Given below is a bivariate distribution for the random variables x and y . f(x, y) x y 0.5 50 80 0.3 30 50 0.2 40 60 (a) Compute the expected value and the variance for x and y . E(x) = E(y) = Var(x)...


Given below is a bivariate distribution for the random variablesx andy.

























f(x, y)


x

y
0.55080
0.33050
0.24060


(a)


Compute the expected value and the variance forx andy.


E(x)

=
E(y)

=
Var(x)

=
Var(y)

=




(b)


Develop a probability distribution for
x + y.






















x + y


f(x + y)

130
80
100




(c)


Using the result of part (b), compute
E(x + y)

and
Var(x + y).



E(x + y)

=
Var(x + y)

=




(d)


Compute the covariance and correlation forx andy. (Round your answer for correlation to two decimal places.)

covariancecorrelation

Arex andy positively related, negatively related, or unrelated?

The random variablesx andy are  ---Select--- positively related negatively related unrelated .




(e)


Is the variance of the sum ofx andy bigger, smaller, or the same as the sum of the individual variances? Why?

The variance of the sum ofx andy is  ---Select--- greater than  less than unrelated the sum of the variances by two times the covariance, which occurs whenever two random variables are  ---Select--- positively related negatively related unrelated .




Jun 01, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here