RMIT Classification: Trusted ECON 1035 – BUSINESS STATISTICS 1 Assessment 3: Individual Assignment Instructions: This is an individual assignment with a total of 40 marks. The allocation of marks is...

1 answer below »

Given a data set that replicates the industry/world, students will be required to perform a wide range of statistical analysis covered in the course, with focus on the analysis of relationships between variables.


The response to the assignment must be provided in the form of a business report with no more than 10 pages (excluding cover page). The structure of your business report must include:




  1. A Title


  2. An Executive Summary


  3. An Introduction


  4. Analysis




  5. Conclusions




RMIT Classification: Trusted ECON 1035 – BUSINESS STATISTICS 1 Assessment 3: Individual Assignment Instructions: This is an individual assignment with a total of 40 marks. The allocation of marks is as follows: Statistical Analysis: 32 (including Excel) Professional Report: 8 Total:40 The response to the assignment must be provided in the form of a professional report with no more than 10 pages (excluding cover page). The structure of your professional report must include: 1] A Title, 2] An Executive Summary, 3] An Introduction, 4] Analysis, and 5] Conclusions. You must submit an electronic copy of your assignment in Canvas. See the attached Template of your submission for more details. This assignment requires the use of Microsoft Excel. If you have Windows, you will need to use the Data Analysis Tool Pack. If you have a Mac with Excel 2011, you may need to use StatPlus: MAC LE. The Excel workbook you submit needs to be clear and carefully organised. It will be treated as an appendix to your report, i.e. not included in the page count. You will need to take the relevant results from your Excel workbook and incorporate into your report. Do not refer to the Excel workbook within the Professional report. The Report needs to be standalone. Presentation Instructions: Your written professional report should comply with the following presentation standards: 1. Typed using a standard professional font type (e.g. Times Roman), 12-point font size. 2. 1.5-line spacing, numbered pages, and clear use of titles and section headings. 3. Delivered as a Word (.doc or .docx) or PDF (.pdf) file. 4. Checked for spelling, typographical and grammatical errors. Where relevant, round to 3 decimal places. 5. With all relevant tables and charts, the report should be no more than 10 pages long. Problem Description: This is a further analysis of the gender pay gap in the Australian population. According to a recent report by KPMG Consulting, gender discrimination continues to be the single largest factor contributing to the gender pay gap (KPMG, 2019). In order to estimate the extent of discrimination in the job market where women with identical labour market characteristics as their male counterparts receive different wages, you will estimate a set of linear regression models. Since this is an additional analysis on the gender pay gap, the content in the Introduction section of your report may overlap with the one in the Group Assignment. However, you are encouraged to develop/source new background materials. You will use the same dataset as in Assignment 2. The data are drawn from the 2017 Household, Income and Labour Dynamics in Australia (HILDA) survey. The sample used for analysis comprises 824 full-time Australian workers in the age group 20-74. The dataset contains the following information: 1. Worker’s earnings: weekly earnings in 1000 AU dollars of full-time workers. [note the unit of measurement] 1. Gender: the dummy variable male = 1 if the individual is a male, and = 0 for a female. 1. Educational attainment: the dummy variable degree = 1 if the individual has a bachelor degree or higher qualification, and = 0 for lower than degree qualifications. 1. Skill level: the dummy variable skill = 1 if the individual is highly skilled, and = 0 if not highly skilled. 1. Experience: number of years of work experience. [Marks distribution: 5 + 6 + 9 + 2 + 5 + 2 + 3 = 32 marks; professional report = 8 marks] Locate the data file (IndividualBusStats.xls) on CANVAS. 1. Before estimating the regression equation, conduct a preliminary analysis of the relationship between workers’ earnings and 1) gender; 2) educational attainment; 3) skill level; and 4) experience. Use tables and/or appropriate graphs for the categorical variables (male, degree, skill) and the continuous variable (experience). Interpret your findings by answering the following questions: how much more/less does a male worker earn compared to a female worker? how much more/less does a degree holder earn versus a non degree holder? How much more/less does a highly skilled worker earn versus a worker who is not highly skilled? What kind of relationship do you observe between workers’ earnings and experience? (5 marks) 2. Use a simple linear regression to estimate the relationship between workers’ earnings (Y) and gender (X) (Model A). You may use the Data Analysis Tool Pack. Based on the Excel regression output, first write down the estimated regression equation and interpret