDPcgN4rinI5KthcIxVsru5q45GRn8X/xYxmn3MyNgQtSv3pmn03A7rdiSaqBvvWJ3N0Rxou7nraDwmnbqsaLPvmbVLWbkdjA2uLQMY+9DKBPsGX3NuWcoTsd+aQu24XGifwb5yPV0QpQu8CDQdDxykQ0LAyu68oymWoYHONVLC5ur87Hhvj17Jkx/8RbywjwGInqqwRrfK606hdNEHh9dn1XRLppwrxr+NO52H10HoUs+Tjl+BQGmXOdoIGdmLUPc/gpHW65N6mhATSX5tJ6a5dOIfXIqB/TYzFWxzpq1uPc7zLY/SphN4rinI5KthcIxVsru5ax2P2ihfYnvsDZ/SChmU6/Ms6U7u4Jj179cIoarHz+5OUFJip3zaQFv3qcDJtJ+s/n4dLtoUCf0HPMRPo2mLgJfeVUlK0di0Zb8zBmpGB550D8G9pRnf8a3D2gO7PQ8sxoFWvjClKZVPB5hqpYHN1/8t4FJYUMP2r0cTpEzALQfNSP4IMDQguaES/QXeSdthK/KYz2K0ST38XQpv4cCojltRdm9GZJabGvowc8zyhwfUvube9pITsjz8hZ9EiNM7O1HjwXryN2xDJ28AnwjHLaTIU1AuiilJpVLC5RirYXN0/GY89x7cyb/NU9rmW4Ge1E1ESjY+tNu38WtKxey+yTpWRuDeTtMR87DYJlGEWP2PNO4IU4Na5EWPGzsDF2e2Se5tOnSZj5kxKfv0VQ716BI7uiTHrG0g/BLVaQb/XIaTNpY1SFOUfU6c+3yKSkpJo3LjxJeXjxo2jadOmREdHM3ToUIqLiwHHEtPjjz9OZGQk0dHR7Nu373yddevWUb9+fSIjI5k9e/Yl93zrrbcQQpCdnX3d+9G6fjcWP7qTfwc8gptdwy7Pw6QZv+dE7st8umwSeZZEBj7WmIfe7cKgKc1o0TcKL49BOLuPw0lbj7Kff+e9Rx5gzdqFlxy9YwgPI+SzT6k19wNsxUUkPz+f1IR2WDq/AQUp8Hlv+KwXHF0Nt+F/pBSlulIzmwrVYWbzV/lsCgsLz5/W/NRTT+Hv78/UqVOJjY1l7ty5xMbGsmvXLqZMmcKuXbuw2WzUq1ePjRs3EhwcTOvWrYmJiaFhQ8cOrrNnz/LQQw9x7Ngx9u7di5+f3yVtuV7jYbNZmbNxJrGpseTrSgGIMGlpkd+Bgd3H0rxlCzQaDVJKCjLLSDmex8/fbsKUswVpy8Yc4Eqvex+kVad+lxzlYy8rI+fTT8n57HOEToffhIfwqVeKOBQDOQkQ2tkx0wls8o/7oSjKP5vZqKeql5E+axamo9c3xYChQRSB06df9brKTjEA8OSTTzJnzhwGDx58Xft4OVqtjmn9/o+p8kVmrF1D1vGP+d3zNN/5byM57gBRPw+gRfN2tG/fHq8AI14BRuq3HcmuNW3ZuzoWsnazbd6H/LpyGUMfmUpw3f8GQI2LCzUefxzPIUPImPU6me98QH5EBIHT38PV6ShsmQUfd4aGg6DVOEfwUS+JKkqVUH/zqpnKTjGwatUqatWqRdOmTW9grxwHir424A7enPAddXmUtoVG4lwKWOkTw+pD7/H++++xY8cOrFYrTgYtne6O4sE3JlCn3RR0xl5YU4tZ9sIzLHpzKplnTl90b33t2oR8PJ/g+R8hzWbOjBtPytIjWO5bCx0mQ9IvsGQQvB8NB5aB3X5D+64oiprZXNbfmYFUlspMMVBaWsrMmTPZsGFDpffjr3i46Fk4dhI7k4di/uF1ig0b2eSdRJjrWQq3JrBn9x66dutKkyZN8KxhZOiU9iQdqsuGr6IoTdtJ9t59fBk3GY2/B80GDqJDl0EYjEYA3Lt3x7VDB3K/+ILsTxZQ/PPP+E2YgM+k/WhOboCdH8L3j8CuT6Ddo1C7HXgGqx1sinIDqJlNNVOZKQZOnjzJ6dOnadq0KaGhoaSkpNCiRQvS09MruVeXalcngC8ef5c+TT6nc24EBRoza4L2EK9fzn9WfsXChQs5d85x8GdoEz/GvdaHDvf/Cxff8WiNXSgtKGffwq/4YNx9zJs5iZ2bVlKUm43GYMBv4kQi1qzGrVNHst59l9N3D6O4IBAe+gnu+gSK0uG7h+C9xvBOQ/hmNOz4CFL2gtV8w8dCUW4HaoNAheqyQSAsLIzffvuN9u3bM378eKKiohg8eDCRkZFIKXnmmWcAx26yNWvWMG/evPMbBB5//HF2796N1WqlXr16bN68mVq1atG6dWuWLl1Ko0aNLvp9oaGhxMXFVeoGgb/DZrPx9PJFlGcvYIdHCUY7tCkOwzO3Ba1atqJnz54YK2YvxXnl/LYikRN70pH6s2Q6bcYlMweDRQuAa2hN7hz7JLXqO9pevP0XMmbOxJyUhFvPngRMm4o+KBAyf4ezu+HsLscn/4yjMU5GaPYAdHoSPC89DVtRbmfqPZtrVJ2DTejx7FEAACAASURBVGWnGLhQdQk2f0jJL+Slr16lRBfLYRcNtc0aonNa4CWi6NGjBy1btkRT8YA/9Xge25afIPdcCT6RegrC9nL4+GYCjpkxmnQENGlEj/vGULNeFNJsJmfxYrLnfww2G77jx+P70Dg0zs7//eWFaZCyG46vg8P/AY0OujwN7R9Th38qSgUVbK5RdQ021UlVjse3+w+wZesrHPM4SpZOS4tSd0Ky2hPsX5cBAwZQu3ZtAOw2O4e3pbJr1WmsJhuNu9ciqc5OtsQuIiLRgLNFS81GjegxcjwB4ZFY0tPJnDOHwti1OAUHEzB9Gm7du1+aljovGdZPh2OrHacT9H8D6vaugpFQlOpFBZtrpILN1VWH8Zj67ZcUnpvPDs9CDBLaFtfGM6clzaKb07t3b9zd3QEoLTSzc+VJjv6Whs5JQ2hLb/bpN3Pw6Pc0Oe2OwayhVlQjuo92BJ2SnbtIf+1VzIknce3SmcDnn0dfp86lDUjcBGufg5xEqD8A+s4Cn7AbPAqKUn2oYHONVLC5uuoyHpnFJbyw+DVKNT9ywCgINmuIzm+KpyWKbt260bZtW7Rax/OarDNFHNqawok9GdgsdpxcNZzxj+NUySqikz1wMkGTHn3pNHwULi5Gcr/+muy585BmMz7jxuL38MNoKp4NnWc1w86P4Oc5YLdCpyeg4xOgN16mtYpya1PB5hqpYHN11W081hw5Suz6Fznh/jvpTlqalrlRJ6s9Qd7h9O/fn4iIiPPXWsw2Uo7mcmxHOqfis9C6SvbUXInMjKdhsgd6Fxc6DxtF094DsOfmkvnWWxSsXIUuKIiAqVNx79P70qW1wnOwYYbjeY5nbeg3C6LuUNumldtKlZ2NJoS4VwjxuxDCLoRo9aefTRNCJAohjgsh+l5Q3lIIcajiZx+Iir/VQgiDEGJ5RfkuIUToBXVGCyESKj6jLygPq7g2oaKu/p/0R6m+BjZswIdPfksHv5fomufBUUMRG4M3cIw1LP5yEcuXLyc/Px8AJ72WsKY16D+hCUOfa4WfvyctEobQ2jCdPa2dOeOSx08LP2Hxc4+RlpVOzTfeoM7XX6H18CB1yhTOjhuH6eTJixvgUROGfg4PrgGDGywfCV/eBVknqmA0FOXm849mNkKIBoAd+AR4WkoZV1HeEIgB2gA1gU1APSmlTQixG5gC7ARigQ+klGuFEI8C0VLKCUKI4cBdUsphQggfIA5oBUhgL9BSSpknhPgG+E5KuUwI8TFwQEo5/2rtVjObq6vO45FXamLa4tcolz+w1xWCLILm+dG4l0fRqVMnOnbsiJPTf5OxSbvkxJ4MdnyXSEmBmfLgLI6X/kjtc3m4lAnqte9M15FjcffyJm/5crLe/wB7aSk+o0fhN/FRtG6uFzfAZoW4z+GnmWApcbwg2vVZMLjf4JFQlBurypfRhBBbuTjYTAOQUr5e8f164CUgCdgipYyqKL8f6CalfOSPa6SUO4QQOiAdqAEM/+OaijqfAFuBZUAWECiltAoh2lfUPz+L+isq2FzdzTAePyec5NvVL5DofoBUJy2Ny42EZrQjwCOMzp0706hRI5wv2N5sLreyb30yR35No6zQjE2Uka75Ae+8NLQaHW3vupe2d94LRUVkvvsuBf9Zgc7fH/9nn8Vj4IBLl9aKs2DTSxD/FbgFQp/XVE4d5ZZWHVMM1ALOXvB9SkVZrYqv/1x+UR0ppRUoAHyvcC9fIL/i2j/f66Z0I1IMvPTSS9SqVYtmzZrRrFkzYmNjK79jlaRr3QjmPRlDt6BZdMvzJlFfzMaQzZxwWssPq79nzpw5fP755+zevRubzYbeWUe7wRGMeaMj901vTeMO4dSyD0fjNYIcVyd2fhPDe4+NIG7vNryfe5bQ5cvQ1ajBuaef5syo0ZSf+NOSmVsNGPIhjNsE7oGOUwkWDYT0w5dvsKLcxq4abIQQm4QQhy/zudKRwZf7r528Qvn/UudK97q0QUI8LISIE0LEZWVl/dVl1dK7777LgQMHOHjwILVr12bevHkArF27loSEBBISEliwYAETJ04EHG/kT5o0ibVr13LkyBFiYmI4cuTI+fs9+eSTxMfHEx8fz4ABA6qkT9fT1IFDeH3iZtqYh9O0VLDd7Ry/1VqFxjsDi9lCbGwsn3zyCUlJSYDjCKAatd3p8a8GDHu+DeER9akpJkJgP0osJn79/HM+emQka2JXYJ/2DIEvv4zpxAlO33U36bNmYSsqurgBIa1h/E9w5/uQeRQ+6Qyxz0JZ/o0fDEWppq56EKeUstf/cN8UIOSC74OBcxXlwZcpv7BOSsUymieQW1He7U91tgLZgJcQQlcxu7nwXpfrxwJgATiW0a7U+O3fnCD7bPEVO3it/ELc6HxfvatedyNSDNyK3AxOfPjIDPYkj8H4/TROue5lucc2GpbHcVfYI6TlFrBo0SIaN25M79698fT0BMAv2J0hT7Xg5L4sflvhjKG8ASb3k+RZdmE5dpDk+H2Et2hN5yWLsMQsI+/LryhcE4v/00/jOXgQ4o+UBRottHwQGgyCLTNhz6dweAX0eslx/I1KbaDc5irrb8AqYHjFDrMwoC6wW0qZBhQJIdpV7EIbBay8oM4fO82GAj9JxwOl9UAfIYS3EMIb6AOsr/jZloprqaj7x71uWpWdYgBg3rx5REdHM3bsWPLy8m5Qz26M1nWCmfvEl9zf6AN65PlyWl/MHPs7nHLeSnTDphw9epR58+axfft2rFbHCqwQgsiW/ox4qS2d76tH3cg21NSNwM15EhjbcfLAPr58ZSonoyKotfRr9MHBpE2bRvIDIym/YMYIgNEHBr4ND28F3whY9Rh83gtS997wsVCU6uQfpRgQQtwFzMXxIH+NECJeStlXSvl7xU6xI4AVmCSltFVUmwgsAlyAtRUfgM+BL4UQiThmNMMBpJS5QohXgT0V170ipcyt+Po5YJkQ4jVgf8U9/rG/MwOpLJWZYgBg4sSJzJgxAyEEM2bM4N///jdffPFF5XaqCozs0Iv72nRn5vK3SMv7mq3upzhc9CJ9ajUlVN+RzZs3s3//fvr160e9eo4/b51eS9OeITTtGYLNZudMQhax35Yjz0ZTYlnPru+X87vvZrpNeZTAtGyy3n6b00PvxXv4MGo8/jhaL6//NiCoKYxdDweXw8YX4dOe0GIU9Pw/cPWtolFRlKrzj2Y2UsrvpZTBUkqDlDLgwp1gUsqZUsoIKWV9KeXaC8rjpJSNK372WMUMBSlluZTyXillpJSyjZTy1AV1vqgoj5RSLryg/FTFtZEVdU3/pD/VQWWmGAAICAhAq9Wi0WgYP348u3fvrszuVCm9TsvLDzzHiw9soW9+C9ztVpZqD/Bt2WdENkxFo7GxdOlSli5dSm5u7kV1tVoNYVEBPPrCHbQeVReD1wD0bveRX2xi9ftz2HQkDq8vPsX7gQfIW7ack/0HkPnOuxRt2YL1j9miENB0ODwWB+0nQfzXMLcF7P7UsX1aUW4jaiG5mjlz5gw7duwAICYmhk6dOpGYmAg4ntn8+OOPREVFATBo0CCWLFmClJKdO3fi6elJUFAQrVu3JiEhgdOnT2M2m1m2bBmDBg0CIC0t7fzv+v777y+7++1WE+zty1tTFjOlw/f0yvUnTVfO26U7OOSygubNnUhKOs2HH37I5s2bMZsvzmcjhKBtpwZMmt2PoO51cDGORrh2IfnYEb56eSrHQmpQM+ZrnBs0IOfzz0mZ+CgJ7TuQ2Lcv5557jryYGMqT05G9X4UJv0JQNMQ+DQu6QfKOqhkQRakC6riaCtXhvZIbkWLgX//6F/Hx8QghCA0N5ZNPPiEoKOiStlSH8agMdrvkvVUxJKS8wS/udryt0MOpFo2d7+TwkSw8PDzo06cPjRo1uvS9GiA7rZBvF23DdhpKLJvQlSbi4ulJ1wfGEtWqHaYjRyiNj6cs/gBl8fHYcnIA0Li749G/PzUem4Qu6zdY/zwUpkCT+6DbVMfzHUWp5qr8pc6bTXUNNtXJrT4e2cXlvLXkOU7oNpBg0BFu1jPEswnm3BakpedSp04devToQZ3LnQYN7N+TyM/Lj6HNL6TUEouuPJ+gulH0HDuBgPBIwDETtaSkULZvHyU7d1GwejXCyQmfUf/Co2dXDBk/InbMBZsFIntCl2ccqaoVpZpSweYaqWBzdbfLePx2PJEVsZPY6XmWEo2GljZPBvv15ESCO8XFJTRp0oTevXuf335+IavFxprvdpK0tQib6Qg283Y0VivRPStOlna/uI45OZnMt96maONGAAxRUfhPGoerJh6xfwkUZ0BED8cmgprNbkj/FeVaqGBzjVSwubrbaTyklMxfs4Ijp2eyzd2Ch13QzSmIjj73ErcvHa1WS9euXWnbti063aUbOPOyivl28TbMJ6DUsgVt2TEMrq50Hj6KJj37otFoL7rekplJ8Zat5CxYgCU1FX1kBH5jRuPhewax+yMozYHmD0CPGY6TCRSlmlDB5hqpYHN1t+N45JeaeHPJ8ySINRx11lHH4sRdnlEYLd05fiIVPz+/S9IZXOjIgWQ2Lj2EJreEEvManMpz8asTSq9xk6hV/9KxtJvNFK5aRe6SLzGdOIE+MoLAp6fgav4Zdn7sSEfd6C5ofI9jec3JpbKHQFGuSAWba6SCzdXdzuOx91Qyy1ZOYJdnMgUaDW3KXHnAoyEHspqQl19IgwYN6Nu3L14XvldTwWa1s3F1HCc25mEvS8Bk3ozOYqFB5+50eWAMbt4+l9SRdjtFmzaR+eZbWM6exb13b/wfGY7+xGJHampzMWj1ENwawrpA9H3gE34jhkJRLqKCzTVSwebqbvfxkFLy2cZ17Dn+Crvci/C02xlapMM3+F4Sj2nRSjudO3emQ4cOF6Uz+ENJgYnYpXFkxBdRat6GpuwQOoOeTkMfoGnfgTjpDZfUsZtM5C5cRPYnn4Ddju+4cfiOHoEmYy8kbYPT2yH9IEg7eARDcEuo1QqCW0FQM5U9VKl0KthcIxVsrk6Nh4OUkn9vjGXv6dnkOufTyGQmurwh+TXvxvnwSXy9venbty/169e/7Fbp1IRcVi/Zizm9kGLLavRlWRi9vOky4kEadu7+37PVLmBJTyfzzbcoXLPGkT302Wdw79fPcf+CVDjyA6TEQWoc5J9xVNLoILwbNLgTmt7vWIJTlOtMBZtrVF2DTVJSEnfccQeHD198RP24ceOIi4tDSkm9evVYtGgRbm5uSCmZMmUKsbGxGI1GFi1aRIsWLQBHioEpU6Zgs9l46KGHmDp16vn7zZ07l3nz5qHT6Rg4cCBz5sy5pC3VYTyqE5vNzqTl73Cg7CuKdTYCLXb0ojY+NCAwTUt0nWgGDBiAr++lR9HYbXb2bj3Fzh9OYi9LpcS6HkNZCQERdek++uHLPs8BKI2LI/21mZiOHcOlRQtqPDEF1zZtLr6oONNx7lrSL3BsDeSdBu8wR26dqIEqt45yXalgc41utmBTWFh4fuvtU089hb+/P1OnTiU2Npa5c+cSGxvLrl27mDJlCrt27cJms1GvXj02btxIcHAwrVu3JiYmhoYNG7JlyxZmzpzJmjVrMBgMZGZm4u/vf0lbqsN4VEe5ZYW89PV0is3bSHC2kq917DRzsbkSWObPyIiRDOkxBL3+0gzlZUVm1n+zn7O7iyi37cdu+hWd2UpQZH0ad+9N/Q5dMBgvXgqTNhv5335L9vyPsWZk4DFgAP7PPoNT4GV2qUkJJ3+C9dMh6xiEdYW+MyGwSaWMhXL7+SfB5h8dxHmr2rJoAZnJp65+4TXwrxNO9wcfvup1lZ1iYP78+UydOhWDwbHMcrlAo/w1HxcPPnhoHmczC9n0+Qwa237ghIuN793cSXRLYWbaTFZ/vponOj5B8ybNL1pac3HXM2RcW9J7FLB6CZSfi6ZUv5NzKcdJ+3Qemxd+TGjTFjTo2JWI1u1w0hsQWi3ew4fjOXgwOZ9+Rs5nn1G0dSt+EyfgO3o04sKgJoTj5dCwXyHuC9g6Cz7uBA2HQO+XwTv0xg+YolRQZ6NVM5WdYuDEiRNs376dtm3b0rVrV/bs2YNy7UL8PRgz7X0Ku/6IW0krlp07yrIzWdS0+7PfuJ+JuycyY/EM0tPTL6kbGObJuBk96TamIcb60Qi3Yejd76fMGErS0cOs+eBNPho3gu9mv0TCnh3Y7TY0Li7UeHwy4WtW49q+PVlvv8OpQYMp3v7LpY3T6qDtwzB5H3R5Fk6sh3mtIfYZOLEBygtvwAgpysXUzOYy/s4MpLJUdooBq9VKXl4eO3fuZM+ePdx3332cOnXqsg+3lavr2Tkaa4fvWLroKxqdncvas7v52hjG3AA9K1nJru93MTpkNEN7DcXZ2fl8PaERNG4XQuN2IRSXF7Nh7R7ObOmDzmTA4nQKg2sK6YmnOL1/Jr7BtekycgxhzVqhDwkh5MN5FG/bRsbMWZwdPx63Xj0JmDoVfXDwxY0z+kCP5x1J3X561THb2b0AhAYCo6FOR8eJBeFdQXvpjjpFuZ7UzKaaqewUA8HBwdx9990IIWjTpg0ajYbs7OzK7NItT6fVMGrcKIImb2Ghy8P0LMln++mD9Cr0I8uYy5vZbzL2i7Hs3LsTu91+SX03Zzfuvqs7E2f3xn+whdRahRRbWmLXjsLJdQCFOSV8P/tlYl54mrO/H3TU6dKFsB9XUePfT1Hy2w5ODbyDrLnzsJeXX9pAz1pw18cw9SyMWuk4g03vBns+g6/vgTnh8MMkSD/keO6jKJVABZtqprJTDAwZMoSffvoJcCypmc1m/Pz8qqCnt56avm6Mee5NTgyMZbWmF3OyD7AiOZ0QawCHXA/xePzjTFs47aKsqRcyGJ24b0A/Xpk+Ef2DSaxqOpfDEaloXEfg5NaLnHMZfPPKdL59dToZpxLR6PX4jR9PROwa3Hv2JPvDDzk18A6KNm267OwWvdGxPbr7dBizBqaegeEx0HAQ/P6d4/nOOw3hm1EQHwN226X3UJT/kdqNVqE67L66ESkGzGYzY8eOJT4+Hr1ez1tvvUWPHj0uaUt1GI+bmc0uifnyW+qefoe2HOU/znV4O8iLYvLwL/NnROAI7u9zP0bjX7+IebbwLG/Gvcmuk3vpcGYIEZnRIA4iTfsxlxUR3bMvHYf9C6OHJwAlu3aT8dprmBIScO3UiYDp0zGEh/29BpflwaH/wJmdcHYXFJx1vCg64C0IaX09hkS5Baitz9eougab6kSNx/WRmV/G6gWv0q8kBn+Ry/PezdngWYQNC/WK6jEidAT9eva7YtDZn7mfn878xM59B2l0vAd+xf7o9Lspzd6LwcVIh2EjadqrPxqtFmm1krc0hqwPPsBuMuE7ehS+EyaidXP9+42W0hF4Ns6AojRoOgJ6vQTuAf94PJSbmwo210gFm6tT43F9/XroNMkrp3KPZRPpGj1TajbhpD4NZ6szLYtaMKb9WFq1aoVWq/3Le5RaSll0eDG/bv6d5kl90JvK0Oi2YcpNpkbtUHqMmUBwQ0fmVWt2NpnvvEvBd9+h8/fH/9ln8Rg44No2gpiKYNtbsOND0Dk7kry1fURtJriNqWBzjVSwuTo1Htef3S5ZtGo1kfGz6cJhVhuCeT3Qj0JNLn5lfvSQPRjZbyRhYVde+souy+aHwz9ydH0Wdc42xy6Po7XuxFyST1THrnR5YAzuvo7ncGXx8aS/+hrlv/+OsVUrAma8gHP9+tfW8OxEWDcVEjeCX33oP9uxi0257ahgc41UsLk6NR6VJ6/YxKJFbzA0awk1RRYveTVljVcZVkyEF4Zzd8Dd3NH7Dnx8Lj0h+kLl1nK++HkpqRssBOWHYi3fjc0Uh0arpfWd99LunqHonJwcpxCsWEHWO+9iKyzEe8QIajw+Ge1lEsL9JSkd7+usm+o4EifqDug7C7wvn8lUuTWpYHONVLC5OjUelW/3iRR+/89U7jetI0+jZXJgU44b0jDYDTTJa8I9UffQs0dPXFyunMcmtTiV9zd9TMbvpYTnh+GRnojdnIiLew16PzyByNZtEEJgy88n64MPyFu2HK2XFzWmTMHrriEXn0JwNZZy2DEPtr/tOH264xPQ6QmVa+c2oYLNNVLB5urUeNwYUkqWrN1IyJ6Z9JDxbNAH8WpQEPmabHzKfWhX0o77ut5H8+bN0VzmhOgL/XbuN2bvnk1eegl3JPbHKfUg0p6Lh38one//F/XbO4JO+dGjpL/6GmX79qEPDSXghRdw69Tx2hpekAIbZji2THsEOwJOi9Ggu4bApdx0VLC5RirYXJ0ajxursMzM5wvfYUjGF9QRGczybML33mbMlBFWFEYPfQ/uGXDPRccQXY7FZmHpsaXMPzAf/8w69EhsgS0nHuxF6I0hNOp+P3XbNKZmpCel27eRMXs2luQzuPfuhf9zU9EH17q2hif9AptehpTd4FELOj0J0cPA+RqW6JSbhgo216i6BpsbkWJg2LBhHD9+HID8/Hy8vLyIj4+/pC3VYTxuR/Gn09gTM40HTLGUCsljQc04YsjAye5Eo7xGDAkfQp/efXBzc7vifbJKs3hv33usOrmKutaG9M9oQ/Hvu7BbS9HqG+MV1JMGnSKI7hJIyfKvyP74Y0fCtofH4ztuHJoLjta5Kinh5GbY9jac+Q2EFmo2g/r9oXZ7qNlCJXa7Rahgc41utmBzPVMMXOjf//43np6evPjii5e0pTqMx+1KSknMxp/x2/EKfeRefnYK5MWatcjVZOFt8qZ1YWuGdhxKmzZtrrhVGiA+M55Zu2ZxNPcorb2bMzC1McnbfkUIJzSGtrh6t6bNnRGE1xHkz32borXrcAoOJmD6NNy6d7+2rdJSwpkdjjQHiZvg3H5HuUbnSHPQ9H5oNc5xUKhyU1IpBq6z/B9PYj5Xcl3vqa/pitedEVe9rrJTDPxBSsk333xz/ugapfoQQjCiTzeKu3TkvcVzGXjuU7Ym7+VNj0Z842NmQ40NHN97nG77u3F3v7vP/zlfTjP/ZsQMjGFFwgrm7p/LK64HuGdkfyL3QdrhnymxxrP1y45s09enRsj9BE2+C7dNizE/+hhuXToROH06+tDQv9twqNPB8enxApTmQsoex4kEp36Gtc/C3kXQfw6Edb4uY6XcPP7R2WhCiHuFEL8LIexCiFYXlIcKIcqEEPEVn48v+FlLIcQhIUSiEOIDUfEvpxDCIIRYXlG+SwgRekGd0UL8P3vnHVXV0fXh53DpVbqNpqgodooFBeyCJTGxJsYajd0Uu/FNtaarscVYY+9GAbGLoiIgYm+IgDTpIB3m++Ne+YxiEMGIyXnWukuYM3UvZDNz9uyfdFv1GfpEuZ2q7m1V2zf+7eSrlhh4TEBAAJaWltSrV+8fWJXMy6CvrcHHH31K3qgAVmn3ZWz6Xfwj79A8pzpR+tFs1tnM//b+jy1bt5CWlvbcfhRqCvo36M+BPgfoX78/e1P8+dnuGHoD22BSy4yCRz5oa/4JIokrV4s4a/k+gZ1/ITzBkvABo0n86WeKs7PLvwBdE6jfDTr9Dz48AgM2QV4WrO8JO0coJa5l/jNUdGdzBXgHWFnKs7tCiOallC8HRgPnAB+gO+ALjARShRD2kiQNBBYCAyRJMgG+AJwBAYRIkrRfCJGqqvOTEGKryqGNVPVfIV5kB/KqeNUSA4/ZsmULgwYNejWLkKlUGtc2w3H6anaeOIvuqS/ZGH+esxrmzKphwyXTS0RmRnL2t7O84/IObdu2LVUlFMBIy4jZrWczxHEIiy4s4tfordi62DDC2YtYvzNkXFlB4w7dqdWwO/evZhFZ1IH7NToQdSKQ+gf6Yz11Agbdur2cHIUkQcOeSnG30z/DmZ/hph+4T4E240Fdq4JWkqnqVGhnI4S4LoS4+aL1JUmqARgKIc4K5W/EDcDbqsdvAetVX+8EOql2Pd2Aw0KIFJWDOQx0Vz3rqKqLqu3jvt5YXrXEACiP6nbv3s2AAQNe1TJkKhlJkujXoS0dZ/ryc+25GOdrcywqmFFJeuRpFHPc4jiLri5i3uJ5XLhwgaKi52dstjKwYknHJfza6VeKJcH/Hq3g7rtm2Hdw58pxP05unIOVQzzDFralRRdrEmq15Uzd8Zz7fj+RI0aSp8pC/lJo6ECHmTD+PNTtAEe/gmVt4Pbhl+9T5o3gVUoM2EmSdFGSpJOSJD0+oK0FxDxRJ0ZV9vhZNIAQohBIB0yfLH+qjSmQpqr7dF/PIEnSaEmSgiVJCn748GHFVvYKedUSAwBHjhzBwcGB2k+LbclUeXQ0FXz84QTUxpxiuc4ghmXc52jkTVweWfJAL5b9pvv5KeAnlq1cxp07d0rVz3mMe2139ry1h0ktJhGQfJZv9LahNcKNatVr4L9iMXsWzqJOs2IG/q8VNRyrc9u+LyeLuxA8dDoJCxdRlJX18gsxtoWBm2DwLuWuZ1Nf2DwQUipXjl2m6lDmMZokSUeA6qU8mi2E2PecZnGAtRAiWZIkJ2CvJEmOQGn778dnPs97Vt7yUhFCrAJWgTIa7Xn1XjcNGzZk/fr1fPTRR9SrV4+xY8eWKjEA4O3tjY+PD/b29iUSAwDq6uosXbqUbt26lUgMODo6loyxdetW+QjtDad+DRPqT1/B3oAPkY7PYU1iICHqJkyvWZfLppeJKoji2s5r2GCDjY0NDg4ONGrUCC2tvx5XaSo0GdV0FD3r9OS74O9Ycf8PajerzSinXiT6nmXT55/RpEMXOg0bQuJ9K05vvUGYzngeBIXR4NAgbD8ehWGvXi+v9GrfGcaehXPL4OQi+LU1uE1W3teRw6X/VVRK6LMkSSeAKUKI4L97DjwAjgshHFTlgwBPIcRHkiQdAr4UQpyVJEkdiAfMgYGP66jarAROAFuBh0B1IUShJEltVO27lTXfqhr6XJWQ7fHmkFtQxG+bfqdj5FIcuc9Kvfr8bq5BjpRJI+FAcnuEHgAAIABJREFUk/RmFKYWoqWlhYuLC+3atfuLRPWTnI09y/yg+dxLv4enRXu6xdbn9tHjaGhr49Z/MI6e3Qg/HkvIwQiKCwqxvn8IB9Mkan0+A+2K/rxkxMLh/8HlHWBkBd3mQsPeyp2PTJWgIqHPr+QYTZIkc0mSFKqv6wD1gAghRByQKUlSa9U7lyHA493RfuBxpFlf4Jjqvc4hoKskScaSJBkDXYFDqmfHVXVRtX3eTktG5l+LtoaCicNGozM2gF91P6B/VizHI6/TNsuCm9It9hrtRqeNFjZ1bDh9+jRLliwhNDS01CO2NjXbsKvXLj5z+oyglBC+0NyIYngbzO3qcGztSrbO+ZTqtlm893Vb6rjUJNK2Bye03uLMuO+I/nIeRenpL78Qw5rw7moY5gPaRkrF0A1vQeKNClhHpqpQoZ2NJEl9gCUodyBpQJgQopskSe8CXwOFQBHwhRDiT1UbZ2AdoIMyCm2iEEJIkqQNbARaACnAQCFEhKrNCGCWati5Qoi1qvI6KHc4JsBFYLAQIq+secs7m7KR7fHmcvD8VbJ859BPHOOqhhFTatoTq0iklpoFoxuNJzUslejoaGrUqIGXlxfW1tal9pOYncgPwT/gc8+HGro1GK3ThxTfIDKTHuLg5oHH4BFkJKtxassNkmNzQBRjkBNHI6dqtBjvjUL97y+c/i1FhRC8Bo5/C/mPoNUY8Jgup8F5zcgZBMqJ7GzKRrbHm01+YTErt+6k3e2FtJDusE7XnuXVNcgWj3DTd+Vdq4GEB4STmZlJkyZN8PT0xNTUtNS+guODmRc0j9upt3GzaE2vh8247X8UNYU6bd4dSAuvXiTezyYy4BYRgZGkK8zQL0ymeRcb7Ls1Q69aBcKaHyUpI9ZCN4K+BXT+Spl7rYykpDKvBtnZlBPZ2ZSNbI9/B/Fpjziw8QfeTvoNAzL5zNyJ0wbJqAEfWA/GociR4LPBFBUV0aRJEzp37oyRkdEz/RQWF7Lt5jaWXlxKblEuH9Tsh01wPpGhwRjXrE3HYaOxbdaS4uJirv7mS/C5R2RrmQGCOk2McWhnhXUjUxQaL+kkHoSAz1Tlv9WbQpevlaHTMv8osrMpJ7KzKRvZHv8uEhPiOb9uKt7Zf3JH3YBPajYgWj2B6mqmTGz6MboP9Tl37hwAbdu2xdnZuSRN0pMk5STxc8jP7Lu7DwtdC8bo9yPDL4S0+DjsXdrgOeRDjCwsKczM5O7P67h1Po4HNdpRpNBGS0edOi3NsW1iRq0GxmjplPNOeXExhG+FkwshNRIa9oKuc2UBt38Q2dmUE9nZlI1sj38nIecDEL5TceY6W3Ts+KW6Lo/IpJVeSya5fsatoFsliWBtbW3p1q0bNWrUeKafJxN8tjJ34Z10F277HoFigctbfXF56100NLXIu3OH2G/n8+BWGkn1OpFg4EBhoTLArHpdI5y8bLFuZFK+0OlnBNwmK0Xc5FDpV06Vi0aTeTkiIyNp3LjxM+UjR46kWbNmNG3alL59+5KlukwnhGDSpEnY29vTtGlTQkNDS9r4+fnRoEED7O3tWbBgQUl5WFgYrVu3pnnz5jg7OxMUFPTqFyZTZXBq1Z7mn5/hQL2v6ZSdSsC9q3RJNyPkUThDjn1ApOldRnw0gk6dOpGYmMiqVas4cOAA2U/lRnuc4HNO6zlcT7/JrIKV5A1thk1LJ87u3Mxv40dw6bAvGnXssF27mqb/G41j1E7aHZ1Ee70gmrubk5Wax4Ell9jy1XnuX01+8UVoaCvT3EwIVspTn1wIv7rC1b3KzNMyVRJ5Z6OiKvwl/09IDHTt2pVPPvkELy8vfHx8WLRoESdOnHhmLlXBHjKvluTkJM6snYZX5l6iFTpMrtmISI14zKRqTHWdjqd1R06ePElQUBBaWlp07NgRZ2fnZxRDU3NTWXxxMbtu7cJE24RxZu9RHHCXB9evYm5jR4dho7Fq1ITi7GySVq4iZc0aJE1NjMdNILlBZ0L8o0lPzMG2qRnt+tXDyLycEtORZ5QZpROugJ07dF8Ilo3KbidTbmSJgUrG19eX+Pj4Su2zevXqeHl5lVnvVUsMSJJERkYGAOnp6X/JmSbz38LU1IzeU9YQHjqanD8/48+YIHZr2/BdjWKmn59Jy/DGTO8whxYtWuDn54ePjw8hISF4eXlh+4TsgLG2MV+0+YK+9foy7/w8volZQgvX5gx3+4Dbe/3Y/tVM6rduh8fgEVh88jHV+rxN/Lx5JH+3EM26O+