i have question do guys know how to do assignments on maple?

1 answer below ยป
i have question do guys know how to do assignments on maple?
Answered Same DayNov 22, 2021

Answer To: i have question do guys know how to do assignments on maple?

Himanshu answered on Nov 26 2021
158 Votes
Lab/Homework #2 MAT200 Name: Date: JSFH


Homework Problems:
Part I #1. Consider the function LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JlEiRkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkobWZlbmNlZEdGJDYlLUYjNiUtRiw2JlEieEYnRi9GMkY1RjIvRjZRJ25vcm1hbEYnRjJGQC1JI21vR0YkNi5RIj1GJ0YyRkAvJSZmZW5jZUdGNC8lKnNlcGFyYXRvckdGNC8lKXN0cmV0Y2h5R0Y0LyUqc3ltbWV0cmljR0Y0LyUobGFyZ2VvcEdGNC8lLm1vdmFibGVsaW1pdHNHRjQvJSdhY2NlbnRHRjQvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZWLUkjbW5HRiQ2JVEiMkYnRjJGQC1GQzYuUSJ+RidGMkZARkZGSEZKRkxGTkZQRlIvRlVRJjAuMGVtRicvRlhGW28tSSVtc3VwR0YkNiVGPS1GWjYlUSI0RidGMkZALyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GQzYuUSgmbWludXM7RidGMkZARkZGSEZKRkxGTkZQRlIvRlVRLDAuMjIyMjIyMmVtRicvRlhGam9GZ24tRl5vNiVGPS1GWjYlUSIzRidGMkZARmNvRmZvLUZaNiVRIzExRidGMkZARmduLUZebzYlRj1GWUZjby1GQzYuUSIrRidGMkZARkZGSEZKRkxGTkZQRlJGaW9GW3BGYG9GZ25GPUZmcC1GWjYlUSMxMkYnRjJGQEYyRkA= . Define it appropriately. (a) Find all zeroes of F using 'solve' command.

LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY3LUkjbWlHRiQ2JVEiZkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYsNiVRInhGJ0YvRjItRjY2LVEoJnNyYXJyO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZWLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVEifkYnRjlGO0Y+RkBGQkZERkZGSEZVRlctSSVtc3VwR0YkNiVGTy1GIzYlLUZZNiRRIjRGJ0Y5Ri9GMi8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZoby1Gam42JUZPLUYjNiUtRlk2JFEiM0YnRjlGL0YyRmFvRmRvLUZZNiRRIzExRidGOUZmbi1Gam42JUZPLUYjNiVGWEYvRjJGYW8tRjY2LVEiK0YnRjlGO0Y+RkBGQkZERkZGSEZnb0Zpb0Zeb0ZmbkZPRmhwLUZZNiRRIzEyRidGOS8lK2V4ZWN1dGFibGVHRj1GOQ==
LV9JLFR5cGVzZXR0aW5nRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSJmR0YoZio2I0kieEdGKEYoNiRJKW9wZXJhdG9yR0YoSSZhcnJvd0dGKEYoLCwqJiIiIyIiIilGMCIiJUY3RjcqJClGMCIiJEY3ISIiKiYiIzZGNylGMEY2RjdGPSomRjlGN0YwRjdGNyIjN0Y3RihGKEYoNyNGLg==


The above is the function definition





Answer:





LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEmc29sdmVGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2KC1GLDYlUSJmRidGL0YyLUY2NiQtRiM2JS1GLDYlUSJ4RidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRkctSSNtb0dGJDYtUSI9RidGRy8lJmZlbmNlR0ZGLyUqc2VwYXJhdG9yR0ZGLyUpc3RyZXRjaHlHRkYvJSpzeW1tZXRyaWNHRkYvJShsYXJnZW9wR0ZGLyUubW92YWJsZWxpbWl0c0dGRi8lJ2FjY2VudE
dGRi8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmduLUkjbW5HRiQ2JFEiMEYnRkdGREZHRkdGREZH
NiYiIiMjIiIkRiMhIiMhIiI=


The above are the zeros of the function f(x) usisng solve command.








(b) Find y-intercept of F.





y-intercept of f(x)





LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEiZkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYlLUkjbW5HRiQ2JFEiMEYnL0YzUSdub3JtYWxGJy8lK2V4ZWN1dGFibGVHUSZmYWxzZUYnRj5GPi1JI21vR0YkNi1RIn5GJ0Y+LyUmZmVuY2VHRkIvJSpzZXBhcmF0b3JHRkIvJSlzdHJldGNoeUdGQi8lKnN5bW1ldHJpY0dGQi8lKGxhcmdlb3BHRkIvJS5tb3ZhYmxlbGltaXRzR0ZCLyUnYWNjZW50R0ZCLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGV0ZARj4=
IiM3


LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYyLUkjbWlHRiQ2JVEkVGhlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUYsNiVRInlGJ0YvRjJGNS1GLDYlUSppbnRlcmNlcHRGJ0YvRjJGNS1GLDYlUSNvZkYnRi9GMkY1LUYsNiVRImZGJ0YvRjItSShtZmVuY2VkR0YkNiQtRiM2JS1GLDYlUSJ4RidGL0YyLyUrZXhlY3V0YWJsZUdGPUY5RjlGNS1GLDYlUSNpc0YnRi9GMi1GNjYtUScmc2RvdDtGJ0Y5RjtGPkZARkJGREZGRkhGSkZNLUZmbjYkLUYjNictSSNtbkdGJDYkUSIwRidGOS1GNjYtUSIsRidGOUY7L0Y/RjFGQEZCRkRGRkZIRkovRk5RLDAuMzMzMzMzM2VtRictRmpvNiRRIzEyRidGOUZdb0Y5RjlGXW9GOQ==
KjBJJFRoZUc2IiIiIkkieUdGJEYlSSppbnRlcmNlcHRHRiRGJUkjb2ZHRiRGJSwsKiYiIiNGJSlJInhHRiQiIiVGJUYlKiQpRi0iIiRGJSEiIiomIiM2RiUpRi1GK0YlRjIqJkYuRiVGLUYlRiUiIzdGJUYlSSNpc0c2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJEYlNiQiIiFGN0Yl






(c) Does the graph of F pass through the point (3, 60)? Explain



LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEiZkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYlLUkjbW5HRiQ2JFEiM0YnL0YzUSdub3JtYWxGJy8lK2V4ZWN1dGFibGVHUSZmYWxzZUYnRj5GPkZARj4=
IiNn


LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=


Yes, the graph of f passes through point (3,60) since f(3)=60



#2. Determine if the function LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEiZ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYlLUYsNiVRInhGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC1JI21vR0YkNi1RIj1GJ0ZALyUmZmVuY2VHRj8vJSpzZXBhcmF0b3JHRj8vJSlzdHJldGNoeUdGPy8lKnN5bW1ldHJpY0dGPy8lKGxhcmdlb3BHRj8vJS5tb3ZhYmxlbGltaXRzR0Y/LyUnYWNjZW50R0Y/LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGVi1JI21uR0YkNiRRIjNGJ0ZALUZDNi1RIn5GJ0ZARkZGSEZKRkxGTkZQRlIvRlVRJjAuMGVtRicvRlhGW28tSSVtc3VwR0YkNiVGOi1GIzYlRllGPUZALyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GQzYtUSIrRidGQEZGRkhGSkZMRk5GUEZSL0ZVUSwwLjIyMjIyMjJlbUYnL0ZYRmlvLUZaNiRRIjVGJ0ZARj1GQA==x is even, odd, or neither. (a) Using algebraic approach. Make sure you explain your conclusions.



LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYvLUkjbWlHRiQ2JVEiZ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYsNiVRInhGJ0YvRjItRjY2LVEoJnNyYXJyO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZWLUkjbW5HRiQ2JFEiM0YnRjktRjY2LVEifkYnRjlGO0Y+RkBGQkZERkZGSEZVRlctSSVtc3VwR0YkNiVGTy1GIzYlRlhGL0YyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmVvLUZZNiRRIjVGJ0Y5RmZuRk8vJStleGVjdXRhYmxlR0Y9Rjk=
LV9JLFR5cGVzZXR0aW5nRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSJnR0YoZio2I0kieEdGKEYoNiRJKW9wZXJhdG9yR0YoSSZhcnJvd0dGKEYoLCYqJiIiJCIiIilGMEY2RjdGNyomIiImRjdGMEY3RjdGKEYoRig3I0Yu








LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=


Algebric approach


1) g(x) is even if g(x)=g(-x)


2)g(x) is odd if g(x)=-g(-x)







LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEiZ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYlLUYsNiVRInhGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC1JI21vR0YkNi1RKCZtaW51cztGJ0ZALyUmZmVuY2VHRj8vJSpzZXBhcmF0b3JHRj8vJSlzdHJldGNoeUdGPy8lKnN5bW1ldHJpY0dGPy8lKGxhcmdlb3BHRj8vJS5tb3ZhYmxlbGltaXRzR0Y/LyUnYWNjZW50R0Y/LyUnbHNwYWNlR1EsMC4yMjIyMjIyZW1GJy8lJ3JzcGFjZUdGVkYrLUY2NiQtRiM2Ji1GQzYtUSomdW1pbnVzMDtGJ0ZARkZGSEZKRkxGTkZQRlJGVEZXRjpGPUZARkBGPUZA
LCYqJiIiJyIiIilJInhHNiIiIiRGJUYlKiYiIzVGJUYnRiVGJQ==


LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=


g(x) is not even beacuse g(x) is not equal to g(-x)




LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2JVEiZ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYlLUYsNiVRInhGJ0YvRjIvJStleGVjdXRhYmxlR1EmZmFsc2VGJy9GM1Enbm9ybWFsRidGQC1JI21vR0YkNi1RIitGJ0ZALyUmZmVuY2VHRj8vJSpzZXBhcmF0b3JHRj8vJSlzdHJldGNoeUdGPy8lKnN5bW1ldHJpY0dGPy8lKGxhcmdlb3BHRj8vJS5tb3ZhYmxlbGltaXRzR0Y/LyUnYWNjZW50R0Y/LyUnbHNwYWNlR1EsMC4yMjIyMjIyZW1GJy8lJ3JzcGFjZUdGVkYrLUY2NiQtRiM2Ji1GQzYtUSomdW1pbnVzMDtGJ0ZARkZGSEZKRkxGTkZQRlJGVEZXRjpGPUZARkBGPUZA
IiIh


LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=


g(x) is odd because g(x)+g(-x)=0



(b) Using graph of g. Explain your conclusions



LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVElcGxvdEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYrLUkjbW5HRiQ2JFEiM0YnL0YzUSdub3JtYWxGJy1JI21vR0YkNi1RIn5GJ0Y+LyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZGLyUpc3RyZXRjaHlHRkYvJSpzeW1tZXRyaWNHRkYvJShsYXJnZW9wR0ZGLyUubW92YWJsZWxpbWl0c0dGRi8lJ2FjY2VudEdGRi8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRlUtSSVtc3VwR0YkNiUtRiw2JVEieEYnRi9GMi1GIzYkRjpGPi8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRkE2LVEiK0YnRj5GREZHRklGS0ZNRk9GUS9GVFEsMC4yMjIyMjIyZW1GJy9GV0Zhby1GOzYkUSI1RidGPkZARmVuLyUrZXhlY3V0YWJsZUdGRkY+Rj5GZm9GPg==
NiotJSdDVVJWRVNHNiQ3ZHc3JCQhJCsiISIiJCEmKzAkISIiNyQkITEoWyhcKip5JVsqKSohIzokITInKXlQeSkqR2UmSCEjODckJCExeGE0PmNOLikqISM6JCExSyF5VUIlXHZHISM3NyQkITFBWCE0KUhZKygqISM6JCExXHVaIVI4cHkjISM3NyQkITEpZTxOSSkpb2YqISM6JCEwQXlDSjcnKnAjISM2NyQkITFqQ1wpKmUhUVwqISM6JCEyRlQqPl1oYzlFISM4NyQkITAleWM4YEIpUiohIzkkITFVdXchNFN0YCMhIzc3JCQhMTlGYTN2RipIKiEjOiQhMmE/ZG0uMCFmQyEjODckJCExRV4tMF8kcD4qISM6JCExdGtYOltyekIhIzc3JCQhMWtHZDk2I1w0KiEjOiQhMWxtRnZXUy1CISM3NyQkITEnMzxNMygpKiopKikhIzokITIpeVs6UCdlWUEjISM4NyQkITEiSGU7OGh2KikpISM6JCExaVA/UG1sZEAhIzc3JCQhMURdKyw5XiR6KSEjOiQhMHcsbmZrUTMjISM2NyQkITEvMztLVy4qbykhIzokITFOdSIpR1BcNj8hIzc3JCQhMVF5Yzg6TillKSEjOiQhMWgmNGxibUwlPiEjNzckJCExWiUqKXl4QHBcKSEjOiQhMm9lWSg+KGVHKT0hIzg3JCQhMXRXKil5SD8pUSkhIzokITIzNTs0Jj5kNz0hIzg3JCQhMShReGEqUTUnSCkhIzokITI+SGAlSHFVYTwhIzg3JCQhMDxNb3dxKik9KSEjOSQhMlJsI1J3TFEpbyIhIzg3JCQhMXVbKFx6UlQ0KSEjOiQhMngleVY0ZUxKOyEjODckJCExQlolKik9JjQhKnohIzokITIlWz9XbEJEcTohIzg3JCQhMSopemY+LC0iKnkhIzokITIpUUJ5QVJgODohIzg3JCQhMWY+Unljayh5KCEjOiQhMiQpZXBcP1NlWCIhIzg3JCQhMSR5YzhuOkZwKCEjOiQhMi4penVqI3pUUyIhIzg3JCQhMWEzPE0zSyFmKCEjOiQhMmNSRD9SYSlcOCEjODckJCExKFJ6ZVBoUlsoISM6JCEyXyQqcFhnVVxIIiEjODckJCExcFF4YV5QIlIoISM6JCExJW9sJGZKUVs3ISM3NyQkITEoWyhcKlx6OEgoISM6JCEyL2omcCpIeSQqPiIhIzg3JCQhMXZdLC5VMik9KCEjOiQhMUc7QyNbSCw6IiEjNzckJCExO0ppQywsKDMoISM6JCEyZUV0KFxhRy42ISM4NyQkITEvMztLYUEqKXAhIzokITEiKVF1Xz0/ZjUhIzc3JCQhMXZdLC5BbCEpbyEjOiQhMktKKyJbSm02NSEjODckJCEyMD5Rd0slNCR5JyEjOyQhMXZuK09bJD5xKiEjODckJCExND1Pcy8kKnltISM6JCExYy09SjQpPkYqISM4NyQkITFVJSlvUERhJWUnISM6JCExNl03MiZcTyopKSEjODckJCExXClwUmZeOFsnISM6JCExO1tmaS02I1wpISM4NyQkITFYKil5ZHBEJVEnISM6JCExN1QieUxTYzcpISM4NyQkITIwO0trM2xGRychIzskITE4ViQqKW9eVHYoISM4NyQkITF6ZDpKI1FOPSchIzokITFZQWNhb0AtdSEjODckJCExUXhhNHBsemchIzokITFqcj07R15YcSEjODckJCExYzdEXW9nemYhIzokITEtUVJlMzg4biEjODckJCExXi4yOTdIeGUhIzokITFEOHklb2pWUSchIzg3JCQhMXZdLC5HI2V4JiEjOiQhMUZKI0cncERwZyEjODckJCExJHljOChRZSNvJiEjOiQhMVQrRlAiWyIqeSYhIzg3JCQhMVQkb09gQGRkJiEjOiQhMURYcyQ9UiF6YSEjODckJCExQlkjXGVVLFsmISM6JCExUUBvby1SNl8hIzg3JCQhMWhBWCFcTiN5YCEjOiQhMVl4ZixIJWYkXCEjODckJCExXCoqKXpSKHAhRyYhIzokITJjKjNrck1zIm8lISM5NyQkITFOcVMiKVFSc14hIzokITFpJW9XWkwrVCUhIzg3JCQhMVwpcFIqNGh5XSEjOiQhMkQkPWs+MmckPSUhIzk3JCQhMVolKil5ZG1AKFwhIzokITIuYiQqcDRKaiRSISM5NyQkITExN0NbUzp2WyEjOiQhMS0rI1EnKTQpPlAhIzg3JCQhMXRZJHBlUCFwWiEjOiQhMSlHOF1aQENcJCEjODckJCExeWM4RnFaeFkhIzokITJ1VCt2OytTSSQhIzk3JCQhMiZIZj1QLT90WCEjOyQhMURMPzckKip6NCQhIzg3JCQhMV4sLjFTWnNXISM6JCExXk86NlFeMkghIzg3JCQhMjpVJSlvZDg9UCUhIzskITF4c0cmZjdgcyMhIzg3JCQhMSNbJ0hmTV9yVSEjOiQhMjpCJUgjXDY8YiMhIzk3JCQhMUpqRWBnPHZUISM6JCEyJls7QSF5P0FSIyEjOTckJCExJSopeWQmPi1yUyEjOiQhMnZxZFJNXHdBIyEjOTckJCExPVB1W2J2clIhIzokITI6Rj04Ry0jeT8hIzk3JCQhMjFDWydIQkduUSEjOyQhMk5hI1J0Ol9HPiEjOTckJCEyUHJVJjMqM0Z4JCEjOyQhMlBCSWcwI2UqeiIhIzk3JCQhMmtNcFFkKD1vTyEjOyQhMT5idUckUlRtIiEjODckJCEyJj1QdVtWMm9OISM7JCEyKG9McSgqWzxUOiEjOTckJCEyLzA1PyFbP29NISM7JCEyLVJNV15CXFUiISM5NyQkITFMb090MSpRTyQhIzokITI3TzVoJ1I5NTghIzk3JCQhMT5Rd19OInlFJCEjOiQhMjZGI3BBOUU1NyEjOTckJCEyJHpmPlJ1VHBKISM7JCEyWFYvLVwlZjg2ISM5NyQkITJXJjQ+UWt4Z0khIzskITIiUiNbNXpySywiISM5NyQkITFrRmI1NFRpSCEjOiQhMUtAWU1HYCFHKiEjOTckJCExVCRvT3Q4PSdHISM6JCExJltgLz5rQlkpISM5NyQkITEqKil6ZioqMyZmRiEjOiQhMXgjMz1saFBvKCEjOTckJCExYTM8TTVabEUhIzokITE0dFApeXZSLCghIzk3JCQhMjFJZz9oSF9jIyEjOyQhMTYmM3g7KW9ZaiEjOTckJCEyViYzPE03dmxDISM7JCExd1N6ZE1OSWQhIzk3JCQhMmFHZDlIUyRmQiEjOyQhMSNRNScpKTRrPl4hIzk3JCQhMTE2QVdzVmxBISM6JCEybCg+Wldkcz9ZISM6NyQkITJ2XzA2aSM0ZEAhIzskITEkUV5fTGonKjMlISM5NyQkITElemU8Jio+JGY/ISM6JCExWDp2bCQzJ1xPISM5NyQkITIwOklnK3pEJz4hIzskITIvMDknKnp5IVxLISM6NyQkITJzRmI1VF4mZT0hIzskITEnNHNHakRfJkchIzk3JCQhMXZdLC5JNWE8ISM6JCEydHVQKVElKj4nXCMhIzo3JCQhMnVVJjM8LzJmOyEjOyQhMjA3I1wnKik+Jio+IyEjOjckJCEyTCEzO0srOmU6ISM7JCEyUSNRa1hGJlIiPiEjOjckJCEyKCkqKioqKipmaCdmOSEjOyQhMk1day5iQUdtIiEjOjckJCExN0RdKyIqKkdOIiEjOiQhMiM+RSgqPXZLPjkhIzo3JCQhMjxRd18mKT4wRSIhIzskITJlUWNUI2U2SjchIzo3JCQhMjFNb08kKj1XOiIhIzskITJtSlEqUT12UTUhIzo3JCQhMmNCWiUqW3lZMCIhIzskITFhJnkrInAqR3opISM6NyQkITF4c1giSDkhZiYqISM7JCEyTmpgLSpbJykqUighIzs3JCQhMUp4YTR6WHEmKSEjOyQhMiZSYC5JKyFRPCchIzs3JCQhMXJWKFsoSD5pdiEjOyQhMVo7TyFcbyV5XSEjOjckJCExKillPE4hXE1cJyEjOyQhMnYnZSFILTYib1MhIzs3JCQhMUh1WyhcOk5eJiEjOyQhMUAwVyNSciZmSyEjOjckJCExbDtMbV8+WVghIzskITE3UUlWJXlcYiMhIzo3JCQhMSZbJ0hmZTk3TiEjOyQhMiM0MyZIbVRnKT0hIzs3JCQhMkI9UHVbWi5bIyEjPCQhMlhTJTRkPiZmRyIhIzs3JCQhMSRSemU8WlViIiEjOyQhMC5yTypIKFEpeSEjOjckJCExSEprR2Q5c1ghIzwkITEiMzAjPi0lKilHIyEjOzckJCIxUiNmPVA5dGclISM8JCIyRTkhZTw3ZjFCISM8NyQkIjJDLzU/U3NWYCIhIzwkIjFpMDdQSkIheSghIzs3JCQiMmFMbk1wZSFmRCEjPCQiMiQ0dmklXDApSDghIzs3JCQiMUx1WyhcIilSWiQhIzskIjFjKj0uW29GJz0hIzo3JCQiLihSenkhSF0lISM4JCIyS3ZdS0NmYF8jISM7NyQkIjFVakVgWWxRYiEjOyQiMW5nRiI+XSF6SyEjOjckJCIxJGY8TnF5JXBsISM7JCIxXEBWSnFKTlQhIzo3JCQiMUFRd19YPUR2ISM7JCIxJypSIW8iKTQ1LyYhIzo3JCQiMSMzOklnaVpeKSEjOyQiMSQ+YmRPcyQ0aCEjOjckJCIxWTQ+UWM9USYqISM7JCIxYSl6PiUqZUJQKCEjOjckJCIyd05yVWxLZTAiISM7JCIxJEchR21bQjUpKSEjOjckJCIyaDhGYW9tMjsiISM7JCIxeSVRS0MiZVw1ISM5NyQkIjIjSGY9UEU+YDchIzskIjEvcldUXC48NyEjOTckJCIybj5SeU9Vc04iISM7JCIwSHoyI29uRzkhIzg3JCQiMndUJG9PJD48WSIhIzskIjJVSHQlKXoteW0iISM6NyQkIjJQUXdfRC1DYyIhIzskIjIxYVInXGJSRD4hIzo3JCQiMlh4YTQqPiRRbCIhIzskIjElKVs7YVknUj0jISM5NyQkIjIjXChcKip5XUR3IiEjOyQiMilRKlwwcUhSXyMhIzo3JCQiMkwkb090KVxZJj0hIzskIjJQPyV5UTc8VEchIzo3JCQiMjgwNT8rJHloPiEjOyQiMSl6K0pgQWZDJCEjOTckJCIybE1wUShSaGM/ISM7JCIxKG96Xyk0JXpqJCEjOTckJCIxKFwqKil6JmUxOyMhIzokIjJZJkdhT1ZTMVQhIzo3JCQiMjNCWSNcT3RmQSEjOyQiMSIqZjYoUiZmImYlISM5NyQkIjI3RV8vNDNKTyMhIzskIjEneXk1NkovOSYhIzk3JCQiMihRdVsoNFEhZUMhIzskIjFfKXpSKUhVJW8mISM5NyQkIjImb0xuTUhWZ0QhIzskIjInKj44PUROZkonISM6NyQkIjJWI1snSFIjem1FISM7JCIxXnJocigqM0JxISM5NyQkIjJPTnFTaHkkZkYhIzskIjFbWGRWSCFHbyghIzk3JCQiMU1uTXBVUGZHISM6JCIwYzknUSZ5SlcpISM4NyQkIjFYIkhlY3pFJ0ghIzokIjFaRig+Rip5I0cqISM5NyQkIjJzNUBVa1ZQMSQhIzskIjIlM01KI1FDZiwiISM5NyQkIjJ4VCRvTyRHOjskISM7JCIyWkFQTlsmMzE2ISM5NyQkIjJ2OUhlYywsRiQhIzskIjIlei1LOWpkNzchIzk3JCQiMihIZz9UJWZ3TyQhIzskIjInUUwjKikpWzw5OCEjOTckJCIyRFQjWydIQj1aJCEjOyQiMSNldVx3RCFIOSEjODckJCIweWI2QjZpYyQhIzkkIjJEdDQqKTNbKlE6ISM5NyQkIjFyVihbPC0lcE8hIzokIjJcc3BEVnJjbSIhIzk3JCQiMXlfMDZvXG1QISM6JCIyKCl5ImZdb0sieiIhIzk3JCQiMjoxN0NvKSl6J1EhIzskIjIvTHVjJHldSD4hIzk3JCQiMkVXKW9QYkBuUiEjOyQiMk8iPWVIcWByPyEjOTckJCIxJVsnSGZvNHJTISM6JCIyeVs1bCJbd0ZBISM5NyQkIjJiJ0hmPXA5clQhIzskIjJCeihSZVRxJlEjISM5NyQkIjFvUXhhRFl0VSEjOiQiMksjMyJROSUqXGIjISM5NyQkIjFaIkhlJzQkXFAlISM6JCIxbT9GZlkkM3QjISM4NyQkIjFQdVsoKilwIm9XISM6JCIydF1GTlxkJioqRyEjOTckJCIxemU8TkEudlghIzokIjIleTFsOzFhLEohIzk3JCQiMjBnPlI9NjFuJSEjOyQiMnZwNydRczohSCQhIzk3JCQiMCc+UnkjPUR4JSEjOSQiMSwqeiJmYXMqXCQhIzg3JCQiMk5GYTNQYysoWyEjOyQiMUd4cU1BbTNQISM4NyQkIjEnPVB1KSlmJHlcISM6JCIxYiUqZnAiUS8mUiEjODckJCIxc1YoW3hVQDImISM6JCIyJ1I3UTI8R29UISM5NyQkIjF1WiY0PihleV4hIzokIjEkeVZbVnRfVSUhIzg3JCQiMTpJZz8oKmZ2XyEjOiQiMjgoPTQoPihvb1khIzk3JCQiMVsmND49OzxRJiEjOiQiMlhdaEIvJT1YXCEjOTckJCIxVyYzPHV3S1omISM6JCIxekVaKm83RD4mISM4NyQkIjJESGU7YGB2ZCYhIzskIjFRZ1JpJGVVWyYhIzg3JCQiMXJTIkd3eiN5YyEjOiQiMU9CX19OVndkISM4NyQkIi8pZj4+Uyp5ZCEjOCQiMSpmaidwdnh5ZyEjODckJCIxUXhhNC5CemUhIzokIjFERUZZNFwhUichIzg3JCQiMjoqeWQ6eGR2ZiEjOyQiMWApZiJIQigqKnAnISM4NyQkIjImSGAxOD10emchIzskIjFtV15RZHdYcSEjODckJCIxLjA1PyMpKip5aCEjOiQiMW4mel0qelAnUSghIzg3JCQiMSIpZj5SOVokRychIzokIjEzMjFsbXBjeCEjODckJCIxMjpJZ1sveWohIzokIjF1LndZVGMtIikhIzg3