AM10CO2020.dvi AM10CO 1. Consider the function f(x) = x2 x3 + 4x . (a) Determine the domain and parity (if any) of the function. (3 marks) (b) Determine the critical points (maxima, minima and...

1 answer below »
Hi there, I have an assignment that will be released tomorrow at 12:00 Midday GMT and will be 2 hour exam on 'Ordinary Differential Equations' I was just wondering if there is a tutor that can complete the exam within a 2 hour period once it is released at 12:00. Thank you.


AM10CO2020.dvi AM10CO 1. Consider the function f(x) = x2 x3 + 4x . (a) Determine the domain and parity (if any) of the function. (3 marks) (b) Determine the critical points (maxima, minima and inflection points) of f(x). (6 marks) (c) Determine regions of the domain where f(x) is increasing, decreasing, concave and convex. (6 marks) (d) Determine the roots of f(x). (3 marks) (e) Plot the function f(x) using the provided graph paper. (12 marks) Total: 30 Marks 1 of 3 This Assessment is Subject to the University Assessment Regulations for Candidates AM10CO 2. Consider the following differential equation: dy(x) dx + 2xy(x) = f(x) , (1) where f(x) =    0 x < 0,="" −2x3="" 0="">< x="">< 1,="" 0="" 1="">< x.="" (2)="" (a)="" write="" and="" solve="" the="" associated="" homogeneous="" equation="" of="" (1).="" (4="" marks)="" (b)="" propose="" a="" solution="" to="" (1),="" for="" each="" of="" the="" regions="" where="" the="" non="" homoge-="" neous="" term="" (2)="" has="" been="" defined,="" based="" on="" your="" results="" from="" (a)="" above.="" (6="" marks)="" (c)="" find="" a="" solution="" to="" the="" full="" problem.="" (14="" marks)="" (d)="" find="" a="" continuous="" solution="" to="" the="" full="" problem.="" (6="" marks)="" (e)="" adjust="" the="" free="" constant="" according="" to="" the="" condition="" y(1)="1." (5="" marks)="" total:="" 35="" marks="" 2="" of="" 3="" this="" assessment="" is="" subject="" to="" the="" university="" assessment="" regulations="" for="" candidates="" am10co="" 3.="" consider="" the="" the="" following="" second-order="" differential="" equation:="" d2y(x)="" dx2="" −="" 2="" dy(x)="" dx="" +="" 2y(x)="2[sin(x/2)]2." (3)="" (a)="" write="" and="" solve="" the="" associated="" homogeneous="" equation="" of="" (3).="" (10="" marks)="" (b)="" propose="" a="" solution="" to="" (3),="" based="" on="" your="" results="" from="" (a)="" above.="" (4="" marks)="" (c)="" find="" the="" solution="" to="" the="" full="" problem.="" hint:="" remember="" that="" 2[sin(x/2)]2="1−" cos(x).="" (16="" marks)="" (d)="" adjust="" the="" free="" constants="" according="" to="" the="" conditions="" y(0)="1" and="" y′(0)="0." (5="" marks)="" total:="" 35="" marks="" end="" of="" assessment="" 3="" of="" 3="" this="" assessment="" is="" subject="" to="" the="" university="" assessment="" regulations="" for="" candidates="" am10co2019.dvi="" am10co="" 1.="" consider="" the="" function="" f(x)="{" 1="" x="0" sin(x)="" x="" otherwise="" .="" (a)="" determine="" the="" domain="" and="" parity="" (if="" any)="" of="" the="" function.="" (3="" marks)="" (b)="" determine="" the="" expressions="" satisfied="" by="" the="" critical="" points="" (maxima,="" min-="" ima="" and="" inflection="" points),="" solving="" them="" for="" specific="" values="" when="" possible="" (12="" marks)="" (c)="" determine="" the="" roots="" of="" f(x).="" (3="" marks)="" (d)="" plot="" the="" function="" f(x)="" using="" the="" provided="" graph="" paper.="" (12="" marks)="" total:="" 30="" marks="" 1="" of="" 3="" this="" examination="" is="" subject="" to="" the="" examination="" regulations="" for="" candidates="" gilfoylh="" typewritten="" text="" gilfoylh="" typewritten="" text="" .="" gilfoylh="" typewritten="" text="" gilfoylh="" typewritten="" text="" am10co="" 2.="" find="" the="" continuous="" solution="" of="" the="" following="" equation:="" 3(x2="" +="" 7)="" dy(x)="" dx="" +="" 2xy(x)="f(x)" ,="" where="" f(x)="" ="" ="" 0="" x="">< 0="" x="" 0="">< x="">< 1="" 0="" 1="">< x , satisfying the condtiton y(1) = 0. total: 35 marks 2 of 3 this examination is subject to the examination regulations for candidates gilfoylh highlight typo am10co 3. solve the following equation: d2y(x) dx2 + dy(x) dx − 2y(x) = x+ sin(x) with y(0) = 1 and y′(0) = 0. total: 35 marks end of examination paper 3 of 3 this examination is subject to the examination regulations for candidates x="" ,="" satisfying="" the="" condtiton="" y(1)="0." total:="" 35="" marks="" 2="" of="" 3="" this="" examination="" is="" subject="" to="" the="" examination="" regulations="" for="" candidates="" gilfoylh="" highlight="" typo="" am10co="" 3.="" solve="" the="" following="" equation:="" d2y(x)="" dx2="" +="" dy(x)="" dx="" −="" 2y(x)="x+" sin(x)="" with="" y(0)="1" and="" y′(0)="0." total:="" 35="" marks="" end="" of="" examination="" paper="" 3="" of="" 3="" this="" examination="" is="" subject="" to="" the="" examination="" regulations="" for="">
Answered Same DayMay 12, 2021

Answer To: AM10CO2020.dvi AM10CO 1. Consider the function f(x) = x2 x3 + 4x . (a) Determine the domain and...

Parvesh answered on May 13 2021
148 Votes
CamScanner 05-13-2021 17.27.45
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here