For this question, you will be required to use the binary search to find the root of some function f(x)f(x) on the domain x∈[a,b]x∈[a,b] by continuously bisecting the domain. In our case, the root of...




 For this question, you will be required to use the binary search to find the root of some function f(x)f(x) on the domain x∈[a,b]x∈[a,b] by continuously bisecting the domain. In our case, the root of the function can be defined as the x-values where the function will return 0, i.e. f(x)=0f(x)=0


For example, for the function: f(x)=sin2(x)x2−2f(x)=sin2(x)x2−2 on the domain [0,2][0,2], the root can be found at x≈1.43x≈1.43



Constraints



  • Stopping criteria: ∣∣f(root)∣∣<><0.0001 or you="" reach="" a="" maximum="" of="" 1000="">

  • Round your answer to two decimal places.



Function specifications



Argument(s):




  • f (function) →→ mathematical expression in the form of a lambda function.


  • domain (tuple) →→ the domain of the function given a set of two integers.


  • MAX (int) →→ the maximum number of iterations that will be performed by the function.



Return:




  • root (float) →→ return the root (rounded to two decimals) of the given function.



 START FUNCTION


def binary_search(f,domain, MAX = 1000):



f = lambda x:(np.sin(x)**2)*(x**2)-2


domain = (0,2)


x=binary_search(f,domain)


x



test


binary_search(lambda x:(np.sin(x)**2)*(x**2)-2,(0,2))==1.43







Expert Solution





arrow_forward

Step 1 : Code (Explained with comment)


import numpy as np
def binary_search(f,domain, MAX = 1000):
 start ,end = domain # get the start and end point
 while start < end="" and="">
  # get the mid
  mid = (start + end)/2
  # if we reached to root
  if abs(f(mid)) <>
   # return  rounded
   return round(mid,2)
  if f(mid) < 0:="" #="" if="" we="" are="" left="" of="">
   start = mid # set start to mid
  else: # otherwise go to left
   end = mid
  MAX -= 1 # decrement max by 1
 return round(mid,2)# return rounded


f = lambda x:(np.sin(x)**2)*(x**2)-2


domain = (0,2)


x=binary_search(f,domain)


# test
print(binary_search(lambda x:(np.sin(x)**2)*(x**2)-2,(0,2)) == 1.43)






Jun 07, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here