k9azZ3supywSeSLV+dp0U3a1p2s0FD8wVDp23dYPRJCFkLx76FFe3AdRS0mQDV/l7ZVOafQz5Gq2K8aomBn3/+malTp2JlZcWUKVOYP3/+P7g6mapI05atcf48AN9GC2idk8npe1fokW7K5ZwbDPAZwPvH3+N+/ft49vYkNzeXdevWsXPnTtKfusDpaObIRu+NfN32ayIz7vNx3DweDrSj5TvvEhF6gdWTPmT3gi9JKczHauVKai9bhsjL48HIEVj4/cyAcXbUaWFO8MFINn95jrsXE0vNYF4qCnWlg5l0EZyGwvmV8HNjWN0ZDs2Ga/uUGQpkXhvyMZqKqnBsFBkZibu7O1FRUQAcO3aMxYsXs3fvXoASiQEXFxeGDx9Ojx49mDlzJu3atQOgU6dOLFq0iIiICA4dOsTq1asB2LhxI0FBQSxZsoRJkybh4eHBu+++y/bt21m1ahVHjhx5Zi5VwR4y/zypqakErJtB97QdJKhp8aVla5IN0oguTENNoWB4oxHYp9lz/sx51NTUaN++PS1btnxGpjo9L51fw35l281tGGkaMaHuh1S/XcSVY4fJycygdqPGNGjdntr1HSj28SNl1W+gpobJkCHktO1N4KGHpMQ+wqqhMe0H1Me4ul75FpISAZd3KrNJx4VBUb6y3LA21HYGK1eo7aIMo9YohwT2fxw5Gq2cVGVn4+Hhwf379wGls1myZAl79uwpqXPy5Em+++47Dhw4wEcffYSnp2dJUs0GDRpw4sQJIiMj+fLLLzl06BBAye5l5syZGBkZkZaWVqJ7Y2RkVHKs9iRVwR4yr49bVy+SvPtT2hSFckuqzabaLkQo7hEmpWClb8UExwlkXsrk+vXrABgYGGBjY4OHhwfm5uYl/dxMucm88/MITQyliVkTpjf9jNyQCK4c9yctPg4A4xo1qWFlh+71W+gEh2IgJAy6dedBrfaE39OjMF/QtJMVLj1s0dR+iZP/wjyIv6xSDQ2CmGBIV/5Bh0JT6XCsXFWfVsq0OTKlIjubclKVnY2dnR2BgYG0adOGUaNG4eDgwFtvvYW9vT1CCKZOnQrA999/z8GDB1m6dGlJgMCkSZMICgqisLCQ+vXrc/ToUWrVqoWLiwubN2/G0dGRhg0bsnz5cjw9PTl69CjTpk0jJCTkmblUBXvIvF6Ki4oJ8NlAneC5WEmJABwyqMYvxiZEKwrxrO3JUOuhFCQVEBsby61btygoKMDV1RUPDw90dJQv+oUQHIg4wI8hP5Kck8w79d5hUotJqKXnEXkplHthwcTevklupvKPHh2FBg0SUqjxIJECDX0iWw4jRqchOjrQ5u06OLjbvHyW6cdkxv/V+cSGQmGu8plpPaXCaPP3wKKRnAj0CWRnU06qsrPx9vbG3d2dwMBA6tWrx8aNG0uVGDA0NEQIwYQJE/Dz8yuRGHB2Vv4c+Pj48PHHH5dIDMyePRuA06dPM3nyZAoLC9HW1mbZsmU4OTk9M5eqYA+ZqkFGTh6/7vTh0Y2TdFRcxE3tEpuN9FlmbEKxQp0RTUYysvFICnMLOX78OCEhIejo6ODh4YGjoyMGBgYAZOVnsfzScjZd34Sehh6TWkyib/2+KNQUCCFIi48l9tYNwvwPEn/nFtWtbHGuYYPWhVDi72dxy+4dMg1tMM6PxckmmZpujui6uqIo5fJpuSnMh4TLcD8QIk5AxEkoLgA9C7BrD/W9oIEXaOmX2dW/GdnZlJOq6myqErI9ZJ7mZnwmXx6+wd3IO4zIO0AvzUP8YGrMYX1taurVYJrrdDpadSQhIQE/Pz8iIyMBqFu3Lt27dy85XruTeof5QfMJig+ioUlDZrWaRXOL/1eQF8XFXD15lIAt68nOSKdpx260fbsf4m4EV/3vEB5rSj6a1IoNoG60HwaO9dBt0RydFi3QadkSdWPjii82M175vufeKbh3ErISQF0HmvaH9p8qxd/+g8jOppzIzqZsZHvIPI/i4mLmBlwj6FwA07M2oqV3hy/NzInSUMOtphszXGdgY2hDQkICN2/e5OzZs+Tn59OqVSs8PDzQ1tZGCMGhyEN8F/wdidmJ9K7bm0+cPsFMx6xknLzsR5zduZlQ3z/R0tGl7YDBNOvsRX5uMef33eFqQBwaUgENMgMxC9uLVJAPGhqYvP8+ZuPGVs6OR7lgiAqE8G0Qvh2KC6FuJ/CcDrWePRX4NyM7m3IiO5uyke0hUxaZuQWM2xWG4e0/mS42ctKogCUmxhSqqTO08TBGNRmFroYujx494ujRo4SGhqKvr0/Xrl1p0qQJkiSRXZDNqvBVrL+2Hm2FNuObj2egw0DU1f4/ECA5Jopja1cSdeUS5ta2dBj+EVaNmpAUk8mprbeIu5OOhbU+ri1B4/R+0nftRmFkhNnYMVQbMAC15wjFvRQZsXBuOVzaCo8eQssPoNMXoGdWdtt/AbKzKSeysykb2R4yL8qNuAwmbD5Nn7Qt9NHw5WdTY3z1tbHUsWCq6zS62nRFkiRiYmLw8fEhNjYWa2trvL29qV5dqTh/L/0eC4IWEBgbiH01e2a1moVLdZeSMYQQ3A4K5MSG1WQmPaRBW3c8Bo9A38SU2xcSOLPrDtnp+TRsW4MWjkVkLP6e7PPn0ahVC4sZ0zHo3LniQQVPkpsBpxYpHY+mHnT4HJxHKO/7/IuRnU05kZ1N2cj2kCkPQgi2X4hmg/9hpuWtw1D3Bl+YWXJPU6JV9VbMajWLOtXqUFxcTFhYGEeOHCEnJwcXFxc6dOiAjo4OQgiORR1j0YVFxD6KxcvOiynOU7DQtSgZpyAvlwv7d3Fh3y5Qk2jasRtNO3fHwKwmwQcjuXQ0GnUtBU5eNthqxZH2/Tzybt9Gz80Ny9mz0apjV7kLf3hTmSon4gRYNgbv78CmbeWOUYWQnU05kZ1N2cj2kHkZcguKmLnnMnnX9jJdbCTQMJefTUzIU6jxQaMhjGk2Bj0NPXJycjh+/DgXLlxAR0eHzp0707x5c9TU1MgpzGHNlTWsubwGdTV1xjQbw+CGg9FQaJSMk56YQMCW9dwJCqSosJD6rdvh0vtdNHVrcHr7baKvp6Klp06rnrbUiDpJ8tIlFOfmYjLkA8zGjkOhX85Lon+HEHB9vzJTQXo0NOmv1NsxfDZb9puO7GzKiexsyka2h0xFSMjIYdwfp/GI20Q/dR+WmBryp4EOZtqmTHGZiredN5IkER8fj4+PD1FRUdSsWZMePXpQq1YtAKIzoll0YREnYk5gZ2THTNeZtKnZ5i/jZGekc9HvACEH91KQm4OhuSX2zq0wqeVIRLgWsbczMLPSx827Omo7V5K+azfq5uZYTJuGYc8elXu0lp8Np3+CM7+AQgM8pkGrsaCuWXljvGZkZ1NOqqqzeV7W55EjRxIcHIwQgvr167Nu3Tr09fURQjB58mR8fHzQ1dVl3bp1tGzZElBKDEyePJmioiI+/PBDZsyYAcClS5cYM2YMWVlZ2NrasmnTplJFsqqCPWTefE7eTOD7Xb58nLMOc92rfGFmwR1NNZwsnJjVehb1jesjhCA8PJzDhw+TlZVFy5Yt6dSpE3p6yt3HqZhTLAhaQHRmNF1sujDVeSo19P+6a8jJyiQiJIgbgaeIvhpOUUEB5jZ2VLdvQ8xtc3IyFTi0rk6LBnmk/zCP3CtX0HF2ovqcOWg3aFC5i06JAL9ZcMtXeUHUayHYd6rcMV4TsrMpJ2+as6lMiQEXFxe+//57PDw8WLNmDffu3eObb755Zi5VwR4y/w6KiwUL/G9w/9xOphdvIMToET+YmJKjpsZ7Dd9jbPOxGGoakpuby8mTJzl//jyampp/kTTIK8pj3ZV1rL6szPc3qukohjkOQ1Px7K6hID+P2+fOELRvJ8kxUWjp6VPToTvxkVZoaKrj0tMOq6RzJP/8E0UZGRgPGoT5pIkoSpHDrhC3/MFvutL5OPSEbvPeeFVR2dmUk7Kcza1b35CZdb1SxzTQb0j9+nP+tk5kZCTdu3enVatWf5EY0NVVKhAKIRg3bhy2trZMnz79pXKjGRoakp6ejiRJREdH061bN65du/bMXGRnI1PZpGTlM3rTadrGbOI99f0sNzFkj4EuxtrV+NR5Cr3q9kJNUiMxMRFfX1/u3btH9erV8fb2xtraGoDYrFi+D/6ew/cPY21gzXTX6bjXdn/umImREZzcuJqoK+EY17RG16QLyQ+MMKmpR7ueNdE4sI7UrVtRGBlh8dmnGL3zDpJaJSbDL8xTqoqe+l6pKtruU3CbBBrl1OypIshKnf8iXrXEQOPGjdm/fz8AO3bsIDo6+p9amsx/HBN9TXZ+1JE2wxbxoeYPtE20ZWtsHBYZKXx+5nOG+g7levJ1LCwsGDJkCP369SM7O5s1a9awe/duMjMzqalfkx89f2Rl55WoSWqMPzqeiccmEp1Z+s+xhW0d+n4+l16fzKAwP4cHV37HrPoZcrNS2b/qNuG13sFi/TY07eyI+3wOkQMGkhMeXnmLVteC9p/BhAvKdDcn5sGvreCGz39OVfTfHRT+kpS1A3mVWFlZ4ebmBsDgwYNZvHgxU6ZMYe3atSUSA9u2bWP48OGlan08zuZcWjnAmjVrmDRpEl9//TW9e/dGU/Pf8/JS5s2gTV1T/pzxAT8cacWOM7uYH7Oey4aZfFd8iYEHBtCvQX8mtpiIo6Mj9erVIyAggMDAQG7cuIGnpyetWrWiba227O69m43XN7Li0gre3vs2I5uMZETjEWir//USpyRJ1G/dDrsWzgTt28WF/TuRpDBqNerC3dBi7oVr4DJ0Lrb9w0n64Tsi+w/AqO+7WHz6KeomJpWzaKPa0G8dOA1XhkpvHQT2nZWqomb2lTNGFUfe2VQxno6OefJ7hULBgAED2LVrF6DcsTy5M4mJiaFmzZrPLQdwcHDA39+fkJAQBg0aRN26dV/lcmRkSkWSJKZ0acAP06Yw22old9J7sicqgb7pWWy/sY2eO73ZeWMn6hrqdOrUiXHjxmFtbY2/vz/Lly8nIiICDYUGIxqP4M+3/6STTSeWX1rO2/ve5ljUsVL/4NLQ0sat//sM/3E5ts1acj/sAOpsoZpZAmf3ROB70QLNX7ZiMmIE6Xv3cbe7Fyl/bEIUFlbewut4wJjT0G2+MuP0stZw5EvIy6q8MaoosrOpYkRFRXH27FkAtmzZQrt27bhz5w6gfGfz559/4uDgAEDv3r3ZsGEDQgjOnTuHkZERNWrUwMXFhdu3b3Pv3j3y8/PZunUrvXv3BiAxUZkqvri4mG+//ZYxY8a8hlXKyCgx0tVk2yhPOny4gBGaP9LyYV12PIij1qNUvjr/FYN29ufyw8uYmpry/vvvM2jQIAoLC9mwYQM7duwgPT0dSz1LFrkvYk23Neio6zD5+GTGHh3L/Yz7pY9pUZ23pszm3dnfoK6lScyVDVQzPUJ+bhIHV90k1Kg75ht2otPYkYRvv+XeO++SfeFC5S1aoQFtxsGEYGjSTxkuvdRFKfb2Lz5akwMEVFSFF+L/hMTAL7/8wq+//grAO++8w/z580u9a1AV7CHz30IIwZLjdwg5tYvPi9dz0yCNBaZmZKhBb8sefNZhOsbaxhQUFBAYGEhAQACSJOHu7k6bNm1QV1enoLiArTe2sixsGXlFeQx1HFqSo600igoLCTt0gMAdm8nPzaF63VZkpLZATaFHy+422KvdJum7BRTGxmHYsycWU6egYWlZuQuPDgKfKRB3CWzagfcisHSs3DEqidcWjSZJ0ndALyAfuAsMF0KkqZ7NBEYCRcAkIcQhVbkTsA7QAXyAyUIIIUmSFrABcAKSgQFCiEhVm6HA56phvxVCrFeV2wFbARMgFPhACJFf1ryrqrOpSsj2kHldZOYU8NGWczS5t4mRij2sMdFli6E+eugyvuF4Bji/h7pCndTUVPz9/bl+/TomJiZ4eXlRr149AJJykvgp5Cf2392Ppa4lU12mluRoK41Haalc2L+Li34HUGhoYFLbk7SkehiZ6+P2ti0GgbtIXr0a1NUxGz2aagP6V46UwWOKiyB0PRz9GnJSwbwh1O0ATfpCzZZVRsDtdTqbrsAxIUShJEkLAYQQ0yVJagRsAVyBmsARoL4QokiSpCBgMnAOpbNZLITwlSRpHNBUCDFGkqSBQB8hxABJkkyAYMAZEEAI4CSESJUkaTuwWwixVZKkFcAlIcTysuYtO5uyke0h87q5FJ3GjC2+jMncgKP2Bb40s+CStgL7Ihtmu87CubEyB9mdO3fw9fUlOTmZBg0a0K1bN0xUL/YvJl5k3vl53Ei5QasarZjpOpO61Z7/njIl9gEnN64mIvQC+iaWaOh6kJ1VC7umZrRqr0/O8h/IOn4cSUcHQy8vdFo0R7d5czTr1q2ckOnsFLi4Ee4eh6izSvVQbSOo2UIpZ1DHE2zcQE1R8bFegipxz0aSpD5AXyHE+6pdDUKI+apnh4AvgUjguBDCQVU+CPAUQnz0uI4Q4qwkSepAPGAODHxcR9VmJXAC5Y7mIVBd5ezaqNp3K2uusrMpG9keMlUBIQQrA+4ScHwPc4rWEWmQwjxTM1IV0F3dk6ndZmFhVoPCwkLOnz/PiRMnKC4upl27dri5uaGpqUlRcRE7bu1g8cXF5BTkMNBhIMMbD/9Lgs+nuRcWwon1v5ESG4OWnjGCeqhru9Kye30c6+STsXEtWSdOUpSeDoCavj46TZui07wZOs2UH0W1ahVbfG4GXNv7/7LVCddAFEGN5sqEn1auFev/JagqzuZPYJsQ4g9JkpYC54QQf6ie/Q74onQ2C4QQnVXl7YHpQoiekiRdAboLIWJUz+4CrYBhgLYQ4ltV+RwgB+VR3DkhhL2q3ArwFUI0fs78RgOjAaytrZ3u3//ry0P5l+tfke0hU5XIzitk3NYg6t7dxGi1XfxhrM1GIwO0hBajLYYzpOtoNDQ0yMjIwN/fnytXrmBkZET37t1xcHBAkiRSclNYHLqYPXf2oC6p85b9Wwx3HI6VoVWpYxYVFnLjzEluBwVyNyQIhboOkrorhtVb4j6gMXbNzCi4f5+csEvkXAoj51I4eTdvKsXWAE07O3SaN1d9mqFlb4+kqMCOJP8RXNunPGrLjINm70HnL8Ggkt8h/Q2v1NlIknQEqF7Ko9lCiH2qOrNRHnO9o3r/8itw9iln4wNEAfOfcjbThBC9JEm6CnR7ytm4AiMAraecTTbK9ztnn3I2PkKIJmUtWt7ZlI1sD5mqyNUH6UzZfIgPM9bTUvscX5laEKKjjl1hbWa2nEGbFh6AMtjGx8eHxMRE6tati5eXF2ZmSoGz6Mxo1lxZw747+ygoLsDZ0plPnD6hqXnT546bGBnBiQ2rib4ajqTQRqHZFtvm7rgPbIhx9f/PIF386BE5l6+QExZGzqVL5ISFUZSaCoCanh7aTZug01x59KbTsiUKA4PyGyEvCwK+h8CloK4NnjOg1UfKKLdXzGvd2ahe3o8BOgkhslVl8jHaG45sD5mqzJoz9zh8dDdzCtcRp/+Qb8zMSVZAZ7V2TOv6OTUsa1FUVMSFCxc4fvw4BQUFODs74+7ujr6+PgDxj+I5EHGAP679QXJuMp5WnoxtNpZGpo1KHVMIQdztm5zeuoHoq+GoqVugoduBlt3b4NzDFk3tZ+/ICyEoiIoiJyyM7LAwcsIulex+JG1t9Nq2xXT4MHRdXEoZsQyS7oDfDLhzGMwaKKPY6niWv59y8DoDBLoDPwIeQoiHT5Q7Apv5/wCBo0A9VYDABWAicB7lbmeJEMJHkqTxQJMnAgTeEUL0VwUIhAAtVd2HogwQSJEkaQew64kAgXAhxLKy5