For d ≤ 2 assume that there exist 0 > 0, a nonnegative function g such that for all x ∈ Rd, and 0                         µ(Sx,) > g(x) d (6.3) and...


For d ≤ 2 assume that there exist 0 > 0, a nonnegative function g such that for all x ∈ Rd, and 0 <>


                        µ(Sx,) > g(x) d (6.3)


and




1 g(x)2/d µ(dx)


Prove the rate of convergence given in Theorem 6.2.


Hint: Prove that under the conditions of the problem


                                  E{X(1,n)(X) − X2 } ≤ c˜ n2/d .


Formula (6.3) implies that for almost all x mod µ and 0


                                µ(Sx,) ≥ µ(Sx,0 ) ≥ g(x) d 0 ≥ g(x) 0 L d d,


hence we can assume w.l.o.g. that (6.3) holds for all 0 0,


                                P{X(1,n)(X) − X> } = E{(1 − µ(SX,))n}


                                                                     ≤ E  e −nµ(SX,)


                                                                     ≤ E  e −ng(X)d ,


therefore,                               E{X(1,n)(X) − X2 } =




L2 0 P{X(1,n)(X) − X > √} d


                                                                                     ≤




L2 0 E  e −ng(X)d/2  d


                                                                                     ≤






∞ 0 e −ng(x)d/2 d µ(dx)


                                                                                     =




1 n2/dg(x)2/d


∞ 0 e −zd/2 dz µ(dx)


                                                                                     = c˜ n2/d .

May 23, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here