admit,gre,gpa,rank 0,380,3.61,3 1,660,3.67,3 1,800,4,1 1,640,3.19,4 0,520,2.93,4 1,760,3,2 1,560,2.98,1 0,400,3.08,2 1,540,3.39,3 0,700,3.92,2 0,800,4,4 0,440,3.22,1 1,760,4,1 0,700,3.08,2 1,700,4,1...

1 answer below »

Follow the simple tutorial at https://towardsdatascience.com/simply-explained-logistic- regression-with-example-in-r-b919acb1d6b3to see Logistic Regression in action. Implement the same functionality for the same dataset in Python. Does the Python version result in the same predictions of test data as R? Submit codes in a ipynb file.




admit,gre,gpa,rank 0,380,3.61,3 1,660,3.67,3 1,800,4,1 1,640,3.19,4 0,520,2.93,4 1,760,3,2 1,560,2.98,1 0,400,3.08,2 1,540,3.39,3 0,700,3.92,2 0,800,4,4 0,440,3.22,1 1,760,4,1 0,700,3.08,2 1,700,4,1 0,480,3.44,3 0,780,3.87,4 0,360,2.56,3 0,800,3.75,2 1,540,3.81,1 0,500,3.17,3 1,660,3.63,2 0,600,2.82,4 0,680,3.19,4 1,760,3.35,2 1,800,3.66,1 1,620,3.61,1 1,520,3.74,4 1,780,3.22,2 0,520,3.29,1 0,540,3.78,4 0,760,3.35,3 0,600,3.4,3 1,800,4,3 0,360,3.14,1 0,400,3.05,2 0,580,3.25,1 0,520,2.9,3 1,500,3.13,2 1,520,2.68,3 0,560,2.42,2 1,580,3.32,2 1,600,3.15,2 0,500,3.31,3 0,700,2.94,2 1,460,3.45,3 1,580,3.46,2 0,500,2.97,4 0,440,2.48,4 0,400,3.35,3 0,640,3.86,3 0,440,3.13,4 0,740,3.37,4 1,680,3.27,2 0,660,3.34,3 1,740,4,3 0,560,3.19,3 0,380,2.94,3 0,400,3.65,2 0,600,2.82,4 1,620,3.18,2 0,560,3.32,4 0,640,3.67,3 1,680,3.85,3 0,580,4,3 0,600,3.59,2 0,740,3.62,4 0,620,3.3,1 0,580,3.69,1 0,800,3.73,1 0,640,4,3 0,300,2.92,4 0,480,3.39,4 0,580,4,2 0,720,3.45,4 0,720,4,3 0,560,3.36,3 1,800,4,3 0,540,3.12,1 1,620,4,1 0,700,2.9,4 0,620,3.07,2 0,500,2.71,2 0,380,2.91,4 1,500,3.6,3 0,520,2.98,2 0,600,3.32,2 0,600,3.48,2 0,700,3.28,1 1,660,4,2 0,700,3.83,2 1,720,3.64,1 0,800,3.9,2 0,580,2.93,2 1,660,3.44,2 0,660,3.33,2 0,640,3.52,4 0,480,3.57,2 0,700,2.88,2 0,400,3.31,3 0,340,3.15,3 0,580,3.57,3 0,380,3.33,4 0,540,3.94,3 1,660,3.95,2 1,740,2.97,2 1,700,3.56,1 0,480,3.13,2 0,400,2.93,3 0,480,3.45,2 0,680,3.08,4 0,420,3.41,4 0,360,3,3 0,600,3.22,1 0,720,3.84,3 0,620,3.99,3 1,440,3.45,2 0,700,3.72,2 1,800,3.7,1 0,340,2.92,3 1,520,3.74,2 1,480,2.67,2 0,520,2.85,3 0,500,2.98,3 0,720,3.88,3 0,540,3.38,4 1,600,3.54,1 0,740,3.74,4 0,540,3.19,2 0,460,3.15,4 1,620,3.17,2 0,640,2.79,2 0,580,3.4,2 0,500,3.08,3 0,560,2.95,2 0,500,3.57,3 0,560,3.33,4 0,700,4,3 0,620,3.4,2 1,600,3.58,1 0,640,3.93,2 1,700,3.52,4 0,620,3.94,4 0,580,3.4,3 0,580,3.4,4 0,380,3.43,3 0,480,3.4,2 0,560,2.71,3 1,480,2.91,1 0,740,3.31,1 1,800,3.74,1 0,400,3.38,2 1,640,3.94,2 0,580,3.46,3 0,620,3.69,3 1,580,2.86,4 0,560,2.52,2 1,480,3.58,1 0,660,3.49,2 0,700,3.82,3 0,600,3.13,2 0,640,3.5,2 1,700,3.56,2 0,520,2.73,2 0,580,3.3,2 0,700,4,1 0,440,3.24,4 0,720,3.77,3 0,500,4,3 0,600,3.62,3 0,400,3.51,3 0,540,2.81,3 0,680,3.48,3 1,800,3.43,2 0,500,3.53,4 1,620,3.37,2 0,520,2.62,2 1,620,3.23,3 0,620,3.33,3 