FIRST-ORDER DIFFERENCE EQUATIONS 53 2.3.1 Example The equation Yk+1 – Yk = 1 - k+ 2k3 (2.62) has the particular solution k-1 k-1 k-1 k-1 Σ1-i+2) - Σ (1) -Σι+2Σε Yk = i=1 (2.63) i=1 i=1 i=1 k(k – 1) (k...


Explain this


FIRST-ORDER DIFFERENCE EQUATIONS<br>53<br>2.3.1<br>Example<br>The equation<br>Yk+1 – Yk = 1 - k+ 2k3<br>(2.62)<br>has the particular solution<br>k-1<br>k-1<br>k-1<br>k-1<br>Σ1-i+2) - Σ (1) -Σι+2Σε<br>Yk =<br>i=1<br>(2.63)<br>i=1<br>i=1<br>i=1<br>k(k – 1)<br>(k – 1)²k²<br>= (k – 1) –<br>2<br>The general solution is<br>Yk = /2k* – k3 + 3/2k + A,<br>(2.64)<br>where A is an arbitrary constant. In terms of Bernoulli polynomials, this last<br>expression reads<br>Yk = B1(k) – 1/2B2(k)+\/½B4(k) + A1,<br>(2.65)<br>where A1 is an arbitrary function.<br>

Extracted text: FIRST-ORDER DIFFERENCE EQUATIONS 53 2.3.1 Example The equation Yk+1 – Yk = 1 - k+ 2k3 (2.62) has the particular solution k-1 k-1 k-1 k-1 Σ1-i+2) - Σ (1) -Σι+2Σε Yk = i=1 (2.63) i=1 i=1 i=1 k(k – 1) (k – 1)²k² = (k – 1) – 2 The general solution is Yk = /2k* – k3 + 3/2k + A, (2.64) where A is an arbitrary constant. In terms of Bernoulli polynomials, this last expression reads Yk = B1(k) – 1/2B2(k)+\/½B4(k) + A1, (2.65) where A1 is an arbitrary function.

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here