i07m7KR7SFT1cnJL2Ti9hBq3drEeLUdbK6myfpqhmgITUaafcDw7mPR1NAiKyuLY8eOERYWhoaGRkmCT4XqSOtRwSM2XN3AH9f/ICM/AydLJ/rV70ebmm0w0X42g4AQgtvnz3B8/WqyUpJQ03TAyKIT7Qa2oJ6zZZmyBcrdz2UyDx8h09+fwocPMezRA4tpU8sfVi0E3PJTOp3USGjYG7rNhWrW5evnBXmdzuYOoIUyVBmU71DGqJ7NRnkEVgh8LITwVZU78/+hz77ARNXRmzawEWgBpAADhRARqjYjgFmqMeYKIdaqyuvw/6HPF4HBQoi8suZdVZ1NZUoMjBgxggMHDmBhYfGX/lJSUhgwYACRkZHY2tqyfft2jEsJ4awK9pCReRFuxmfwyR+HGZa+ntZaZ/jazJzzOhpYF9ZgetNpuLt0BuDhw4f4+voSERGBpaUl3t7e2Nj8fxbmzPxMtt3cxo6bO4h9FIuERDPzZjQ2a4yjmSOOpo7YGNqgJimjzgpyczm/dwcX9u9CCDUUWq2wcuyAx3uNMK2l/0JzL87JIfm31f8fVj1mDCbDhqJW3jRSBbkQuAQCflB+3/5TaDsJNLT/vl05qRIBAm8Sb5qzKa/EAMCpU6fQ19dnyJAhf+lv2rRpmJiYMGPGDBYsWEBqaioLFy58Zi5VwR4yMuXhj3OR7D+8hzkF60jRi+drMwsS1cFTas30LrOpXcMWIQTXr1/Hz8+PjIwMmjZtSpcuXTB44t1JUXER15KvEfAggMDYQG6m3CS3KBcAPQ09mls0x8XSBZfqLjQ2a0x6QjzH1//GvdALqKmboK7TgeZd3XDtaYeW7ou9R8mPiSFhwQKyjhxFw8Yay5nEaB9tAAAgAElEQVQzMfD0LL8R0qLBf7YykKCaDXSfDw28K+2ejuxsyklZzmbO7RiuZOVU6piN9XX4pl7tv61TWRIDNWrUKOnvaef1ZJ24uDg8PT25efPmM3ORnY3Mm0huQSGf7AjF5MZmJqltZ1c1DVZXM0RNaDDM+D1GdZ+AlrY2+fn5JQk+FQpFSYJPRSnRYoXFhUSkR3A16SpXkq4QkhDC3fS7ANgZ2fGO/Tv0qdeH5Ku3OLp2JRmJ8ahp2KNv3pl2/ZxwaF0dSe3FftlnnT5Dwty55N+7h76HB5azZqJp8xIaOBEnwHc6PLwBdTspBdzM6pW/n6eQJQb+RVSGxMDfkZCQUOKMatSoUZIrTUbm34C2hjrL33NlxIRvGW64jGrJLdkXHYtLbjYr09fz1qYeHDvni6am5jMJPlesWMG9e/ee6VNdTZ36xvXpU68Pc9rMYe/bezne/zjfun2LoaYhP4T8gNcuL87q3OKD7xbTbuAQ1IgmM241/ivXsHPROR5GZb7Q/PXbuVFn314spk4l+8IFInr2IvHHnyh+9Kh8hqjjqUr4OQ9iLsCyNvDnZMh6ff/f5Z2Niqrwl3xkZCTu7u5ERUUBcOzYMRYvXszevXsBSiQGXFxcGD58OD169GDmzJm0a9cOgE6dOrFo0SKcnJxK+nt6Z1OtWjXS0tJKvjc2NiZVFZr5JFXBHjIyFWV7cDTbfffyecFasvQe8JWZBfHq0E64MLPTbKyt6iKE4ObNm/j5+ZGWlkbjxo3p2rVrqXLppXEz5SY/hvxIYGwg9tXsmek6EwcNO05u/J1b506jpjBCoeNBk47utHm7Ltp6L3a0VpCYyMMffiB9337ULS2xmDYVQ2/vMgMQniEzAU4tgpD1StE2zxngOvqlQqXlnc2/iMqQGPg7LC0tiYuLAyAuLg4Li+ffopaRedPp72zF5pnjWNPoNw48GszGqBQmpqQTxAX6HOnLz7vmk5ubg4ODA+PHj8fDw4Pr16+zZMkSTp8+TeELyAs0MGnAis4r+LnDz+QU5jDSfyRfXVmA86ih9Jszj2rVjSjI2k+Y71I2zDzI1YAHFBeX/Ue+hoUFNRcuxGbzZhSmJsR+NoX7gz8gZeMf5F67higqejEjGFhCjx9g3Fmo7QKHZsGKdsqjtn8Q2dlUMSpDYuDv6N27N+vXrwdg/fr1vPXWW69wNTIyrx9NdQWLBzoxdvLXfFhtGdopruyPisUtJ5vfszbz1uYe+J/ej7q6Oh06dGD8+PHY2dlx5MgRVqxYwd27d8scQ5IkOll3Yu9bexnXfBwnY07Se29vfIvOMmD+d3gOGYVCkUBm4loO//Yb2+eeIT4i/YXmr9uyBXY7dlD9q68oiIslYe5c7r3zLrdcWxE18kMeLlvGo/NBFOeU8Z7ZrB4M3gUDtyhzrm14C7YNhtTSpRgqG/kYTUVVODaqTImBQYMGceLECZKSkrC0tOSrr75i5MiRJCcn079/f6KiorC2tmbHjh0lSQufpCrYQ0bmVbD3YgwbDu5jdv5aCnSj+NLckgfq0Lq4BTM8Z1PXrgEAt27dwtfXl9TUVBo2bEi3bt2o9oL5zmKzYvk++HsO3z9MLf1aTHOZhqtBc05vWc/Vk0eRFPqoa7fH0aMDbfrYo2v44qHOBbGxZIeEkh0aQk5IKHm3byvv26iro+3YCN2WTug6tUSnZcvnK40W5MLZJXDqB0BAu0/AbbLymO1vkKPRyklVdTZVCdkeMv9mCouKmb7nElL4Fj6TtuBnBL+aGFOEGu/rvctY74/R0zN4Rjunffv2tG3bFnX1Z7MFlMa5uHMsOL+Au+l3cavpxnTX6Wgl5HH09+UkRt5FTb02mvrNcPJqhUvPZijUy587rSg9XZmhQOWAcsMvI/KVSiuadnbod+yAgacnOi1aID097/QY8P8cru4BI2vlhdCGvZ4bKi07m3IiO5uyke0h818gJjWbsRuO8U7SBrprHOE7UzMO62thUWjMp3Un4+XeBzU1NdLS0vDz8+PGjRvPaOeUxZOCbrlFuXzQ8AOGNRpGTGAQAVs2kJuVAYCaQg9zm3o4tHWiaZfuaGr//S7jeRTn55N75So5oSE8OneeR+fOQWEhmnXrUn3O5+i1bv1so3sB4DsNEq+BbXtwHaX8V/evOyPZ2ZQT2dmUjWwPmf8SB8Nj+W3/Pmbmr0Ohe48vzCyI0pBwLmrCTPfPqW+vzJf2tHZO9+7dS83AURrJOcn8EvoLe+7sQUddh551euJq6ULdgupEnbnNzXNh5GZGIYrT0NY3puPwD3Fwcy9/9NlTFGVmknXyFA9/+YWC6GgMvLpjOX06GtWfyq9cVAjBvytlqjPjAEmpGGrbTqmhY+OGpG8mO5vyIDubspHtIfNfo6hYMHv/ZfIubmEamzliVMQSExMKkBig/TYTvD9D39CQwsJCzp49y6lTpxBClGjnaGi8WCjx7dTbrL68muPRx8kpVL7Ur2tUF2dLZxpluZJ+NI3UKD9EUSKWdRrSbex4zK1tK7y+4rw8kn//neSVq0BNDbOxYzEdNhTp6dQ4RQXKuzmRZ+D+aYg6D6p5Sl9lyM6mPMjOpmxke8j8V4lPz2XMxhP0SFhPbw1/fjQxwcdAG9NCIz62nUBvz/6oKdRIT0/H39+fq1evYmxsTPfu3WnQoMELj1NQXMC15GtciL9AcEIwoQmhSucjJNyyuuNwyYKizHNAPk06euH+/gdo671YzrW/Iz/mAQkL5pN15CiatrZYfv45+u3cnt+gMF8p3hZ5GsljquxsyoPsbMpGtofMf53DV+NZsnc/M3LXoqt7h/+ZWXJPU6J5YUNmOM2gUbMWSJJEREQEPj4+JCUlUa9ePby8vEqN8CyLguICridf50L8BS4kXODKg2s0vuNGg/sSxXnhaGjr02HoSBp7dqoUCeqsgAASvp1L/v37GHTpguWM6WjUqvW3beR3NuVEdjZlI9tDRgaKiwVfHbxKasgWponNnDHM50cTU/IkiT6F3ZjY5TNMbCwpKioqkaUuKirCzc2Ndu3aoVne7M1PUFBUgG+kL/svHKLGWWuMH95BFMVhUNOa3hM+oXrdiuc6K87PJ2XtOpJWrAAhMPtoNCYjRqCmpVVqfTmDwL+EyMhIGjd+VtV65MiRNGvWjKZNm9K3b1+ysrIA5SXPSZMmYW9vT9OmTQkNDS1pM2LECCwsLJ7pb8eOHTg6OqKmpsbTDldGRuavqKlJfNWrMXM+m8Mky5WkpnVgf1QsPbKy2aXuy9tH+rBt22pEThFt27ZlwoQJNGrUiFOnTvHrr79y/fp1XvYPeg2FBr3r9mb1wF8ZNKcXGd0dKDZsT2ZcEptmfcK+X74nO+PFLoY+d32amph9NJq6Bw+g7+HBw18WE9GrN5knTlSo31LHqvQeZSqdn376iUuXLhEeHo61tTVLly4FwNfXl9u3b3P79m1WrVrF2LFjS9oMGzYMPz+/Z/pq3Lgxu3fvxt3d/R+bv4zMm465gTa7x3Wl4eAfGKWxkG4JlmyOjcesOINvc39h8KYBXDwRgIG+Ae+++y7Dhg1DS0uLbdu28ccff5CUlFSh8RuZNeLLIZ8x5LvhFLXpjJp2C+4EnmTFuBGE+P5JcfELpq55Dho1a1L7l5+x+n01kkJBzJixRI8dR/4T6bAqyovdTPqP8dWfV7kWm1GpfTaqacgXvRzLrFdYWMjQoUP/IjHwOCGgEIKcnJySUMh9+/YxZMgQJEmidevWpKWlERcXR40aNXB3dycyMvKZ/uWjMRmZl8ejgSXuM0cw17cNsUHb+CVmI0EGuXxvKjEscjy9b3VmcsdPsbW35aOPPiqRpV62bBlt27bF3d29QkdrltUsmDZ5NEE3LuK/xgy9Bzc4sW4lQQf30WvCJ9R2KPt3zN+h7+aG3r69pGzcyMNflxHRoyemH36I6ehRqGlXTIhN3tlUMV61xICMjEzFkCSJz70b8c3UWXxS/Tdi07uwLyqWtzMfsU/zMG+f7Msfm5ZTnJVP69atmTBhAk2aNOH06dMsXbqUq1evvvTR2mNcHVowc8EELAd7UVTNk+ykR2z7Yjo7v5tLVmpKxdanqYnpyJHU9fXBoHNnkpYpnU7m0aMV6lfe2ZTCi+xAXhVWVla4uSnDEAcPHszixYuZMmUKa9euLZEY2LZtG8OHDy/1B7aiF8BkZGReDFM9LXaO7cSZO00ZscOTzxLXMjDzGv8zs2Rh4TL2bfVlqu3HuHTypE+fPjg5OeHj48OOHTuws7PD29sbc3Pzlx5foabgPa/epLqnsWaDCdL5KO4Hn2flxWDa9nsP115vo1Avv4zAYzQsLan14w9U69+f+G+/IWb8hJfuC+SdTZXjVUsMyMjIVC5u9ub8OWMYF9qv4qf8SXwfk8fch8nEakbyYdxkZq3+mLiLd7CqVZvRo0fj7e1NXFwcy5cvx9/fn7y8vAqNb6xXjc/GjqDz/waQa98VNbXaBG5dz/IJH3I/PKzC69Nr3Yo6e/ZgOXt2hfqRnU0V41VLDMjIyFQ+kiQxrasDi6bNYJrVb0Skd2Pf/Tj6Z2bjo32cdy++z+8rfiDnbgqurq5MnDiRZs2aERgYyJIlSwgPD6/w0VrTOg2Z9e14bEf2otCkI/npheyc+zkbvp5BemJCxdanoYHJB4Mr1od8z0ZJVbhX8k9IDOzZs4eJEyfy8OFDqlWrRvPmzTl06NAzc6kK9pCReVMJupfMV9sO8vGjddhoh/OFuSVXtNSwz7HmU/2PaNOzG+rVtIiJieHgwYPExcVhY2ODt7c3lpaWFR4/MyeLtZv3UBhwD5ETSrFUjJF7E3oMGkMtY6uyO3gO8qXOclJVnU1VQraHjEzFEEKw+Pgdwk9t4/PiDVw3yGS+mTlpaoKuGW2Z1HAi1p6NEGoQGhrK0aNHyc3NxdXVlQ4dOqBdwegvgOj4OA5tOE1m+FmKC25RJEFRHSPc2vemuUsHDM3Kp9QrO5tyIjubspHtISNTOWTmFjBm01laRG5kmGIfvxvrs8VID+1ibYZlv8vgLiPRb2BOdnY2R48eJSQkBD09Pbp06UKzZs0qJejnwa1U/H73IzPuKgUF11ErVr4nUjc3onG7jrh07vVCjkd2NuVEdjZlI9tDRqZyCYtOY/bmg0zIWksD7Yt8YWZJmLaCOrm1+Fh7NO17eaNuos2DBw/w8fEpudrg7e1dKe9ii4uKuRoQS+De2+Q/SiRZ5zw5eVcxT1MHScLAthbteg3CoVU7FM8Rh5OdTTmRnU3ZyPaQkal8hBAsD4jgwvHtzC5aT4R+GnPNLEhRCDpltGJygwnYdmiKUEBYWBhHjhwhJycHZ2dnOnbsiI7OywmqPUlOVj5hh6MIOxqNmgLyGt7mZvxeTKOKMHqkgdBWx6FrF7r0GY6Wru5f2srOppzIzqZsZHvIyLw6svMKGbPlHI3ubuRDxR7WG+ux0UgfzWIthmT3YWiHDzFwtCQnJ4djx44RHByMjo4OnTt3pnnz5qhVQtbntIRsArbfIupqCsY1dTHwyCI0aj/pQdeolahNsZYC13f60a7ngJL7Oq8tEackSd9JknRDkqRwSZL2SJJUTVVuK0lSjiRJYarPiifaOEmSdFmSpDuSJC2WVAeSkiRpSZK0TVV+XpIk2yfaDJUk6bbqM/SJcjtV3duqti+fB0JGRkbmH0JXS50Nw9rRe+wihuotpkFSffbGxOKYn81Kg60MOv0BR9ZtRyMbevTowejRozE1NWX//v38/vvvxMbGVngO1Sx16TmhGV5jmlCYW0zUFjXa5H/EtP9tRTHElQSDRwRv2criiYMJP3kYUVxcofEqtLORJKkrcEwIUShJ0kIAIcR0laM4IIR4JoWxJElBwGTgHOADLBZC+EqSNA5oKoQYI0nSQKCPEGKAJEkmQDDgDAggBHASQqRKkrQd2C2E2KpyaJeEEMvLmre8sykb2R4yMv8cv5+5x8mj2/m8cD0x+il8Y2ZBkkLgkenMx3UnUKdTcyQNNS5dusThw4d59OgRTk5OdOrUCd2njrpehoL8IkIP3efioSjUFBIuPewwdhIs+/MbNAOiMM7SRNe6BuO+X/16djZCCH8hRKHq23NA7b+rL0lSDcBQCHFWKL3cBuBt1eO3gPWqr3cCnVS7nm7AYSFEihAiFTgMdFc966iqi6rt477eSP4JiYGpU6fi4OBA06ZN6dOnD2lpaa92UTIyMmUy0s2OVTM/Y1G93zmb9Q47ohIYlZrJGf1gBsWPZsnKb8m8Ek+zZs2YOHEirVq1IjQ0lCVLlhAcHExxBXcdGpoKWvWqw6AvXKlVvxqBu+8QuCSOia0X4fX1F9xsrUZyfEyFxqjMDAIjAN8nvreTJOmiJEknJUlqryqrBTw54xhV2eNn0QAqB5YOmD5Z/lQbUyDtCWf3ZF/PIEnSaEmSgiVJCn748OHLrO+1UZkSA126dOHKlSuEh4dTv3595s+f/4+tQ0ZG5vloa6iz+oM29B23kGH6S7BObsj+mAc0z8tmteFOBpwdjN/aLSgyi/Hy8mLMmDFYWFhw4MABVq9eTUxMxZwBgJG5Lj3GN6PHuKYUFRaz/+cwMg8asfCDzdhNGVShvstMxClJ0hGgeimPZgsh9qnqzAYKgU2qZ3GAtRAiWZIkJ2CvJEmOQGkB44/P8Z73rLzlpSKEWAWsAuUx2vPqAeA7A+Iv/22VclO9CXgtKLPaq5YY6Nq1a8nXrVu3ZufOnc/UkZGReX00qG7AgSn92XDOlen+O5kTu46Heol8ZQ7TFPNx2+bHJ3YTqNfFiWHDhnH58mX8/f1ZvXo1LVq0oHPnzujp6VVoDrZNzajd0JiL/lGE+N3n/pUknL0rpoFV5s5GCNFZCNG4lM9jRzMU6Am8rzoaQwiRJ4RIVn0dAtwF6qPcfTx51FYbePymKwawUvWpDhgBKU+WP9UmCaimqvt0X28s/6TEwJo1a/Dy8qrcBcjIyFQKQ1rbsnbmJ/zc4HeOP+rH1qiHjEtJ54J+GO8lfsRPK78iPTyWJk2aMHHiRNq2bculS5dYsmQJQUFBFT5aU9dQ4NLDjve+aIV1I1PO7Y2oWH8VaSxJUndgOuAhhMh+otwcSBFCFEmSVAeoB0QIIVIkScqUJKk1cB4YAixRNdsPDAXOAn1RBh4ISZIOAfMkSTJW1esKzFQ9O66qu1XVdl9F1lPCC+xAXhX/lMTA3LlzUVdX5/3336/U+cvIyFQeWhoKVr7firuJjgzf2IFhKev489EZvjW1YJ3hHvyDTjMheBjde/Wla9euNG/eHF9fX3x8fAgNDcXb2xtra+sKzcHQTAevMU2Ivp7ChJUv309F39ksBQyAw0+FOLsD4ZIkXUL5An+MEOKxos9YYDVwB+WO5/F7nt8BU0mS7gCfAjMAVO2+AS6oPl8/0dd04FNVG1NVH280/4TEwPr16zlw4ACbNm2S9W9kZN4A6lroc+Czdyl661c+Ff9jfJwmK+MTEWoPmaX+HeO2j+Lan2cxMzJhyJAh9OvXj+zsbNasWcOePXtKgooqglVDkwq1r9DORghh/5zyXcCu5zwLBp4JuRJC5AL9ntNmDbCmlPIIwLUcU67yPJYYaNOmzV8kBuzt7UuVGFi6dCkDBw7k/PnzLyQx4Ofnx8KFCzl58mSlhEzKyMj8cwxwtqZP84l8stMNk2t/sDl7O3uqabDS+DKDk8YyYJU3o9zG0qhFI+zt7QkICCAwMJAbN27QoUMHXFxcUCgUr2XucgYBFVXhXsk/ITFgb29PXl4epqamgDJIYMWKFc/MpSrYQ0ZG5vlEJmcxccNh3k9Zh6dmAPNMLTiup4FlvgnjGUqPnv3RrKFPUlISvr6+3L17FwsLC7y9vbG1tX2pMeV0NeWkqjqbqoRsDxmZN4M9F2PYfGA3nxesJU/3AV+YWxKjDs5ZjnxaazyO3dsgaSm4ceMGfn5+pKen06RJE7p06VIS6fqiyM6mnMjOpmxke8jIvDkUFhUzbfdFtC9v4hNpGweN1PjVxJhC1Oib2Y2P2ozF1MmGgoICTp8+zZkzZ1AoFHh6etKqVasXPlp7bbnRZGRkZGReP+oKNX7s58S4T77lQ5PlqKe6cDAqhg6Pcthq6EP/sA/Y+dtqxMM8OnbsyLhx47CxscHf35/ly5cTEVGxsOYXQXY2MjIyMv8Sahvrsm9yb6r1X8pYtf9r796DoyrPOI5/nwAmINcIeGEZSCSj0NaitYxUm1K0qMhA22mLIYiKFSTYaaVSgmlsSZs62ItV02JRUCJUaSgFJkK1UqSDLd4RaSFNAMVwDTBESGlJ5Okf501cmEUh2d1zDvt8ZjJ79j27Z3/vZnefnHdPzlvCLXs7s2DXXjpyiJL0R7hz+UTeWrqGHp26kZ+fT15eHk1NTZSXl1NRUUF9fX3CstkwmmPDRiey58OYcDt+XJm5fCNseJppPMuLXeHh8zI5hvD1w1/hrs8X0GtIFk0fNvHyyy+zbt06RITc3FyGDh1K+xgTqNkwmjHGmBOkpQmzv/ZZ7pn2Eyb3/B2Nh4by3Hu1XN9wlIquz/OtTRNY/PhjHN9zlGHDhjF16lSys7NZvXo1c+bMoaamJr554ro1Y4wxgXJBt44s+85NXJT3KJPblfKNvd1YuGsPXamnNOO33F55G28seZFu6Z3Jy8sjPz8fVWXhwoUsXrw4bmeGt2ITIMmYYqC4uJjLLruMwYMHM2LEiLhMwmSMCb4Rgy5gyX13sfzK+ZT/dyJz36/nh/sPsq1jDROPTONH86az5+81DLh4AAUFBQwfPpzq6mrKyspYu3YtjY2NbXp8KzYhEM8pBqZPn87GjRvZsGEDo0aNoqSkJGn9MMb4Ky1N+Onoz1B4bwkFvedy5NAXqXxvJ6OOHGV5l9V8c/MEFs4to3HnEXJzc7n77rvJyclhzZo1LScFbq02na7mbDX71dlsObglrtu8NPNSZgyZ8Ym3S/QUA9H/xNXQ0GDnRjMmBfXqks7SqTfwUtXl3LlkGYX75jPug20U91Ie7DiXypUvMi2zgCtv+jJjx45l69atrFq16pM3/DFszyZgkjHFQFFREX379mXRokW2Z2NMCht2yfksvW8SL1w1n8ePTeI3tYf5cd1BdmRsZ9LR6RQ/+X12rasiOyubgoKCNj2W7dnEcDp7IImSjCkGSktLKS0t5YEHHqCsrIxZs2bFvR/GmHAQEYpHfoqDufcz+ekvcd2up6hseJ5HM3uwtMtLrK16jTvfGcvYG29v0+PYnk3AJGOKgWbjxo1r2ZYxJrVldk6nYsoIPj3hYSZ2mM11+3pTsWs3fT48wi87zWf8n8e3aftWbAKmeYoB4IQpBoCYUwyUl5ejqqxfv/60phiorq5uWV6xYkXLtowxBuDqnF4sm3kH666Zx6PHpvDQzgZ+VrefPek72rRdG0YLmIEDB7JgwQImT55MTk4OU6ZMiTnFAMDIkSNZuXIlAwYMaJlioFn0FAORSKRlioHCwkKqqqpIS0ujX79+MacXMMakNhGh8PqB1OcWM6l8GLm1T7HyyEq6t2Wbdroaj52e5UT2fBhjmr26bT8lFat4rnCCna7GGGNMYgzJ7knljFvatA0rNsYYYxLOik2UVBxSjMWeB2NMvFmxcTIyMjhw4EDKf9CqKgcOHCAjI8PvKMaYs4gdjeZEIhFqa2upq6vzO4rvMjIyiEQifscwxpxFrNg4HTp0ICsry+8YxhhzVrJhNGOMMQlnxcYYY0zCWbExxhiTcCl5BgEROQxU+Z2jlXoC+/0O0UqW3T9hzm/Z/RErez9V7dWajaXqAQJVrT3lgt9E5HXLnnxhzg7hzm/Z/RHv7DaMZowxJuGs2BhjjEm4VC02c/0O0AaW3R9hzg7hzm/Z/RHX7Cl5gIAxxpjkStU9G2OMMUlkxcYYY0zCpVSxEZEbRKRKRGpEpNDvPCcTkb4iskZENovIP0Xku649U0T+IiLV7rJH1H1muv5Uicj1/qVvydNORN4SkUp3PUzZu4vIEhHZ4n4HQ8OSX0Tuca+ZTSLyjIhkBDW7iMwXkX0isimq7YyzisjnROQdt+4RERGfsv/cvWY2isifRKR71LrAZD9V/qh194qIikjPhORX1ZT4AdoBW4Fs4BzgbWCQ37lOynghcIVb7gL8GxgEPAgUuvZCYLZbHuT6kQ5kuf6187kP04DfA5XuepiyLwC+7ZbPAbqHIT/QB9gOdHTX/wDcFtTsQC5wBbApqu2MswKvAkMBAVYBN/qUfQTQ3i3PDmr2U+V37X2B54H3gJ6JyJ9KezZDgBpV3aaqx4BngTE+ZzqBqu5W1Tfd8mFgM94HyRi8D0Lc5Vfd8hjgWVX9n6puB2rw+ukLEYkANwFPRDWHJXtXvDfiPABVPaaqhwhJfrx/0O4oIu2BTsAuAppdVf8GHDyp+YyyisiFQFdV/Yd6n37lUfdJanZVfUFVm9zV9UDz/ByByn6q/M5DwA+A6CPG4po/lYpNH+D9qOu1ri2QRKQ/cDnwCnC+qu4GryABvd3NgtanX+O9YI9HtYUlezZQBzzphgGfEJFzCUF+Vd0J/ALYAewG6lX1BUKQPcqZZu3jlk9u99tEvL/0ISTZRWQ0sFNV3z5pVVzzp1KxiTWmGMjjvkWkM/BH4Huq+sHH3TRGmy99EpFRwD5VfeN07xKjzc/fR3u84YU5qno50IA3nHMqgcnvvt8YgzfUcRFwroiM/7i7xGgL5HuBU2cNXB9EpAhoAhY1N8W4WaCyi0gnoAi4P9bqGG2tzp9KxaYWb1yyWQRvqCFQRKQDXqFZpKpLXfNet+uKu9zn2oPUp6uB0SLyLt4Q5XARWUg4soOXp1ZVX3HXl+AVnzDkvw7Yrqp1qtoILAW+QDiyNzvTrLV8NFwV3e4LEbkVGAXku6ElCEf2i/H+SHnbvXcjwJsicgFxzp9KxeY1IEdEskTkHOBmYIXPmU7gjoyL01oAAAFCSURBVOiYB2xW1V9FrVoB3OqWbwWWR7XfLCLpIpIF5OB9cZd0qjpTVSOq2h/vuf2rqo4nBNkBVHUP8L6IXOKargX+RTjy7wCuEpFO7jV0Ld73fWHI3uyMsrqhtsMicpXr84So+ySViNwAzABGq+p/olYFPruqvqOqvVW1v3vv1uIdpLQn7vmTcQREUH6AkXhHeG0FivzOEyPfNXi7oxuBDe5nJHAesBqodpeZUfcpcv2pIklHtJxGP4bx0dFoockODAZed8//MqBHWPIDs4AtwCbgabwjiAKZHXgG77ulRvfhdkdrsgJXuv5uBcpwZ0TxIXsN3ncbze/Zx4KY/VT5T1r/Lu5otHjnt9PVGGOMSbhUGkYzxhjjEys2xhhjEs6KjTHGmISzYmOMMSbhrNgYY4xJOCs2xhhjEs6KjTHGmIT7P+4skoC1p3gjAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df = data.cumsum() \n",
"plt.figure() \n",
"df.plot() \n",
"plt.show() "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-200, -75, -71, -68, -73, -78, -80, -81, -79, -77, -72,\n",
" -67, -70, -74], dtype=int64)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"b3001\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 302
},
"colab_type": "code",
"id": "J-4KPGFaxvmH",
"outputId": "d47af818-ebe0-44a8-c764-afdd75a87023"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEMCAYAAADEXsFmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxV1bn/8c+TBAhUcEBkShAUhAjGWCjFSvVWibUOWHHWW7F6BflhbR16HbCirbSKFq1VabFypT9nC1ziUEGwDvWntVApg4iCgoR5BmUyyfP7Y+8TTsLJQPbZSYDv+/XKi7PWHtZaJ2Q/Z++99nPM3REREclo6A6IiEjjoIAgIiKAAoKIiIQUEEREBFBAEBGRkAKCiIgADRgQzOwMM1toZovM7NaG6oeIiASsIZ5DMLNM4BOgECgG/glc6u4f1XtnREQEaLgzhL7AInf/zN13Ac8B5zZQX0REhIYLCB2BZUnl4rBOREQaSFYDtWsp6va4dmVmQ4AhAM3Nen/drQfHt2wBwPz18ylp2qW8zIoP2doyi5Ytjysvr6AtHTp0AGDu8s10J5NPs5fSs3VPAFZ/toi22VuhwwkArFm6ldVZZRzX8WAAdsybz8Iju9S6zbnLN9PavlKbdWyzU9OyCr+/6toE2LX8S7VZxzYr/22ozfja7E4mTTse1GBtzpo1a527t6E23L3ef4ATgalJ5duA26rbpmezbG/7xoee0OvJXhXKPrKVT59xVIXyyJEjy4tH3vKyL7vlbe/1ZK/yugcuOst9ZKvy8iNDZ/iRt7xcXv6oe4+9avPIW15WmxHarPz7q65Nd1ebEdqs/PtTm/G1ueyWtxu0TWCm1/LY3FCXjP4JdDOzLmbWFLgEKGqgvoiICA10ycjdS8zsOmAqkAmMd/f5DdEXEREJNNQ9BNz9VeDVhmpfREQqarCAICIS1cHmfP755+zYsYOHjn2Iw7KcBQsWBAu//wLfp1V5+fGB7TnIvr97OVAy8CAeavJQeV3/4T9nQZOfQFj+1n8eyuMZh5Qv//rRR/jzIVZerk2bGzG21kObn3/+OTk5OZHeTwUEEdln3fiNDFq2bEnnzp0pW19GbtMyWrXKCxau2FFh9s3XxZs4PGNbxVlGxVvJyP6CvMODbVY1zaJd8y+hQ1Bes3QLqzLLyMs5BIDtpaV4p6PIaxXM+ClbV3Ob3cmkaU7LWNtc7kfQrFkziouLI72fymUkIvuszlnQunVrzFLNZD9wmBmtW7dmx44dkfajgCAi+yyDAz4YJKTjfVBAEBGJYOnS5fTq1WuP+quvvpoLT+9P78ITueCCC/jyyy+B4NmvX9/2a7p27Up+fj5z5u2eYPnaa6/xnVN7c3b/b3LvvfeW10+bPImePXuSkZHBvNnzYhuL7iGIyH4j/9dfAF8k1awAPqy0VuUywJJK5RUAfDDsu3Xuy4MPPsiSLWX0IJNbx4zkkUce4dZbb+W1v03ji8++4NNPP+Uf//gH/+faoZz+6pOUlpYyfPhwnn1yEpkd23PVeYUMHDiQLkDXY49l0qRJDB06tM79qQ2dIYiIRFRSUsLgwYPJH3AR11xzDdu2baNVq1ZAcEawffv28ks6L017lYEXD8TM6NevH1u2bGXl6rV88MEHdO3alc6dutCkaVMuueQSpkyZAsBR3XvQvXv32MehgCAiEtHChQsZMmQIc6a/QMuWLXnssccA+MWNw+n0za58/PHH/OQnPwFgxaoVtOvQrnzb9u3asnzVWpYvX05ubm55fU5ODsuXL6/XcSggiIhElJuby0knnQTAoEGD+Pvf/w7Ar8Y8ypKZn5CXl8fzzz8PkMjfVoFZVfX1e8NcAUFEJKLKB+7kcmZmJhdffDETJ04EoGP7jqxasap8+cpVq+nQtg05OTksW7b7WwGKi4srPDNRHxQQREQi+uKLL3jvvfcAmDJlCv3792fRokVA8Mn/pZdeokePHgCcXfgDip4vwt15//33adnyINq3bcO3vvUtPv30U5YuW8LXu3bx3HPPMXDgwHodh2YZiYhElJeXx4QJExj69gxyuxzDsGHDKCwsZM36jTR1KOhzAmPHjgXgB6d+n+ffmkTXrl1p0aIF9//qbgCysrJ45JFHuOSKQewqLeXaIf9Fz5492T5vHm+8VMRZt9zM2rVrmXvZXAqO68GMGe+mfRwKCCKy35hzeydatUr9xTFzqkhd8Wn2F/Q8PPiymlWLPw3TSCS+rGZLjW0eeWRHPvroowpttmjRgnfffZc5xZvoUSl1hZlxx+g7KrQJwTMKZ555Jn3+1p9VmWXkh6krAE49ZyA3XH4JAPPXzSe3aVkd3p2a6ZKRiIgACggiIhJSQBAREUABQUREQrEFBDO738w+NrM5ZjbZzA4J6zub2XYzmx3+/CGuPoiISO3FeYbwOtDL3fOBT4DbkpYtdveC8OfaGPsgIiK1FFtAcPdp7l4SFt8Hon23m4hII1Qf6a/H3HE7PXr0ID8/n+sHX8+mTTVPh62L+noO4Srg+aRyFzP7ENgC3OHu79RTP0RkP9ZqTP8K5eTED/kp1m8K9Ewqt6u8wo+XVa6ptXSmv+73vVN5YswDZGVlcfX1VzNmzBM89NBJde5bVSKdIZjZdDObl+Ln3KR1RgAlwNNh1Uqgk7ufANwIPGNmrarY/xAzm2lmMzeUlqRaRUSkwcWd/vo7pw0gKyv4/J7fO58VK1bHMo5IAcHdB7h7rxQ/UwDMbDBwNnC5h6n83H2nu68PX88CFgPHVLH/ce7ex937HJaph6pFpHGqz/TXk5+ZTGFh/z3q0yHOWUZnALcAA919W1J9GzPLDF8fBXQDPourHyIicauv9NejRo0iMyuTiy46K91DAOKdZfQI0BJ4vdL00pOBOWb2b+AvwLXuviHGfoiIxKo+0l9PmDCBl19+mfvG3hfb9yTEOcuoq7vnVp5e6u4T3b2nux/v7t9095fi6oOISH2IO/31u9Oncd9991FUVETzFs1jG4cuzIuIRBR3+ut7b74J/3oXhYWF7CjZwXf65jN+/AtpH4cCgojsN7bc+Pe0pr+mkaS/fmn2XI5v1QJQ+msREakHCggiIgIoIIiISEgBQUREAAUEEREJKSCIiAiggCAiEkl9pL9+9J5fkp+fT0FBAddceA0rV66JZSx6DkFE9hsnTb4srfub8R/v1nnbdKa/Hnz9zxg3OggQt/36Nu6774+MH39amka5m84QREQiijv99UGtdn9DwPZt24kplZECgohIVPWR/nrEiBHk5ubyysRXGDFieCzjUEAQEYmoPtJfjxo1imXLlnHW+WcxbtyzcQxDAUFEJKr6SH+dcNb5Z1FUND3dQwAUEEREIos7/fXSxYvK2/rba3+jW7cusYxDs4xERCKKO/31wyPv5PbPFpGRkcFh7Q/jD7+7I5ZxKCCIyH7j3fOeSWv66zWNJP31b596pkL66w77WvprM7vLzJaHX58528zOTFp2m5ktMrOFZvb9uPogIiK1F/cZwoPu/kByhZkdC1wC9AQ6ANPN7Bh3L425LyIiUo2GuKl8LvCcu+9098+BRUDfBuiHiIgkiTsgXGdmc8xsvJkdGtZ1BJYlrVMc1omISAOKFBDMbLqZzUvxcy4wFjgaKABWAr9NbJZiV3s+kRHsf4iZzTSzmRtKS6J0VUREahDpHoK7D6jNemb2OPByWCwGcpMW5wArqtj/OGAcQK/s5r6u7l0VEZEaxDnLqH1S8TxgXvi6CLjEzJqZWRegG/BBXP0QEYlTfaS/TnjggQfo1aYX69dvjGUscc4yGm1mBQSXg5YAQwHcfb6ZvQB8BJQAwzXDSETSYXnfi1heqW5z+G+T8PXmSsszgAVJ5eRDbeup/6hzX9KZ/hpg2bJlvP7667TPaV9tu1HEdobg7j9y9+PcPd/dB7r7yqRlo9z9aHfv7u5/jasPIiL1Ie701wA33HADo0eP3iNvUjopl5GISERxp79+89VX6NixI8cff3ys41BAEBGJKM7019u2b+dPD4zml7/8ZYwjCCggiIhEFGf668+WLWP50iUcf/zxdO7cmdUrVnPyyRezatXufaSLAoKISERxpr/udcwx/G3xUpYsWcKSJUto26Etb7/9PO3atauyP3WlbKciIhHFnf66viggiMh+o+MHL+yX6a+TTfvXNFrva+mvRURk36KAIHIAuuuuuxq6C9IIKSCIiAiggFCtvI8X1LySSJrp07s0FAUEEREBFBBERCSkgCAiEkF9pL8e+5tRdOzYkYKCAs7/j/OZNu2dWMai5xBEZL/xf/97LfBGUs1G4ONKa1Uuw5usrlQT7OPC2/rUuS/pTn99ww03cPPNNzN/3Xxy9RyCiEjjVB/pr+uDAoKISERxp78GeOSRR8jPz+eO6+9g48aan6CuCwUEEZE6SqSfiDP9NcBFV/8XixcvZvbs2bRp24Y77ngglvHE+Z3Kz5vZ7PBniZnNDus7m9n2pGV/iKUDd1X+orzo5g6em/Z9VqZnH0T2PXGmvwZofURbMjMzycjI4IIfXcCsWfEci+L8Cs2L3b3A3QuAicCkpMWLE8vc/dq4+iDS6MXwwUXi0zzFbCJISn/d4YS0p78GWLuq/BuImfHqDPLyusUyvthnGVkQKi8CTo27LZGGNvwPp3L/ra80dDcOSD0P75litlD9KE9/PXQoubm5aU9//dCdd3DD/HmYGa07tOaPD/8ilnHUx7TT7wKr3f3TpLouZvYhsAW4w93jmVQrIgeUH41u07Dpr4EVK1akPf31qHFPcHyrFgDMXzefdo1x2qmZTTezeSl+zk1a7VLg2aTySqCTu58A3Ag8Y2atqtj/EDObaWYzN5SWROlqPHS636jc9PzLDd2FBjH8Dzr5lvSIdIbg7gOqW25mWcAgoHfSNjuBneHrWWa2GDgGmJli/+OAcQC9spv7uiidFYnBTc+/DHcd3NDdEEmLuKedDgA+dvfiRIWZtTGzzPD1UUA34LOY+yEiB5rwso/UXtwB4RIqXi4COBmYY2b/Bv4CXOvuG2Luh6TRknvPauguSCOj6dL1J3HvIQ6x3lR29ytT1E0kmIYqIiKNiJ5UFhERQAHhgFB59o1mpYikT32kvwb4/e9/T/fu3enZsye/+MWYWMai9Ncist94/Jrb6rTda1XU/2j0M3XuSzrTX//z7beYMmUKc+bMoVmzZixe/Gad+1UdnSGIiERUnv46Pz+W9NcvPPEnbr31Vpo1awZAmzatYxmHAoKISETl6a/nzIkl/fXSxZ/yzjvv8O1vf5tTTjmFWbPmxTIOBQQRkYjiTn9dWlLCxo0bef/997n//vu58sqbU64flQKCiEhEcae/btuhI4MGDcLM6Nu3LxkZGaxbl/7cDQoIIiIRlae/hljSX3/vrHN4443ge54/+eQTvv76aw4//PC0j0OzjEREIoo7/fUPf3QFD/3sOnr16kXTpk0ZO/aePc5K0kEBQUT2G9c8/pvd6a8JUlHvD+mvmzRtylNPPVVe3rJlH/vGNBER2bcoIIiICKCAICIiIQUEEREBFBBERCSkgCAiIoACgohIJPWR/vq/r7yCgoICCgoK6Ny5M/37XxjLWCI9h2BmFwJ3AXlAX3efmbTsNuBqoBS43t2nhvW9gSeB5sCrwE89jqQcInLA2fLrTWzhnQp1xSwG4DCgLKmccDBQnLRN8AXwQbnpsOPr3Jd0pr8e/eSfOb5VCwBuuukmsrN31Llf1Yl6hjAPGAS8nVxpZscSfJ9yT+AM4DEzywwXjwWGAN3CnzMi9kFEpEHFnf46wd154YUXuOCCH8QyjkgBwd0XuPvCFIvOBZ5z953u/jmwCOhrZu2BVu7+XnhW8Gfgh1H6ICLS0OJOf53wzjvv0LZtW44++shYxhHXPYSOwLKkcnFY15HEGVnF+pTMbIiZzTSzmRtKS2LpqIhIVHGnv0549tlnufTSS9Pd/XI1BgQzm25m81L8nFvdZinqvJr6lNx9nLv3cfc+h2Uq7ZKINE5xp7+G4LLUpEmTuPjii+MaRs0Bwd0HuHuvFD9TqtmsGMhNKucAK8L6nBT1IiL7rLjTXwNMnz6dHj16kJOTs2cH0iSuj91FwDNmNgboQHDz+AN3LzWzrWbWD/gHcAXw+5j6ICJSL+JOfw3w3HPPxXq5CKJPOz2P4IDeBnjFzGa7+/fdfb6ZvQB8BJQAw929NNxsGLunnf41/BERiazV7Yfsl+mvAZ588sm9eCfqJlJAcPfJwOQqlo0CRqWonwns+RSHiIg0KD2pLCIigAKCiIiEFBBERARQQBARkZACgoiIAAoIIiKR1Ef664/n/Jt+/fpRUFBAnz59mDVrbixjUT4IEdlvjBkzEZi419u9yIuVaoJEDP/nxzfWuS/pTH/90J13MHLkSH7wgx/w6quvcuedI3nnncvq3Leq6AxBRCSiuNNfmxlbtgQPyW3evJl27drEMg4FBBGRiOJOf/3ze0fz85//nNzcXG6++WZGjvxpLONQQBARiSju9NcvPvEnHnzwQZYtW8aDDz7IddeNjGUcCggiIhHFnf76pWefZtCgQQBceOGF/Otf82IZhwKCiEhEcae/btOuPW+99RYAb7zxBkcd1SmWcWiWkYhIRHGnv77z4Ue46aabKCkpITs7m9/9Lp5LRgoIIrLfuPHG8/fL9NcnnPgdZs2aVV7esiWe5xB0yUhERAAFBBERCSkgiIgIEDEgmNmFZjbfzMrMrE9SfaGZzTKzueG/pyYte9PMFprZ7PDniCh9EBGR9Ih6U3keMAj4Y6X6dcA57r7CzHoBU4GOScsvD79KU0REGomo36m8APZ8KMPdP0wqzgeyzayZu++M0p6IiMSnPu4hnA98WCkY/E94uegXVjmaJDGzIWY208xmbigtib+nIiJ7qT7SXy+cO4cTTzyR4447jnPOOYctW76MZSw1niGY2XSgXYpFI9x9Sg3b9gTuA05Pqr7c3ZebWUuCPLU/Av6cant3HweMA+iV3dzX1dRZETmg/XPmD/eoW/Dx7tdrK5UTViW9ng8QrnPc0R/uuXItpTP99d0/Gc5jD47hlFNOYfz48Tz88JOMHn1inftWlRrPENx9gLv3SvFTUzDIASYDV7j74qT9LQ//3Qo8A/SNNgQRkYYVd/rrpYs+5eSTTwagsLCQoqLpsYwjlktGZnYI8Apwm7u/m1SfZWaHh6+bAGcT3JgWEdlnxZ3++ui8YykqKgLgxRdfZPny5HOa9Ik67fQ8MysGTgReMbOp4aLrgK7ALypNL20GTDWzOcBsYDnweJQ+iIg0tLjTX9/96FgeffRRevfuzdatW2nSpEks44g6y2gywWWhyvX3APdUsVnvKG2KiDQ2tUl/ff/99/PjH/+4yvTXuw5uWWX66y7HdGfatGkAfPLJJxQV/SWWcehJZRGRiOJOf71h7RoAysrKuOeee7jqqgtjGYeynYqIRBR3+uu//uVFhj4RXF0fNGgQ//mfe86mSgcFBBHZb3yrz//ul+mvLx82nNG3/Ly8rPTXIiISKwUEEREBFBBERCSkgCAiIoACgoiIhBQQREQEUEAQEYkknemvr7rqKo7tfTSDTquYyXTzhg0UFhbSrVs3CgsL2bix5umwdaHnEERkv3HMrFKCNGlJFq6pvgyVtjFYGJTnHHVUnfuyt+mvAa688kouO/9Krr1xaIV9jX/wt5x22mnceuut3HvvvTz44BM89NBJde5bVXSGICISUTrSXwOcfPLJHHLwoXvs/81XX2Hw4MEADB48mFdeeSOWcSggiIhElI7019VZv3YN7du3D9Zv3561azfEMg4FBBGRiNKR/roxUEAQEYmoNumvJ06cCFBl+uvqtG5zBCtXrgzWX7mSNm0OS1fXK1BAEBGJKB3pr6tzyg/OZMKECQBMmDCBM8/8XizjUEAQEYkokf46Pz+fTZs2MWzYMAYPHsz5A77DNwf0Y+XKldx5551AkP4658gcunbtyjXXXMNv7r6rfD+XXnopZw0qZOlni8jJyeGJJ54A4Kobb+L111+nW7duvP7669xww9WxjCPStFMzuxC4C8gD+rr7zLC+M7AAWBiu+r67Xxsu6w08CTQHXgV+6qkuqomI7KVPemfu0+mvn332WdYs3VIh/fX2efM45LDWzJgxo3wfjTX99TxgEPB2imWL3b0g/Lk2qX4sMAToFv6cEbEPIiKSBpECgrsvcPeFNa8ZMLP2QCt3fy88K/gzEM9X/4iIyF6J8x5CFzP70MzeMrPvhnUdgeKkdYrDupTMbIiZzTSzmRtKS2LsqoiI1HgPwcymA+1SLBrh7lOq2Gwl0Mnd14f3DP7XzHoCqWbbVnn/wN3HAeMAemU393U1dVZEROqsxoDg7gP2dqfuvhPYGb6eZWaLgWMIzghyklbNAVbs7f5FRCT9YrlkZGZtzCwzfH0Uwc3jz9x9JbDVzPpZ8OTGFUBVZxkiIlKPIgUEMzvPzIqBE4FXzGxquOhkYI6Z/Rv4C3CtuyeSbwwD/gQsAhYDf43SBxGRhlQf6a+nTZ5Ez549ycjIYObMmbGNJdJzCO4+GZicon4iMLGKbWYCe757IiIR5f/6C+CLSrUf1lAGWFKpHFzJ/mDYd/dYs7bSmf6667HHMmnSJIYOHZqipfTRk8oiIhHFnf76qO496N69e+zjUEAQEYko7vTX9UUBQUQkIqW/FhERIP701/VFAUFEJKK401/XFwUEEZGI4k5//cZLReTk5PDee+9x1llncd5516bqRmSRpp2KiDQmc27vtF+mvz71nIHccPkl5ftorOmvRURkP6GAICIigAKCiIiEFBBERARQQBARkZACgoiIAAoIIiKR1Ef66zF33E6PHj3Iz8/nvPPOY9OmmqfD1oWeQxCR/UarMf0rlDskvc5PsX5ToGdSeY/vCv7xsjr3JZ3pr/t971SeGPMAWVlZ3HLLLYwZ8wQPPXRSnftWFZ0hiIhEFHf66++cNoCsrODze79+/VixYnUs44j6jWkXmtl8Myszsz5J9Zeb2eyknzIzKwiXvWlmC5OWHRF1ECIiDak+01+PHz+ewsL+Na9YB1HPEOYBg4C3kyvd/Wl3L3D3AuBHwBJ3n520yuWJ5e6+JmIfREQaVH2lvx41ahRZWVlcdNFZ6el4JZECgrsvcPeFNax2KfBslHZERBqz+kh/PWHCBF5++WWefvrpPdpLl/q4h3AxewaE/wkvF/3C4hqZiEg9iTv99bvTp3HfffdRVFREixYtYhtHjbOMzGw6KW6+AyPcfUoN234b2Obu85KqL3f35WbWEphIcEnpz1VsPwQYAtA+SxOiRKRxSqS/Hjp0KLm5uQwbNozCwkLWrN9IU4eCPicwduxYIEh//fxbk+jatSstWrTg/l/dXb6fSy+9lDdm/I0NG9eTk5PD3XffzWXf/jb33nwT/vUuCgsLAfjmN49h/PgX0j6OGo+y7j4gwv4vodLZgbsvD//dambPAH2pIiC4+zhgHECv7Oa+LkJHRGT/t+XGv6c1/TWNJP31S7Pncnyr3WcG+1z6azPLAC4EnkuqyzKzw8PXTYCzCW5Mi4hIA4s67fQ8MysGTgReMbOpSYtPBord/bOkumbAVDObA8wGlgOPR+mDiIikR6QL8+4+GZhcxbI3gX6V6r4CekdpU0RE4qEnlUVEBFBAEBGRkAKCiIgACggiIpHUR/rrR+/5Jfn5+RQUFHD66aezcmU8GX/0tJeI7DdOmnxZWvc34z/erfO26Ux/Pfj6nzFu9L0APPzww9x33x8ZP/60OvetKjpDEBGJKO701weF+wL46quvap0Mb28pIIiIRFQf6a9HjBhBbm4uTz/9NCNGDI9lHAoIIiIR1Uf661GjRrFs2TIuv/xyxo2LJ4G0AoKISET1kf464bLLLqOoaHrEHqemgCAiElHc6a+XLl5U/rqoqIhu3brEMg7NMhIRiSju9NcPj7yT2z9bREZGBkceeST3339LLONQQBCR/ca75z2T1vTXaxpJ+uvfPvXMvp3+WkRE9i0KCCIiAiggiIhISAFBRPZZTup5/QeidLwPCggiss9aUgLr168/4IOCu7N+/Xqys7Mj7SfSLCMzux84B9gFLAZ+7O6bwmW3AVcDpcD17j41rO8NPAk0B14FfuoH+m9TROpkzFdlnL51K2vXBqkfduxYTXb27sPapk2b2Lx5MwCrN27nK9tZXgYo2biDNU02kLE2+Gy8Ze0aNjbZAZsXALB1/Q42ZzgLtjYv32b1jl0syG5aXq6pTcPI2rr7QL23bX69ejWrvy6tus1Na9jEDtq1a0dOTg6we8bT3op6hvA60Mvd84FPgNsAzOxY4BKgJ3AG8JiZZYbbjAWGAN3CnzMi9kFEDlCb3ejSpQt5eXnk5eWxYePQ8td5eXlMnTq1/PU1RSsrlPPy8ji06Et+9tHPyst/f/R+8qZeVF7+51MbuaZoZYVtrtjkFco1tXlo0ZeR2mwy/Lrq25x6EVOnTqVLly40adIk0vsZKSC4+zR3LwmL7wM54etzgefcfae7fw4sAvqaWXuglbu/F54V/Bn4YZQ+iIhIeqTzHsJVwF/D1x2BZUnLisO6juHryvUiItLArKbL92Y2HWiXYtEId58SrjMC6AMMcnc3s0eB99z9qXD5EwT3C74AfuPuA8L67wL/7e7nVNH2EILLS3Tq1Kn30qVL6zBEEZEDl5nNcvc+tVm3xpvKiYN3NY0NBs4GTku6OVwM5CatlgOsCOtzUtRX1fY4YBxAnz59dONZRCRGkS4ZmdkZwC3AQHfflrSoCLjEzJqZWReCm8cfuPtKYKuZ9bMgP+wVwJQofRARkfSImtzuEaAZ8HqY//t9d7/W3eeb2QsE859KgOHuXhpuM4zd007/yu77DiIi0oAiBQR371rNslHAqBT1M4FeUdoVEZH005PKIiICKCCIiEhIAUFERAAFBBERCSkgiIgIUIsnlRsLM/s6fFmWVJ2xl+W6bBO1rDbVptpUmw3Z5hZ3b0Mt7EsBoRSd0YiI7BV3t9quqwOsiIgACggiIhKKmrqiPv0TOBrYmlTXci/Lddkmalltqk21qTYbQ5s12mfuIYiISLx0yUhERAAFBBERCSkgiIgI0EgDghSwc4kAAAdvSURBVJn1MLOPzGyRmU03s3fMbJeZ7TSzNWbWOVzvCDNrHb7uXunfVMuOMLPWqZaJiBzoGt1NZTO7BbiH+p8BtRb4vrt/GHVHZtYbyAbygdOArkAX4GuCca0GWgFNCb5AqBnwFWBAZlgurWKZAweFdc2ALeF+CNfJDttpCmwMt0ksb1ZFHzzcdlu4Tlm4n9Kwvmka20t8CCkJ220abhNlrFnAOoIvXcoOt2tSzVibhGPNBHaEbXgtfxeJPmSE+z8ohnZahPvMqGafid9Zs2r2Gff/lcykvn+VVPcJcLO7z0P2KY0xIHxCcAA1YCnBdzPXx5mMExwI1xPtwGQEfzwiIg0tcVw7291fq2nlxhgQPgaOITiwiohIdA5c7O4vVrdSY7yH8DOCYNC4IpWIyL5tZE0rNLonld39NTN7AfgcOAc4toG7JCKyrzNqcdWl0V0ySmZmhwLLCW6kJQcvD38ygBXAEeHr5JSvqd6AXeG+GvJyVKLv1fWhpjOk5OXV7auuyyq3kc72Kv9bk9q2XZ26ble5/Zr2lc520rHPyvuN8/+KNG4rgTfd/bLqVmrUASHBzK4HxhDc4I1TOg7CCWXhetsIcoq8BfzK3T9OuXOzY4GjANz95bCuD3AwsNndZ9ZyDKk7b3Z2+PIzd/8onHZbENbNdvf1EfbdHzgE2OTufw/rTgsXL3X3RXXdd9z7N7MjgL5h8QN3X2NmXYEjAdx9Rt17Xu3vNReYuw/0/QSC97jK993MmgPfIPjQdgLwbYIZX8cB2wk+iG0DOhFMFDmIYFLGFoIJGU2Aw4FPw2WZBLOe2hDM/jsUaEfw4TB52TqCv4+DCGZZEa7TjmByyEHhtl+m6EOiv5vCtstS9CGxbG/7UAy0T+pDy7BtAzZXeh+S26ltH4rDvqfqw5dhW2XATuDp8D3+f+6+jRrsKwFhLtArjbtcRvAHWdl2d29RTT9qPDCZWV9gBsEvR+RAVQrMBx4HngdOAb4LbCAIYocChxEcLLMJDnytCWbxZYXb/4Pg4DaA4Ow/+QPZVqAIuDGs+2n4b2uge7j/TgQHxQyCAJQd7h+CYPQ0cDHBATfxgS8xhXcV8Bfgt8BJBFPIswimj3cJX3cL978eyGH3lYxSYCbB1YuB7J59mJjxsw34FzAKmAtcQpC4cxnww3D9duH+mhMc8I8gmI6cSXDQ/13Y96Op+GG1hOBs4CngzvC9uDBc9mJVH0gTGnVAMLM5BJ8yRKTxinpZS+LzFcHZEMAyd+9U3cqNcZZRsrb10EZpPbQhsj9TMGi8vpH0+pCaVm7sAeFldp/G/Rv4E3A10AF4MawvBaYRXE8rC8srgQ8JTuVWAYuA14CXCE4Vk8V9X0JEpDHYVdMKjfqSUVzMrKEHvZbgyeYjSP/U3xKCa7ftw/2ne99fEqQy6Eb6P1CUEVxHzSC4JpvuT547gY8IrgHX+GlpLznB77WE4Ppvut+bOPteRnBNfhXx/F6l4ZSw+xizxN27VLfygRoQzgCmsDv9RGXpPDCVsnsqLASBIJESIzErIYOKZyol7J42W5r02sJ9JW6wGbtvWEH6HuZL3k+iX6WV6iqXE2P0KpanKifSfcRxAKqPMz8nCJCZBGNJvAeJPEAQ3BhsSjDebZWWJ9bfSnAW24fdNyYTf8SVp/+Sopzcn6rWqWqbOJUR/F+eQ3ADdxJwG3AFwQ3ejErrVu5b4v96VX0uI7gaMBf4CcH7PIPghnKzpPVS/V2UEPzeMiqtl9xWKUEQfh24D+gMvBH2Pfn/V6q+Jw7EyfXJ+y8jyG/1FvAowcyiSQQz0rKp/m86MYMxM0W7CZuB2939sSqWp3RABoTqmNlKKl5WahWWMwlmDn2D4EbN5krLE45Gl6FEAB519+sauhMHkqSZkMk+cPc1tdpeAaGiRnA5SURqtg74GOhPxU/RlR/wq6mcqNufbSA4K3vP3TdUt+IBGRB00BfZp1R1QN/fD+Tp9rm7H1XdCo0ul5HIAUgHuOpVfl/0Pu2dGm8mJxyoASFxEyjVjbd03OAsZc8bs4kvPylm9xed7CD4HSSmz2az+4tjUpWbhNsn0kwcQnD/ognBvYydBKkCyghusDWpRfmrcMyJm7ubkvp9KsGTn1AxB1Pi5jYRyl8Ds9z9JDPrRTCdONF2E4J7NXUpH0SQkuPYsK6Uijf2E+9nk70sH5xU3gi8S3DDEYInXdclvW97W14NzAYuIHj2JgP4DsGTtuk6+CUmMiR/QdEOdk9oSLxHNZVJUafv/2jcan1F5IC8ZCQi6WNmJxE851Of6VpKCWZnJR68Sk54WblceWZecrnyLLd97anrxOy96mZjrXb3drXZmQKCiMTGzBYmFSvPyKtcrs066S7vT21+RRCUswim3e4Ml20leCjtXnf/H6qhgCAisdEEjkalxlxGCggiEokO+vuMXe7erLoV9Ii6iMiBocbvPDlQZxmJSPrsomKqDdg9s0UfOutX4jsXMtgzk/ObNW2sS0YiIgIoeouISEgBQUREAAUEEREJKSCIiAiggCAiIqH/D6lG201HCqijAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data.plot.bar() "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"colab_type": "code",
"id": "tw5ajfGozVF2",
"outputId": "882f5f85-69a6-4523-946b-e310e749c1a4"
},
"outputs": [
{
"data": {
"text/plain": [
"105"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(data[\"location\"].unique())"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 296
},
"colab_type": "code",
"id": "fbVzmCKqZCzO",
"outputId": "91c86216-4181-4ec0-ae3a-c28da3c66001"
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 0, 'b3001')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de5Scd33f8fd3Z3Zm77qubOtiS9QCW1AIZjF2SXN6IIDtACrJIbVb4uCcxnWLm0Capg60CW16epIm5SROXQsXTDDQOC1QEFSpuSRASTBIxldZlr2WAcmWpZVlS3uZ2bnst388z6xmd5+deWZ3Hu3O48/rnD3eeW77+3lW89nf5Xl+5u6IiIjM17XSBRARkdVJASEiIpEUECIiEkkBISIikRQQIiISKbvSBWinjRs3+vbt21e6GCIiHeOBBx445e7DUftSFRDbt2/nwIEDK10MEZGOYWY/XmyfuphERCSSAkJERCIpIEREJJICQkREIikgREQkkgJCREQiKSBERCSSAkJa9p0nx3j46EsrXQwRSZgCQlry7EsFbrz7B7x3z/fQWiIi6aaAkJbc//QLAJSqMzz7UmGFSyMiSVJASEueHpuY/f7w8+MrWBIRSVqiAWFm15jZYTMbNbPbIvZfZmbfM7NpM/vNVs6VlfHjF6boy2UAOH6muMKlEZEkJRYQZpYB7gCuBXYBN5jZrnmHnQZ+DfijJZwrK+DE2SKv2bKGLoOTZxUQImmWZAviSmDU3Y+4ewm4F9hdf4C7n3T3/UC51XNlZZyamOaCoR42DOQ5OT690sURkQQlGRBbgKN1r4+F29p6rpndbGYHzOzA2NjYkgoq8b0wUWJDf45Ng3lOqAUhkmpJBoRFbIs7LzL2ue5+l7uPuPvI8HDkmhfSJsVylfHpCsODeS4Y6lELQiTlkgyIY8C2utdbgefOw7mSkBcmSwB1LQgFhEiaJRkQ+4GdZrbDzHLA9cDe83CuJOSFiSAQNgzkWdef40yhpJvlRFIssSVH3b1iZrcC9wEZ4G53P2hmt4T795jZhcABYAiYMbMPArvc/WzUuUmVVeJ5YSJsQQzkGOrpplx1CuUqfblUrVwrIqFE/2W7+z5g37xte+q+f56g+yjWubKyzhSCyWZre7tZ09sNwNlCRQEhklK6k1piG5+uADDQk2WoNwiFWmiISPooICS28WIQBkM9dS2IogJCJK0UEBLbRLFCtsvIZ7sY6gkC4syUAkIkrRQQEtvEdIWBnixmphaEyMuAAkJimyhWGMgHYw9DYUBoDEIkvRQQEtvZYoXBsGtpqCcIirOFykoWSUQSpICQ2CamywyGLYhspou+XEZdTCIppoCQ2GpjEDV9uSxTpeoKlkhEkqSAkNjqxyAABvIZJqfVxSSSVgoIiW28WGFwQQtCASGSVgoIiW18XhdTfz7D5LS6mETSSgEhsUxXqpQqM7OD1KAWhEjaKSAkllpLoX4Moj+fYVKD1CKppYCQWGrPYRoI74OAsAWhQWqR1FJASCzjxSAI6gep+3NqQYikmQJCYqlNZ+2vW/uhL68xCJE0U0BILIVy0FLozWVmt/XnMpSrznRFrQiRNFJASCzF8gwAvd11AREOWE9pqqtIKikgJJZi2ILo6T73K1PrbppUN5NIKikgJJaoLqa+fPC9nsckkk4KCImlEIbAnC6mWgtCU11FUkkBIbEUZruY6loQObUgRNJMASGxFMtVzCCfrRuDyKsFIZJmCgiJpVCq0tudwcxmt6kFIZJuCgiJpVipzhl/gLoWhGYxiaSSAkJiKZRm5ow/wLkWhLqYRNJJASGxFMvVOfdAwLkZTbWb6EQkXRQQEkuhXJ1zDwRANtNFd8ZmZziJSLooICSW2iD1fD3dmdl7JEQkXRINCDO7xswOm9momd0Wsd/M7PZw/yNmdkXdvg+Z2UEze8zM/tzMepIsqzRWKFcXjEFA0M1UVAtCJJUSCwgzywB3ANcCu4AbzGzXvMOuBXaGXzcDd4bnbgF+DRhx99cAGeD6pMoqzRXLi7cgFBAi6ZRkC+JKYNTdj7h7CbgX2D3vmN3APR64H1hrZheF+7JAr5llgT7guQTLKk1EjUFA0ILQGIRIOiUZEFuAo3Wvj4Xbmh7j7s8CfwT8BDgOnHH3r0X9EDO72cwOmNmBsbGxthVe5lq0BZHLUNAsJpFUSjIgLGKbxznGzNYRtC52AJuBfjN7X9QPcfe73H3E3UeGh4eXVWBZXKG02BhEl7qYRFIqyYA4Bmyre72Vhd1Eix3zs8Az7j7m7mXgi8DfS7Cs0kSxvPBGOdAYhEiaJRkQ+4GdZrbDzHIEg8x75x2zF7gxnM10FUFX0nGCrqWrzKzPgof/vBU4lGBZpYFKdYZSdSayi6lX01xFUivb/JClcfeKmd0K3EcwC+ludz9oZreE+/cA+4DrgFFgCrgp3Pd9M/s88EOgAjwI3JVUWaWxYiVcbjS38O8JDVKLpFdiAQHg7vsIQqB+25667x34wCLn/i7wu0mWT+KJWiyopieX0aM2RFJKd1JLU8WIxYJqerIagxBJKwWENFWMWI+6pjfXRaFcJWgMikiaKCCkqdoYw2KD1NUZp1xVQIikjQJCmqqNQSw2zRWCBYVEJF0UENJUodEYRC0gNNVVJHUUENJUsUkXE6CpriIppICQpgoNB6kVECJppYCQpgql8Ea5yC6m4FdI90KIpI8CQppqNIupNgahx22IpI8CQpqavVFukUdt1B8jIumhgJCmiuUqXQa5TERAaAxCJLUUENJUbS2I4MG6c/Vk1YIQSSsFhDRVWGQ1OVALQiTNFBDSVKEcvZocaJBaJM0UENJUsVyNvAcCzg1ST1c0zVUkbRQQ0lShtHgXU3fG6DK1IETSSAEhTRXL0cuNApiZVpUTSSkFhDRVKFfpWaSLCYKBagWESPooIKSpYrlKT3bxX5Webq0qJ5JGCghpqtBgkBoUECJppYCQphoNUkMwk0mD1CLpo4CQphrdBwFokFokpRQQ0lSj+yAAenIZPe5bJIUUENJQpTpDueoNu5h6sl0agxBJIQWENFSsLL5YUI2muYqkkwJCGqoNPje8D0KD1CKppICQhmYXC9J9ECIvOwoIaWh2udEm90Goi0kkfRQQ0lCt66jZfRDlqlOpaiaTSJooIKSh2RZEw0Hq4NeoqEd+i6RKogFhZteY2WEzGzWz2yL2m5ndHu5/xMyuqNu31sw+b2ZPmNkhM7s6ybJKtFpANBukBi07KpI2iQWEmWWAO4BrgV3ADWa2a95h1wI7w6+bgTvr9v0J8H/d/TLgdcChpMoqi5uO0YLIa1U5kVRKsgVxJTDq7kfcvQTcC+yed8xu4B4P3A+sNbOLzGwI+BngkwDuXnL3lxIsqywiVheTWhAiqRQrIMzsC2b2c2bWSqBsAY7WvT4WbotzzCuAMeBTZvagmX3CzPoXKdvNZnbAzA6MjY21UDyJo1AKxhWaPYsJ0EwmkZSJ+4F/J/CPgafM7PfN7LIY51jENo95TBa4ArjT3V8PTAILxjAA3P0udx9x95Hh4eEYxZJWxBukVheTSBrFCgh3/4a7/xOCD+0fAV83s781s5vMrHuR044B2+pebwWei3nMMeCYu38/3P758GfLeTZ7o1yu8Y1yoFlMImkTu8vIzDYA7wf+KfAgwSDyFcDXFzllP7DTzHaYWQ64Htg775i9wI3hbKargDPuftzdnweOmtmrwuPeCjwet6zSPoVSlS6DXKZRQHTNHisi6ZGNc5CZfRG4DPgM8C53Px7u+gszOxB1jrtXzOxW4D4gA9zt7gfN7JZw/x5gH3AdMApMATfVXeJfAp8Lw+XIvH1ynhTKwWJBZlG9gQENUoukU6yAAD7h7vvqN5hZ3t2n3X1ksZPCc/bN27an7nsHPrDIuQ8Bi15bzo9my41C3RiEAkIkVeJ2Mf3HiG3fa2dBZHUqNllNDupmMamLSSRVGrYgzOxCgmmnvWb2es7NOhoC+hIum6wCxXLj9aihfpBaASGSJs26mN5BMDC9FfhY3fZx4MMJlUlWkUKpeQsin+3CDIpqQYikSsOAcPdPA582s19w9y+cpzLJKlKI0YIwM3qyeuS3SNo062J6n7t/FthuZr8xf7+7fyziNEmRQnmGNb2L3epyjpYdFUmfZl1MtcdbDCRdEFmdiqUqFw7lmx7X252hWNaNciJp0qyL6ePhf//9+SmOrDZxupgA8t1dakGIpEzch/X9ZzMbMrNuM/ummZ0ys/clXThZecUY90FA2ILQILVIqsS9D+Lt7n4WeCfBc5JeCfzrxEolq0Yhxn0QEASEWhAi6RI3IGqjlNcBf+7upxMqj6wycW6UAw1Si6RR3ID4ipk9QfDoi2+a2TBQTK5YshqUqzOUq05fjIDo0SC1SOrEfdz3bcDVwIi7lwnWZ5i/OpykzOxaEDHGIIKAUAtCJE3iPqwP4HKC+yHqz7mnzeWRVaQ26BxvDKJLz2ISSZm4j/v+DPB3gIeA2qeAo4BItTirydVokFokfeK2IEaAXeHjueVlovaB3xeni0mD1CKpE3eQ+jHgwiQLIqvPVK2LKeZ9EKXKDDMz+htCJC3itiA2Ao+b2Q+A6dpGd393IqWSVaE2BhGni6n+kd99uVaGtkRktYr7L/mjSRZCVqdWxyAgeDy4AkIkHWL9S3b3b5vZJcBOd/+GmfURrDMtKdbKNNfZgNA4hEhqxH0W068Cnwc+Hm7aAnwpqULJ6lBopYspDBHdCyGSHnEHqT8AvBk4C+DuTwGbkiqUrA5LaUHobmqR9IgbENPuXqq9CG+W03SVlGupBdEd/Cqpi0kkPeIGxLfN7MNAr5m9DfhfwFeSK5asBrUP+7hPcwV0N7VIisQNiNuAMeBR4J8B+4B/m1ShZHUolKvksl1kuqzpsT0apBZJnbizmGbM7EvAl9x9LOEyySpRLFVj3UUN58YpNEgtkh4NWxAW+KiZnQKeAA6b2ZiZ/c75KZ6spKlSvOVGoX6QWgEhkhbNupg+SDB76Y3uvsHd1wNvAt5sZh9KvHSyouKuRw11XUwagxBJjWYBcSNwg7s/U9vg7keA94X7JMXiriYH9TfKaZqrSFo0C4hudz81f2M4DtEdcbykSKFcjXUPBEA+q2muImnTLCBKS9wHgJldY2aHzWzUzG6L2G9mdnu4/xEzu2Le/oyZPWhmX232s6T9Ci0MUnd1GT3dXRqDEEmRZrOYXmdmZyO2G9DT6EQzywB3AG8DjgH7zWyvuz9ed9i1wM7w603AneF/a34dOAQMNSmnJGCqVGXDQD728Vp2VCRdGrYg3D3j7kMRX4Pu3qyL6Upg1N2PhHdh38vCdax3A/d44H5grZldBGBmW4GfAz6xpJrJshVbGKSGcFU5DVKLpEbcG+WWYgtwtO71sXBb3GP+GPgtoOGop5ndbGYHzOzA2Jhu0WinVmYxgZYdFUmbJAMi6vbb+c9vijzGzN4JnHT3B5r9EHe/y91H3H1keHh4KeWURRRK8QepQV1MImmTZEAcA7bVvd4KPBfzmDcD7zazHxF0Tb3FzD6bXFElSiuzmCC4m1pPcxVJjyQDYj+w08x2mFkOuB7YO++YvcCN4Wymq4Az7n7c3X/b3be6+/bwvL9y9/clWFaZp1ydoVz1lrqYerq71MUkkiKJrQ3p7hUzuxW4j2D1ubvd/aCZ3RLu30Pw0L/rgFFgCrgpqfJIa4otLDda09ud5fRkIakiich5lujiwe6+jyAE6rftqfveCRYjanSNbwHfSqB40sDso75b6GLqz2eYKlWSKpKInGdJdjFJByuWgrGEVloQfbksk9PqYhJJCwWERJoqBy2BVgKiP6cWhEiaKCAk0lR4w1tfvoUWRD7LVKnKzIxWoxVJAwWERJoKu4r6c/GHqfpzWlVOJE0UEBJpMuwqivuwPoD+fHbOuSLS2RQQEmlyOviQr33ox9EfdkdNaaBaJBUUEBJpMhyD6G9lDCLsjpqYVgtCJA0UEBJpqtaCaGkMIjh2Sk90FUkFBYREqrUgWroPImxtaAxCJB0UEBJparpCXy5DV1fUA3ejzbYgNAYhkgoKCIk0WarOjinE1a8WhEiqKCAk0uR0hYEWBqihvgWhgBBJAwWERJoqVVpuQZwbg1AXk0gaKCAk0uR0taUprgC5TBfZLpu9h0JEOpsCQiItpQVhZvTlMprmKpISCgiJNFlqvQUBMJDPqgUhkhIKCIk0Od16CwLOPdFVRDqfAkIiBbOYWg+I/lxG01xFUkIBIQu4O1OlaktPcq3py2V1o5xISiggZIFSdYbKjLf0JNea/nxGD+sTSQkFhCxQawEspQXRn89q2VGRlFBAyAITS1gLoqYvl9WNciIpoYCQBc4WywAM9SxtkFqP2hBJBwWELDBeDD7gB3u6Wz63Lx+0IGZmvN3FEpHzTAEhC5wtBC2IwSW0IAbDbqmpsrqZRDqdAkIWqLUghpbQghjqDQKiFjIi0rkUELLAeHHpLYhaqNTGMUSkcykgZIHljEEM9YYBUdBAtUinU0DIAuPTFfLZLnLZ1n89aq0OdTGJdL5EA8LMrjGzw2Y2ama3Rew3M7s93P+ImV0Rbt9mZn9tZofM7KCZ/XqS5ZS5zhbKS2o9gLqYRNIksYAwswxwB3AtsAu4wcx2zTvsWmBn+HUzcGe4vQL8K3e/HLgK+EDEuZKQ8WJlSfdAQH0XkwJCpNMl2YK4Ehh19yPuXgLuBXbPO2Y3cI8H7gfWmtlF7n7c3X8I4O7jwCFgS4JllTpni2UGe5fWgpjtYipqDEKk0yUZEFuAo3Wvj7HwQ77pMWa2HXg98P22l1AiLacF0Z3poi+XmZ0JJSKdK8mAsIht82+vbXiMmQ0AXwA+6O5nI3+I2c1mdsDMDoyNjS25sHLOeLG8pCmuNYM9Wc1iEkmBJAPiGLCt7vVW4Lm4x5hZN0E4fM7dv7jYD3H3u9x9xN1HhoeH21Lwl7uzxQqD+aV1MUEwUK1BapHOl2RA7Ad2mtkOM8sB1wN75x2zF7gxnM10FXDG3Y+bmQGfBA65+8cSLKNEWG4LYqhXASGSBkv/FGjC3StmditwH5AB7nb3g2Z2S7h/D7APuA4YBaaAm8LT3wz8EvComT0Ubvuwu+9LqrwSKFVmKJZnZmcjLcVQT5ZTE6U2lkpEVkJiAQEQfqDvm7dtT933Dnwg4rzvEj0+IQl7aSr4YF/Xn1vyNYZ6uzlyarJdRRKRFaI7qWWO02FArO9bRkD0dHNG90GIdDwFhMxxerLWglh6F9O6viAgqloTQqSjKSBkjhcng7/81y+ji2l9fw73c91VItKZFBAyRzu6mNYP5INrTSogRDqZAkLmeDH8UF+7jIDYELY+NJNJpLMpIGSO05MlBvPZJT3qu2bDQG72WiLSuRQQMseLU6VlTXGFc+MXpyen21EkEVkhCgiZ4/Tk8gNiXdg99YJaECIdTQEhc7w4VZodQ1iq7kwXa3q71cUk0uEUEDLHi5Pl2RbAcmzoz6kFIdLhFBAyy905NTE9O8i8HBsGcrwwoTEIkU6mgJBZZwplpiszbBrML/ta6/tz6mIS6XAKCJl14mzwF/+Fa3qWfa0Lhnp4/kxx2dcRkZWjgJBZz58NPtAvGFp+QGxe28vZYkVLj4p0MAWEzDoRBsSFbQoIgONqRYh0LAWEzDoRfpgPt2EMYnPYTfXcS4VlX0tEVoYCQmY9d6bA+v4cPd2ZZV+r1oJ47iW1IEQ6lQJCZv3k9BQXr+9ry7U2DebJdJlaECIdTAEhs46eLrQtILKZLi4YzCsgRDqYAkIAqFRnePalAtvW97btmpvX9nJMASHSsRQQAgRjBdUZb1sLAmDHxn6OjE227Xoicn4pIASAp06OA3DppoG2XXPnBQOcmpjW0qMiHUoBIQA88XwQEK+8YLBt16yFzejJibZdU0TOHwWEAPDkiXG2rO1lsKe7bdfcuSkIm1r4iEhnUUAIAI8+e4bLL2pf6wFg67pe1vfnePjoS229roicHwoI4fRkiSNjk7zhkvVtva6Z8bqta3hIASHSkRQQwv4fnQZgZPu6tl/7DZes46mTE4yNa20IkU6jgBC+eegEg/ksr9u6tu3X/gev2gTAtw6fbPu1RSRZCoiXuelKla8/foK3XL6JXLb9vw6v3jzERWt6+Mojx9t+bRFJVnalCyAr68sPPseLU2Xe+4ZtiVzfzPjFkW3c/ldPMXpyoq33WcjqNTld4ckT4xw/U6Qy4/R1Z9iyrpdLNvTRl9PHTqdI9J0ys2uAPwEywCfc/ffn7bdw/3XAFPB+d/9hnHNl+U5NTPOHXzvMa7eu4c2Xbkjs5/zS1Zdw93ef4Xe+/Bj3/MqVZDNquKbNzIzz6LNn+PaTY3z3qVP88CcvUpnxyGO3rutl56YBdl4wyKWbBti5aYBLNw20dYq1tEdiAWFmGeAO4G3AMWC/me1198frDrsW2Bl+vQm4E3hTzHNlicaLZb5/5DT/6S8PMV4s82c3vZEgq5OxcSDPv3vnLn7rC4/w/k/t5zfe/kr+7pY1dCsoOlK5OsPpyRLPvlTg4LNnePDoS3znyVOcmpjGDF6zeQ2/+jOv4IqL17FlbS+5bBcT0xWOvTjFM2OTPHVygqdOTvA3T79AqTIze93Na3q49IJBLh0eYPPaHjYN9bBpMM+mwTwbB/MM5LJ0dSX3eyoLJdmCuBIYdfcjAGZ2L7AbqP+Q3w3c4+4O3G9ma83sImB7jHPb5p1/+v8olmcIigGzf/fU/QFU+3bBMUC4CQ+3ui/cd+51i+cvuM65nefOi3Htun3jxQoQ/IP8s5uu5NWb15C0X3zjNmbc+Q9ffZyf/29/S7bLWNPbTV8+Q3dXXVDYnP8sGlw+73/sgr9V5/9/b+HcBe/ZvCMWvqeRRUzu5zU5P+p3ZPFzWyvbjDsT05U52zf053jzpRt5y2Wb+JlXDrO+Pze/QAD81La5kyCqM87R01M8eWKcp05OMHpygqdOjvM/nnmBYnkm8hr5bBe9uQx93RkyGcMwzILfFzMLfm/mv34ZWNeX43/ecnXbr5tkQGwBjta9PkbQSmh2zJaY5wJgZjcDNwNcfPHFSyropcMDlKvhb3yDD6hz2+a+rj/O5h8M1H5N559njY6Z85sdff7cbY2OmfvPZHgwz67NQ/z0pRvP61/x1195Mde99iL++omTPHlinDOFMpPT1dmuiMYB7Sz459745YJ6R/1/W8q50T973vFNr9/i+U0K0MrPa72sc7es6e1meDDPhUM9XL55iM1repbUAs10Gds39rN9Yz9vf/W57e7OmUKZsfFpTo5Pc3K8yKnxEpOlCoVSlUK5ylSpSnXGcQ/i1J3wv2G8+sKgTbOhhLrnkgyIqN+Y+e/YYsfEOTfY6H4XcBfAyMjIkn4j/vj61y/lNFmCoZ5udv/UlpUuhqxiZsbavhxr+3LsbOOzwaR1SQbEMaB+asxW4LmYx+RinCsiIglKsn9hP7DTzHaYWQ64Htg775i9wI0WuAo44+7HY54rIiIJSqwF4e4VM7sVuI9gqurd7n7QzG4J9+8B9hFMcR0lmOZ6U6NzkyqriIgsZPNnMXSykZERP3DgwEoXQ0SkY5jZA+4+ErVPE9FFRCSSAkJERCIpIEREJJICQkREIqVqkNrMxoAfr3Q5gI3AqZUuRMJUx3R4OdQRXh71XGodL3H34agdqQqI1cLMDiw2KyAtVMd0eDnUEV4e9UyijupiEhGRSAoIERGJpIBIxl0rXYDzQHVMh5dDHeHlUc+211FjECIiEkktCBERiaSAEBGRSAqIZTCzPzSzJ8zsETP732a2Nty+3cwKZvZQ+LWn7pw3mNmjZjZqZrdbkotBt8FidQz3/XZYj8Nm9o667Z1Wx/ea2UEzmzGzkbrtqXkfYfF6hvtS8V7WM7OPmtmzde/fdXX7IuvbiczsmrAeo2Z2W1sv7u76WuIX8HYgG37/B8AfhN9vBx5b5JwfAFcTrJr3l8C1K12PJdZxF/AwkAd2AE8DmQ6t4+XAq4BvASN121PzPjapZ2rey3n1/SjwmxHbF61vp30RLIfwNPAKgoXWHgZ2tev6akEsg7t/zd0r4cv7CVa+W5SZXQQMufv3PHh37wH+YcLFXJYGddwN3Ovu0+7+DMGaHld2aB0PufvhuMd3Yh2hYT1T817GFFnfFS7TUl0JjLr7EXcvAfcS1K8tFBDt8ysEf2HV7DCzB83s22b298NtWwiWWa05Fm7rFPV13AIcrdtXq0un13G+NL6P86X5vbw17B6928zWhdsWq28nSrQuSa5JnQpm9g3gwohdH3H3L4fHfASoAJ8L9x0HLnb3F8zsDcCXzOzVBM30+VZ8nvES67hYXTq2jhE66n2EJdezo97Leo3qC9wJ/B5BmX8P+C8Ef+Ss+nq1ING6KCCacPefbbTfzH4ZeCfw1rAZjrtPA9Ph9w+Y2dPAKwnSvb4baivwXBLlbsVS6khQl211h9Xq0pF1XOScjnofYWn1pMPey3px62tm/x34avhysfp2okTroi6mZTCza4B/A7zb3afqtg+bWSb8/hXATuCIux8Hxs3sqnA2yI3AYn/VrQqL1RHYC1xvZnkz20FQxx90Yh0Xk6b3sYlUvpfhGErNe4DHwu8j63u+y9cm+4GdZrbDzHLA9QT1a4+VHoXv5C+Cwa2jwEPh155w+y8ABwlmFPwQeFfdOSMEv6hPA/+V8G721fq1WB3DfR8J63GYutktHVjH9xD8JTYNnADuS9v72KieaXov59X3M8CjwCMEH5oXNatvJ34B1wFPhvX5SDuvrUdtiIhIJHUxiYhIJAWEiIhEUkCIiEgkBYSIiERSQIiISCQFhEhM4dNdH4vY/kkzezh8pMPnzWwg3G7hE1BHw31X1J0T+QTORk9cFTnfFBAiy/chd3+du78W+Alwa7j9WoKbsHYCNxM8+oHw5rs7wv27gBvMbFd4zmPAzwPfOX/FF4mmgBBpTdbMPl3XWuhz97MQtBiAXs49C2c3cI8H7gfWhnf3LvoETm/xybIiSVJAiLTmVcBdYWvhLPAvAMzsU8DzwGXAn4bHNnpKalqeJioppoAQac1Rd/+b8PvPAj8N4O43AZuBQ8A/CgbKXMIAAADMSURBVPd37FNSRUABIdKq+R/ks6/dvQr8BcEznKDxU1LT8jRRSTEFhEhrLjazq8PvbwC+a2aXwuwYxLuAJ8L9e4Ebw9lMVwFnPHhCarJP4BRpE60HIdKaQ8Avm9nHgacIZiZ93cyGCLqOHgb+eXjsPoInbY4CU8BNAO5eMbNbgfsI1hS+290PApjZewjGMIaB/2NmD7n7O85X5UTq6WmuIiISSV1MIiISSQEhIiKRFBAiIhJJASEiIpEUECIiEkkBISIikRQQIiIS6f8DGJncgn1t5TQAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data['b3001'].plot.kde()\n",
"plt.xlabel('b3001')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 68
},
"colab_type": "code",
"id": "khKYBVD7zamK",
"outputId": "c3916893-2c7e-472c-bf56-e8acf725e45f"
},
"outputs": [
{
"data": {
"text/plain": [
"array([-200, -86, -63, -64, -62, -80, -72, -75, -77, -76, -78,\n",
" -79, -74, -71, -70, -65, -69, -66, -61, -67, -198, -68,\n",
" -73, -60, -59, -82, -81, -83, -85, -84, -87], dtype=int64)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"b3002\"].unique()\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 296
},
"colab_type": "code",
"id": "aJg2BHd2vXU0",
"outputId": "44cad875-086e-43f8-e4c2-bdafcd95a95c"
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 0, 'b3002')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png":...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here