Imagine a round-robin chess tournament for 150 players, each of whom plays 7 games. (In other words, each player is guaranteed to participate in precisely 7 games with 7 different opponents. Remember that each game has two players.)
Suppose that would-be draws in this tournament are resolved by a coin flip, so that every game has a winner and a loser. Prove that there must be two participants in such a tournament who have precisely the same sequence of wins and losses (for example, WWWLLLW).
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here