Implement a representation for a collection of (two dimensional) rectangles using a quadtree based on regular decomposition. Assume that the space being represented is a square whose width and height are some power of two. Rectangles are assumed to have integer coordinates and integer width and height. Pick some value c, and use as a decomposition rule that a region is subdivided into four equal-sized regions whenever it contains more that c rectangles. A special case occurs if all of these rectangles intersect at some point within the current region (because decomposing such a node would never reach termination). In this situation, the node simply stores pointers to more than c rectangles. Try your representation on data sets of rectangles with varying values of c.
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here