HW 4 Part A. Problem 1.To determine what factors influence public opinion about favoring death penalty for murder: 1. Replicate the SPSS output provided below. Run Logistic regression using the...

1 answer below »

View more »
Answered 3 days AfterAug 04, 2022

Answer To: HW 4 Part A. Problem 1.To determine what factors influence public opinion about favoring death...

Vikash Kumar answered on Aug 08 2022
81 Votes
HW 4 – Logistic Regression                                     2
Logistic Regression
HW 4
Part A
Problem 1
To find out what factors, change public opinion about supporting death sentence for murder:
Dependent variable – cappun (FAVOR OR OPPOSE death penalty for murder) is having a nominal scale of measurement. Coding for this variable is as follows:
    0 Favor
    1 Oppose
Independent variable: –
    Scale of measurement
    Independent variable
    Label
    Ratio
    age
    Age of the respondent
    Ordinal
    polv
iews
    Think of self as LIBERAL or CONSERVATIVE
    Nominal
    reborn
    Has R ever had a 'born again' experience
    Nominal
    Sex
    Respondent’s sex
    Nominal
    religion
    R’s religious preference
Hypothecated Model: -age
polviews
cappun
reborn
sex
religion
SPSS Output: -
    Table 1.1 Case Processing Summary
    Unweighted Casesa
    N
    Percent
    Selected Cases
    Included in Analysis
    553
    39.1
    
    Missing Cases
    862
    60.9
    
    Total
    1415
    100.0
    Unselected Cases
    0
    .0
    Total
    1415
    100.0
    a. If weight is in effect, see classification table for the total number of cases.
Table 1.1 shows the number of cases that have been included and excluded from the analysis. Out of total 1415 cases, 553 have been included for further analysis.
    
Table 1.2 Dependent Variable Encoding
    Original Value
    Internal Value
    FAVOR
    0
    OPPOSE
    1
Coding of the dependent variable have been shown in Table 1.2 and for categorical independent variables in Table 1.3. Those participants who are in favour of death penalty for murderer have been coded as 0 and in oppose to this notion have been coded as 1.
    Table 1.3 Categorical Variables Codings
    
    Frequency
    Parameter coding
    
    
    (1)
    (2)
    (3)
    (4)
    (5)
    (6)
    THINK OF SELF AS LIBERAL OR CONSERVATIVE
    EXTREMELY LIBERAL
    17
    .000
    .000
    .000
    .000
    .000
    .000
    
    LIBERAL
    51
    1.000
    .000
    .000
    .000
    .000
    .000
    
    SLIGHTLY LIBERAL
    59
    .000
    1.000
    .000
    .000
    .000
    .000
    
    MODERATE
    221
    .000
    .000
    1.000
    .000
    .000
    .000
    
    SLGHTLY CONSERVATIVE
    88
    .000
    .000
    .000
    1.000
    .000
    .000
    
    CONSERVATIVE
    91
    .000
    .000
    .000
    .000
    1.000
    .000
    
    EXTRMLY CONSERVATIVE
    26
    .000
    .000
    .000
    .000
    .000
    1.000
    RS RELIGIOUS PREFERENCE
    PROTESTANT
    312
    .000
    .000
    .000
    .000
    
    
    
    CATHOLIC
    139
    1.000
    .000
    .000
    .000
    
    
    
    JEWISH
    6
    .000
    1.000
    .000
    .000
    
    
    
    NONE
    91
    .000
    .000
    1.000
    .000
    
    
    
    OTHER (SPECIFY)
    5
    .000
    .000
    .000
    1.000
    
    
    RESPONDENTS SEX
    MALE
    263
    .000
    
    
    
    
    
    
    FEMALE
    290
    1.000
    
    
    
    
    
    HAS R EVER HAD A 'BORN AGAIN' EXPERIENCE
    YES
    172
    .000
    
    
    
    
    
    
    NO
    381
    1.000
    
    
    
    
    
Block 0 assumes that there are no predictor variables in the model and just the intercept.
Block 0: Beginning Block
    Table 1.4 Classification Tablea,b
    Observed
    Predicted
    
    FAVOR OR OPPOSE DEATH PENALTY FOR MURDER
    Percentage Correct
    
    FAVOR
    OPPOSE
    
    Step 0
    FAVOR OR OPPOSE DEATH PENALTY FOR MURDER
    FAVOR
    378
    0
    100.0
    
    
    OPPOSE
    175
    0
    .0
    
    Overall Percentage
    
    
    68.4
    a. Constant is included in the model.
    b. The cut value is .500
The model with intercept term only predicts with overall percentage of 68.40.
    Table 1.5 Variables in the Equation
    
    B
    S.E.
    Wald
    df
    Sig.
    Exp(B)
    Step 0
    Constant
    -.770
    .091
    70.943
    1
    .000
    .463
Block 1: Method = Enter
Block 1 has model with intercept term as well as independent variables.
    Table 1.6 Omnibus Tests of Model Coefficients
    
    Chi-square
    df
    Sig.
    Step 1
    Step
    63.045
    13
    .000
    
    Block
    63.045
    13
    .000
    
    Model
    63.045
    13
    .000
The overall model is statistically significant, at 5% level of significance.
    Table 1.7 Model Summary
    Step
    -2 Log likelihood
    Cox & Snell R Square
    Nagelkerke R Square
    1
    627.285a
    .108
    .151
    a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.
It is evident from the Table 1.7 that the explained variation in the dependent variable is 10.8% and 15.10% as reference with Cox and Snell and Nagelkerke respectively.
    Table 1.8 Classification Tablea
    Observed
    Predicted
    
    FAVOR OR OPPOSE DEATH PENALTY FOR MURDER
    Percentage Correct
    
    FAVOR
    OPPOSE
    
    Step 1
    FAVOR OR OPPOSE DEATH PENALTY FOR MURDER
    FAVOR
    347
    31
    91.8
    
    
    OPPOSE
    128
    47
    26.9
    
    Overall Percentage
    
    
    71.2
    a. The cut value is .500
With the inclusion of independent variables, the model correctly classifies 71.2% of the cases overall. It also represents percentage accuracy in the classification.
The sensitivity of the classification is 91.8% which tells that participants who favours the death punishment for murderer were also predicted by the model to be in...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30