JCQiMXdbKFw+bURbJyEjOiQiMSNIWzEiUncnXCkhIzg3JCQiMS8wNT8lekVlJyEjOiQiMU4lZV5UKUcnKSkpISM4NyQkIjFzVCRvJypbRG8nISM6JCIxJClRYzFxcCdHKiEjODckJCIxJ1F4YTRqb3knISM6JCIxQk96aSJReHIqISM4NyQkIjEuLzM7LSVIKW8hIzokIjFwTHM3KVxFLCIhIzc3JCQiMVcjWydIakwiKXAhIzokIjJkJkdaR3pwYjUhIzg3JCQiMW1LbEl0KCoqMyghIzokIjFoNnk8QGsvNiEjNzckJCIwWSJIZUdNKT0oISM5JCIyRyR5NWZkRF02ISM4NyQkIjApZTxOKyUqKUcoISM5JCIyWksoKkhFKj4pPiIhIzg3JCQiMUFWJ0d4VzdSKCEjOiQiMV5mJzNTPSRbNyEjNzckJCIxcExuTUZHJlsoISM6JCIyYnQnKikzYWgmSCIhIzg3JCQiMUFSeWNUXyZlKCEjOiQiMjl2b0QjW01aOCEjODckJCIyJnBMbk1EKyZvKCEjOyQiMlhUNkJ6TytTIiEjODckJCIxT3BReE1UInooISM6JCIyJEh0KltnO3pYIiEjODckJCIxOUppQ2xKJil5ISM6JCIyKVF2SlQ4SjU6ISM4NyQkIjEmcFF4OWhPKnohIzokIjJCYDIiPitLczohIzg3JCQiMUZhMzxRViI0KSEjOiQiMmJEOjdGRihIOyEjODckJCIxc1MiR3d1Iik9KSEjOiQiMi4mPkJHISoqeW8iISM4NyQkIjFbKil5ZEI/I0gpISM6JCIxVSxBTz4qPnYiISM3NyQkIjFaIkhld11tUikhIzokIjE6PDMvI3B6Ij0hIzc3JCQiMSZ6ZTxOJG8iXCkhIzokIjIzMGlkITNWej0hIzg3JCQiMT5Nb09QZyNmKSEjOiQiMjw8K0grN2klPiEjODckJCIxQVUlKW9ANCJwKSEjOiQiMmJcQyJvRCFILCMhIzg3JCQiMHJUJG9ZJnl6KSEjOSQiMjhTdHVVNXAzIyEjODckJCIwJXljOFJCISopKSEjOSQiMk8ucTVtLkM6IyEjODckJCIwKWU8TltMJyoqKSEjOSQiMm5aenAmM0pIQSEjODckJCIxKSlwUnpfMic0KiEjOiQiMXAlUUZlcEtJIyEjNzckJCIxJ1wpcFJCJls+KiEjOiQiMidwZ2t0Ij4ieUIhIzg3JCQiMVolKil5KHpxJEgqISM6JCIxaWQmKXpda2FDISM3NyQkIjEmeWM4Wk1YUiohIzokIjFRLS8jeiFRTUQhIzc3JCQiMU5tS2wpMzldKiEjOiQiMjBtMFxjdzJpIyEjODckJCIxeGE0PkFTKmYqISM6JCIxUmRkPSM0PHEjISM3NyQkIjFiNUBVVTgncCohIzokIjFmSEk4dUEkeSMhIzc3JCQiMXZYIkg9UiYqeiohIzokIjJCIXl5LWE8c0chIzg3JCQiMS0wNT8hPkYhKiohIzokIjJWI1FLdSc0RydIISM4NyQkIiQrIiEiIiQiJiswJCEiIi0lJkNPTE9SRzYnJSRSR0JHJCIpQyllcSUhIikkIiIhISIiJCIoJz4hXCYhIiktJStfQVRUUklCVVRFRzYjLyUnc291cmNlRyUsbWF0aGRlZmF1bHRHLSUlVklFV0c2JDskISQrIiEiIiQiJCsiISIiJShERUZBVUxURy0mJSZfQVhJU0c2IyIiIjYmLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiJCIiISEiIiQiIiEhIiItJSpMSU5FU1RZTEVHNiMiIiEtJSpUSElDS05FU1NHNiMiIiEtJS1UUkFOU1BBUkVOQ1lHNiMkIiIhISIiLSYlJl9BWElTRzYjIiIjNiYtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJStBWEVTTEFCRUxTRzYkLUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NVEieDYiLyUnZmFtaWx5R1EhNiIvJSVzaXplR1EjMTA2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EldHJ1ZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ2l0YWxpYzYiUSE2Ii0lKV9WSVNJQkxFRzYjIiIiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIiISEiIi0lKUJPVU5EU19ZRzYjJCIiISEiIi0lLUJPVU5EU19XSURUSEc2IyQiJStdISIiLSUuQk9VTkRTX0hFSUdIVEc2IyQiJStdISIiLSUpQ0hJTERSRU5HNiItJStBTk5PVEFUSU9ORzYnLSUpQk9VTkRTX1hHNiMkIiIhISIiLSUpQk9VTkRTX1lHNiMkIiIhISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlK10hIiItJS5CT1VORFNfSEVJR0hURzYjJCIlK10hIiItJSlDSElMRFJFTkc2Ig==Ig==





LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZHLUkjbWlHRiQ2JVEkVGhlRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEifkYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZMLUYsNiVRKWZ1bmN0aW9uRidGL0YyRjUtRiw2JVEiZ0YnRi9GMkY1LUYsNiVRI2lzRidGL0YyRjUtRiw2JVEkb2RkRidGL0YyRjUtRiw2JVEoYmVjYXVzZUYnRi9GMkY1LUYsNiVRJHRoZUYnRi9GMkY1LUYsNiVRJmdyYXBoRidGL0YyRjUtRiw2JVEjb2ZGJ0YvRjJGNUZSRjVGVUY1LUYsNiVRKnN5bW1ldHJpY0YnRi9GMkY1LUYsNiVRJXdpdGhGJ0YvRjJGNS1GLDYlUShyZXNwZWN0RidGL0YyRjUtRjY2L1EjdG9GJy8lJWJvbGRHRjEvRjNRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRmBwRjtGPkZARkJGREZGRkhGSkZNRjVGaG5GNS1GLDYlUSdvcmlnaW5GJ0YvRjItRjY2LVEiLkYnRjlGO0Y+RkBGQkZERkZGSEZKRk1GNS8lK2V4ZWN1dGFibGVHRj1GOQ==




Part II #1. LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYzLUkjbWlHRiQ2JlEpQ29uc2lkZXJGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJStleGVjdXRhYmxlR0YxLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi5RIn5GJ0YyRjQvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZLLUYsNiZRMHRyYW5zZm9ybWF0aW9uc0YnRi9GMkY0RjctRiw2JlEjb2ZGJ0YvRjJGNEY3LUYsNiZRJHRoZUYnRi9GMkY0RjctRiw2JlEpZnVuY3Rpb25GJ0YvRjJGNEY3LUYsNiZRImZGJ0YvRjJGNC1GODYuUSI9RidGMkY0RjtGPUY/RkFGQ0ZFRkcvRkpRLDAuMjc3Nzc3OGVtRicvRk1GW28tSSZtc3FydEdGJDYjLUYjNiUtRiw2JlEieEYnRi9GMkY0RjJGNC1GODYuUSIuRidGMkY0RjtGPUY/RkFGQ0ZFRkdGSUZMRjdGMkY0 a) Shift it to the right 2 units. Define this transformation as the function f1.

Transformations of function f=

LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2I1EhRictSSZtc3FydEdGJDYjLUYjNiQtRiw2JVEieEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy9GO1Enbm9ybWFsRidGPQ== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=


LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEiZkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RKiZjb2xvbmVxO0YnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYsNiVRInhGJ0YvRjItRjY2LVEoJnNyYXJyO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZWLUYjNiUtRiw2I1EhRictSSZtc3FydEdGJDYjLUYjNiRGT0Y5RjlGWi8lK2V4ZWN1dGFibGVHRj1GOQ==
LV9JLFR5cGVzZXR0aW5nRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSJmR0YoZio2I0kieEdGKEYoNiRJKW9wZXJhdG9yR0YoSSZhcnJvd0dGKEYoLUklc3FydEdGJUYvRihGKEYoNyNGLg==


LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=


Shift f to the right by 2 units.




LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEjZjFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCZzcmFycjtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GVi1GLDYlUSJmRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNihGTy1GLDYjUSFGJy1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmFvLUkjbW5HRiQ2JFEiMkYnRjkvJStleGVjdXRhYmxlR0Y9RjlGOUZnb0Y5
LV9JLFR5cGVzZXR0aW5nRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSNmMUdGKGYqNiNJInhHRihGKDYkSSlvcGVyYXRvckdGKEkmYXJyb3dHRihGKC1JImZHRig2IywmRjAiIiIiIiMhIiJGKEYoRig3I0Yu
b) Shift f1 down 1 unit. Define this transformation as the function f2.



LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYsLUkjbWlHRiQ2JVEjZjJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCZzcmFycjtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GVi1GLDYlUSNmMUYnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYlRk8vJStleGVjdXRhYmxlR0Y9RjlGOS1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYG8tSSNtbkdGJDYkUSIxRidGOUZqbkY5
LV9JLFR5cGVzZXR0aW5nRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSNmMkdGKGYqNiNJInhHRihGKDYkSSlvcGVyYXRvckdGKEkmYXJyb3dHRihGKCwmLUkjZjFHRihGLyIiIkY3ISIiRihGKEYoNyNGLg==
c) Reflect f2 about x-axis. Define this transformation as the function f3.

LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYrLUkjbWlHRiQ2JVEjZjNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCZzcmFycjtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GVi1GNjYtUSomdW1pbnVzMDtGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GZm4tRiw2JVEjZjJGJ0YvRjItSShtZmVuY2VkR0YkNiQtRiM2JUZPLyUrZXhlY3V0YWJsZUdGPUY5RjlGYG9GOQ==
LV9JLFR5cGVzZXR0aW5nRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSNmM0dGKGYqNiNJInhHRihGKDYkSSlvcGVyYXRvckdGKEkmYXJyb3dHRihGKCwkLUkjZjJHRihGLyEiIkYoRihGKDcjRi4=
d) Reflect f3 about y-axis. Define this transformation as the function f4.

LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYqLUkjbWlHRiQ2JVEjZjRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSomY29sb25lcTtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUSJ4RidGL0YyLUY2Ni1RKCZzcmFycjtGJ0Y5RjtGPkZARkJGREZGRkgvRktRJjAuMGVtRicvRk5GVi1GLDYlUSNmM0YnRi9GMi1JKG1mZW5jZWRHRiQ2JC1GIzYmLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZeb0ZPLyUrZXhlY3V0YWJsZUdGPUY5RjlGYG9GOQ==
LV9JLFR5cGVzZXR0aW5nRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSNmNEdGKGYqNiNJInhHRihGKDYkSSlvcGVyYXRvckdGKEkmYXJyb3dHRihGKC1JI2YzR0YoNiMsJEYwISIiRihGKEYoNyNGLg==
e) Plot f, f1, f2, f3, and f4 in one coordinate system. Include an appropriate title and legend.



LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVElcGxvdEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzY+LUY2NiYtRiM2Mi1GLDYlUSJmRidGL0YyLUY2NiQtRiM2JS1GLDYlUSJ4RidGL0YyLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvRjNRJ25vcm1hbEYnRkstSSNtb0dGJDYtUSIsRidGSy8lJmZlbmNlR0ZKLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRkovJSpzeW1tZXRyaWNHRkovJShsYXJnZW9wR0ZKLyUubW92YWJsZWxpbWl0c0dGSi8lJ2FjY2VudEdGSi8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUYsNiVRI2YxRidGL0YyRkFGTS1GLDYlUSNmMkYnRi9GMkZBRk0tRiw2JVEjZjNGJ0YvRjJGQUZNLUYsNiVRI2Y0RidGL0YyRkFGSEZLRksvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGTS1GTjYtUSJ+RidGS0ZRL0ZURkpGVUZXRllGZW5GZ25GaW4vRl1vRltvRkUtRk42LVEiPUYnRktGUUZkcEZVRldGWUZlbkZnbi9Gam5RLDAuMjc3Nzc3OGVtRicvRl1vRmpwLUZONi1RKiZ1bWludXMwO0YnRktGUUZkcEZVRldGWUZlbkZnbi9Gam5RLDAuMjIyMjIyMmVtRicvRl1vRmBxLUkjbW5HRiQ2JFEjMTBGJ0ZLLUZONi1RIy4uRidGS0ZRRmRwRlVGV0ZZRmVuRmduRl9xRmVwRmJxRk0tRiw2JVEieUYnRi9GMkZmcEZccS1GY3E2JFEiM0YnRktGZnFGXHJGTS1GLDYlUSdsZWdlbmRGJ0YvRjJGZnBGOkZNRmFwLUYsNiVRJnRpdGxlRidGL0YyRmZwLUkjbXNHRiQ2I1FAVHJhbnNmb3JtYXRpb25+b2Z+ZnVuY3Rpb25+Zih4KUYnLUYsNiNRIUYnRkhGS0ZLRmlyRkhGSw==
...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions ยป

Submit New Assignment

Copy and Paste Your Assignment Here