0,300,3.01,3 0,620,3.78,3 0,500,3.88,4 0,700,4,2 1,540,3.84,2 0,500,2.79,4 0,800,3.6,2 0,560,3.61,3 0,580,2.88,2 0,560,3.07,2 0,500,3.35,2 1,640,2.94,2 0,800,3.54,3 0,640,3.76,3 0,380,3.59,4 1,600,3.47,2 0,560,3.59,2 0,660,3.07,3 1,400,3.23,4 0,600,3.63,3 0,580,3.77,4 0,800,3.31,3 1,580,3.2,2 1,700,4,1 0,420,3.92,4 1,600,3.89,1 1,780,3.8,3 0,740,3.54,1 1,640,3.63,1 0,540,3.16,3 0,580,3.5,2 0,740,3.34,4 0,580,3.02,2 0,460,2.87,2 0,640,3.38,3 1,600,3.56,2 1,660,2.91,3 0,340,2.9,1 1,460,3.64,1 0,460,2.98,1 1,560,3.59,2 0,540,3.28,3 0,680,3.99,3 1,480,3.02,1 0,800,3.47,3 0,800,2.9,2 1,720,3.5,3 0,620,3.58,2 0,540,3.02,4 0,480,3.43,2 1,720,3.42,2 0,580,3.29,4 0,600,3.28,3 0,380,3.38,2 0,420,2.67,3 1,800,3.53,1 0,620,3.05,2 1,660,3.49,2 0,480,4,2 0,500,2.86,4 0,700,3.45,3 0,440,2.76,2 1,520,3.81,1 1,680,2.96,3 0,620,3.22,2 0,540,3.04,1 0,800,3.91,3 0,680,3.34,2 0,440,3.17,2 0,680,3.64,3 0,640,3.73,3 0,660,3.31,4 0,620,3.21,4 1,520,4,2 1,540,3.55,4 1,740,3.52,4 0,640,3.35,3 1,520,3.3,2 1,620,3.95,3 0,520,3.51,2 0,640,3.81,2 0,680,3.11,2 0,440,3.15,2 1,520,3.19,3 1,620,3.95,3 1,520,3.9,3 0,380,3.34,3 0,560,3.24,4 1,600,3.64,3 1,680,3.46,2 0,500,2.81,3 1,640,3.95,2 0,540,3.33,3 1,680,3.67,2 0,660,3.32,1 0,520,3.12,2 1,600,2.98,2 0,460,3.77,3 1,580,3.58,1 1,680,3,4 1,660,3.14,2 0,660,3.94,2 0,360,3.27,3 0,660,3.45,4 0,520,3.1,4 1,440,3.39,2 0,600,3.31,4 1,800,3.22,1 1,660,3.7,4 0,800,3.15,4 0,420,2.26,4 1,620,3.45,2 0,800,2.78,2 0,680,3.7,2 0,800,3.97,1 0,480,2.55,1 0,520,3.25,3 0,560,3.16,1 0,460,3.07,2 0,540,3.5,2 0,720,3.4,3 0,640,3.3,2 1,660,3.6,3 1,400,3.15,2 1,680,3.98,2 0,220,2.83,3 0,580,3.46,4 1,540,3.17,1 0,580,3.51,2 0,540,3.13,2 0,440,2.98,3 0,560,4,3 0,660,3.67,2 0,660,3.77,3 1,520,3.65,4 0,540,3.46,4 1,300,2.84,2 1,340,3,2 1,780,3.63,4 1,480,3.71,4 0,540,3.28,1 0,460,3.14,3 0,460,3.58,2 0,500,3.01,4 0,420,2.69,2 0,520,2.7,3 0,680,3.9,1 0,680,3.31,2 1,560,3.48,2 0,580,3.34,2 0,500,2.93,4 0,740,4,3 0,660,3.59,3 0,420,2.96,1 0,560,3.43,3 1,460,3.64,3 1,620,3.71,1 0,520,3.15,3 0,620,3.09,4 0,540,3.2,1 1,660,3.47,3 0,500,3.23,4 1,560,2.65,3 0,500,3.95,4 0,580,3.06,2 0,520,3.35,3 0,500,3.03,3 0,600,3.35,2 0,580,3.8,2 0,400,3.36,2 0,620,2.85,2 1,780,4,2 0,620,3.43,3 1,580,3.12,3 0,700,3.52,2 1,540,3.78,2 1,760,2.81,1 0,700,3.27,2 0,720,3.31,1 1,560,3.69,3 0,720,3.94,3 1,520,4,1 1,540,3.49,1 0,680,3.14,2 0,460,3.44,2 1,560,3.36,1 0,480,2.78,3 0,460,2.93,3 0,620,3.63,3 0,580,4,1 0,800,3.89,2 1,540,3.77,2 1,680,3.76,3 1,680,2.42,1 1,620,3.37,1 0,560,3.78,2 0,560,3.49,4 0,620,3.63,2 1,800,4,2 0,640,3.12,3 0,540,2.7,2 0,700,3.65,2 1,540,3.49,2 0,540,3.51,2 0,660,4,1 1,480,2.62,2 0,420,3.02,1 1,740,3.86,2 0,580,3.36,2 0,640,3.17,2 0,640,3.51,2 1,800,3.05,2 1,660,3.88,2 1,600,3.38,3 1,620,3.75,2 1,460,3.99,3 0,620,4,2 0,560,3.04,3 0,460,2.63,2 0,700,3.65,2 0,600,3.89,3
Answered Same DaySep 24, 2021