the slope coefficient. Carry out any relevant two-tailed hypothesis test of the slope coefficient using the critical value approach, at the 5% significance level, showing the step by step workings/diagram in your report. Interpret your hypothesis test results. (6 marks) 3. Now use a multiple regression model to explore the relationship of workers’ earnings (Y) with, gender (X1), educational attainment (X2), skill level (X3) and work experience (X4) (Model B). You may use Data Analysis Tool Pack for this. Based on the Excel regression output, first write down the estimated regression equation and interpret the slope coefficients. Carry out any relevant two-tailed hypothesis tests for each individual slope coefficient using the p-value approach, at the 5% significance level. Carry out an overall significance test using the p-value approach. Carefully interpret your hypothesis test results. (9 marks) 4. Interpret the R-squared in Model A and adjusted R-squared in Model B. Which one is a better model? Why? (2 marks) 5. Compare the coefficient of gender in Model A and Model B. Explain carefully why the results are different, relating your discussion to gender discrimination. (5 marks) 6. Predict the earnings of a male worker who has a university degree, is highly skilled and has 10 years of work experience. Next predict the earnings of a female worker with the same characteristics. (2 marks) 7. If you could request additional data to study the factors that influence workers’ earnings, what extra variables would you request? Discuss two such variables, explaining why you choose them and how each of your proposed variables could be measured in the regression model. [You could draw evidence from journal articles, newspapers, etc] (3 marks) References: KPMG Consulting. (2016). She's price(d)less: The economics of the gender pay gap Notes Data overview: The dataset consists of a random sample of 824 full-time Australian workers in the age group 20-74, in 2017. Sources: 2017 Household, Income and Labour Dynamics in Australia(HILDA) Survey The worksheet 'data' contains the dataset. Variable Definition: earningsweekly earnings of full-time Australian workers in AU$ malemale=1, female=0 degreedegree or higher qualification=1, lower than degree qualifications=0 skillhighly skilled=1, not highly skilled=0 experiencenumber of years of job experience &"Calibri"&12&KEEDC00RMIT Classification: Trusted&1# data earningsmaledegreeskillexperience 184101110 15000104 7500102 161800031 9090006 26850106 15000116 82500011 112800130 184101110 100001125 75000010 13150116 248901016 216701024 140601016 140001016 12500103 85001114 172600020 11970104 14310112 165001130 73000020 12080011 7200002 7970005 163400110 14910104 174500025 10000002 143500010 31500016 10000112 115000010 9310001 9000005 91400036 12500007 12000101 109300019 150001028 25350114 16110111 11000011 12970105 12500112 176401019 105000010 145000017 49870113 264700010 12470016 11890112 700001118 645001023 249301124 132000130 8600001 102100013 70000022 17200001 7800007 121600125 11510009 81300016 136001025 11270005 17320012 8500002 10940003 10930102 22500003 11400002 42000016 265001115 15630105 15000013 17260112 16000116 156801110 124101038 110500111 95000120 12470115 230101124 8400008 10720009 6930102 9000003 8750106 90000010 205001030 17550102 99700013 190401012 75000011 160001110 90000012 120500025 9530002 17500006 12280001 11000004 16000005 90800014 8810001 150000020 120000011 316401017 209101012 7800003 151901021 230001125 78600015 12500018 9000008 159601015 135000018 28770112 110001015 13810005 120001019 9700003 10000106 22000003 119600015 11320015 10000107 140001110 9400002 122700010 91000021 21000116 12950008 9500004 356701114 14400014 9620005 110000016 140001023 288701120 17790014 142300025 17500103 12410011 55000106 11180001 190001010 153200016 207100015 9500013 188501012 28201020 16350107 12500113 11670104 125000010 12500107 17640117 7590116 8650002 335601112 16810118 4790103 12250011 10000014 150000011 17300012 17300003 15000003 168100130 19180116 11500009 90000030 90001028 7200005 14960001 10350018 9000003 7000109 12500015 13810007 9810009 15400108 138101112 235301116 319501010 15000112 13500101 13270105 163800114 109300010 172601014 11890005 12500104 15000011 94000032 115000015 135001120 14640102 11500105 174001042 95000040 154401116 12500003 160000035 12500103 95000021 70000017 20000107 175001015 175001130 12640001 41800014 12500002 14900001 179901131 170000010 12880016 16750004 11980001 9000013 33370115 19150114 10180105 14000102 14000103 326701130 6740002 184001113 172600020 13590112 10000011 268501115 18410112 28000103 340601110 6520009 7500002 12600001 348601111 9960101 84000030 110000014 164600110 12500005 16500106 218901044 191801035 17960112 84600010 19900105 10500008 172601145 185001010 10120112 100100112 65900020 90000030 14730112 420001110 12500003 9040011 483301112 8440006 185001011 9070002 11500102 19080004 87500026 12500101 9000003 92000015 11380016 9500008 9200007 200400011 12850115 11500105 259600112 1500012 6000001 155001026 8500007 80000013 95000035 8960001 6970003 52100012 75001014 11280005 9800019 12150001 9400101 150001111 410001115 17000108 8630106 