For V = (V,, V,) eR²and W = (W,, W2) eR². %3D Consider the determinant map det : R? x R? →R defined by det(V, W) = V,W, – V,W, - Then the derivative of the determinant map at (V, W) e R? ×R? evaluated...


For V = (V,, V,) eR²and W = (W,, W2) eR².<br>%3D<br>Consider the determinant map<br>det : R? x R? →R defined by<br>det(V, W) = V,W, – V,W,<br>-<br>Then the derivative of the determinant map<br>at (V, W) e R? ×R? evaluated on<br>(H, K) e R? x R? is<br>(a)<br>det (H, W) + det(V, K)<br>(b)<br>det (H, K)<br>(c)<br>det (H, V) + det(W, K)<br>(d)<br>det (V, W)+ det(K, W)<br>

Extracted text: For V = (V,, V,) eR²and W = (W,, W2) eR². %3D Consider the determinant map det : R? x R? →R defined by det(V, W) = V,W, – V,W, - Then the derivative of the determinant map at (V, W) e R? ×R? evaluated on (H, K) e R? x R? is (a) det (H, W) + det(V, K) (b) det (H, K) (c) det (H, V) + det(W, K) (d) det (V, W)+ det(K, W)

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here