Answer To: admit,gre,gpa,rank 0,380,3.61,3 1,660,3.67,3 1,800,4,1 1,640,3.19,4 0,520,2.93,4 1,760,3,2...

Suraj answered on Sep 25 2021
144 Votes
{
"cells": [
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
"# loading important libraries \n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import statsmodels.api as sm\n",
"import statsmodels.formula.api as smf"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"name": "stdout",
"
output_type": "stream",
"text": [
"\n",
"RangeIndex: 400 entries, 0 to 399\n",
"Data columns (total 4 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 admit 400 non-null int64 \n",
" 1 gre 400 non-null int64 \n",
" 2 gpa 400 non-null float64\n",
" 3 rank 400 non-null int64 \n",
"dtypes: float64(1), int64(3)\n",
"memory usage: 12.6 KB\n"
]
}
],
"source": [
"df=pd.read_csv(\"C:/Users/Hp/Desktop/binary.csv\") # loading data set file\n",
"df.info() # getting information about variables in the data set"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
admitgregparank
003803.613
116603.673
218004.001
316403.194
405202.934
\n",
"
"
],
"text/plain": [
" admit gre gpa rank\n",
"0 0 380 3.61 3\n",
"1 1 660 3.67 3\n",
"2 1 800 4.00 1\n",
"3 1 640 3.19 4\n",
"4 0 520 2.93 4"
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head() # getting first five rows"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" ...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
admitgregparank
count400.000000