15420106 18500103 10020013 15190117 9000012 11470004 11000008 11000001 110001045 75000030 50000023 11000009 9660001 100000010 13150105 11600007 115000012 67300011 115101024 8500007 14000117 145011133 421910130 213511112 138110111 36821116 9801002 18411019 174510134 63310012 141310113 15341113 7351002 78610012 335010125 211010012 7201001 105010010 150010020 27621119 94110015 24931103 146010010 200010140 77501111 172611110 140010115 110010030 130011112 19001106 135010015 6501002 9451004 483311020 26531108 29731113 12371002 9551003 11201008 19181002 140010111 110010113 7501004 21001115 8171007 60001003 18801005 34521006 17301009 180010020 30001004 150010018 11501003 8301003 15761107 16871004 300211128 250011110 137510028 9371117 127310010 16061112 14001015 200011117 210010035 156310118 150010123 201610117 103410010 285210018 10191002 16501105 80011113 191811132 11251112 40010025 90010026 14001004 12771008 12081006 115010032 50001005 8001004 25001113 225010116 76710035 9001007 110010120 127110010 7431006 32801117 125010014 14871004 145010037 24931113 155510010 100010011 8501001 240010115 104010011 28501102 391311117 12081009 132910046 119610035 165010025 110010048 10501002 23621002 260010030 8001003 7501005 14401012 18001008 16001007 26351117 155010030 70010010 11501001 80010011 13471001 276211143 12001102 13351104 124310010 125010120 175410040 9501005 172511021 379711116 9801017 145810010 15501013 6501016 14001103 14231102 414310128 306911110 10001017 8741006 12001005 15001012 13001006 6901015 170010023 10191005 506311116 98610010 67510012 13001112 320010012 121510040 13001015 9901005 45211014 235911021 205010114 310711111 150010117 106810012 15191112 200010011 18411106 271310017 110010035 8751003 15001009 20711012 36001116 190011122 11251004 12661011 1187311113 71510024 249310040 130410036 552411110 10261111 120010035 31841116 127510113 100010025 11301005 25001118 13501008 241711112 16001113 7501002 10501009 15501009 25001009 13811009 17141007 118910014 247411114 276210135 350010116 120010011 20501116 87510030 9351006 17301112 230111115 13811011 135010113 17841008 10001008 4491015 300011117 22501102 11751005 132010011 182211115 9591004 17491002 8811112 131210030 16251006 219311017 10321101 134011115 11001006 175010035 11001008 11001014 100010015 338610017 138411038 100010010 20001004 97510035 126610019 243610110 20191115 16501118 239710027 18001104 10931101 36821112 2231003 600011125 17501106 8001003 32501112 21621017 275010034 215010011 700010030 6001108 200010112 13501004 171811115 34981116 9201002 20201109 204510028 322211120 16001002 28881007 10501009 7001002 112210035 25121011 150010031 9001004 37211112 27621114 154011117 90010022 16201116 160010111 105010010 125010110 20841114 153410110 219311120 160010025 160010015 237811116 12411003 157610016 138110012 250011110 119610032 151510117 176410118 129610110 245011121 18501005 163010123 111210030 349811043 188011110 200010028 10451002 287711111 235010024 11041107 14001008 9001003 8711002 20001007 22001009 170010018 515011012 80010015 10001005 6001003 10001004 92510012 22061112 135010014 48331012 149610026 17001003 27501118 152910119 400011120 90010035 26331117 8801009 120010024 25001112 13401007 14501005 23011001 133010020 6911001 9501008 200010016 15001012 283911117 249311115 225010035 134610011 10901103 149610111 100010018 14001005 65010019 500010118 191811010 6591003 160010027 13511017 175010012 330010011 190010032 25001113 16001009 230110115 10001009 17601007 24501005 120010030 7301001 126010018 130010012 134310016 20001106 19651102 38001107 10501009 12081008 8801009 15001112 145911016 143810115 20001003 100010012 185011116 11001105 12501017 220011015 98410017 17701008 170010010 9851002 207111035 60011012 30611112 9001007 22061013 17041115 10001102 110010010 111210012 22001003 28771117 257011010 7751008 150011110 370011142 170010025 85010013 25691111 106710010 9701115 30010121 13461112 8401005 35591119 11001112 128310010 126610115 110010015 170010110 134310010 9091007 20141006 21751013 160010010 170010011 18251013 15201002 135010019 10001006 228010033 12001001 13001005 184111110 7001001 27001008 9371103 11151111 13651003 29001003 157010117 150010020 10801009 10001006 16001002 11201111 130011010 117010015 170311110 115010114 11501002 20041007 124710011 15381101
Answered 4 days AfterSep 28, 2021

Answer To: RMIT Classification: Trusted ECON 1035 – BUSINESS STATISTICS 1 Assessment 3: Individual Assignment...

Franciosalgeo answered on Oct 02 2021
139 Votes
Notes
    Data overview:
    The dataset consists of a random sample of 824 full-time Australian workers
in the age group 20-74, in 2017.
    Sources: 2017 Household, Income and Labour Dynamics in Australia(HILDA) Survey
    The worksheet 'data' contains the dataset.
    Variable Definition:
    earnings    weekly earnings of full-time Australian workers in 1000 AU$
    male    male=1, female=0
    degree    degree or higher qualification=1, lower than degree qualifications=0
    skill    highly skilled=1, not highly skilled=0
    experience    number of years of job experience
&"Calibri"&12&KEEDC00RMIT Classification: Trusted&1#    
data
        Earnings (1000...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here