Answer To: Find DataSet[csv file from internet resources] with features of at least two and one output feature...
Suraj answered on Aug 07 2021
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 21613 entries, 0 to 21612\n",
"Data columns (total 21 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 id 21613 non-null int64 \n",
" 1 date 21613 non-null object \n",
" 2 price 21613 non-null float64\n",
" 3 bedrooms 21613 non-null int64 \n",
" 4 bathrooms 21613 non-null float64\n",
" 5 sqft_living 21613 non-null int64 \n",
" 6 sqft_lot 21613 non-null int64 \n",
" 7 floors 21613 non-null float64\n",
" 8 waterfront 21613 non-null int64 \n",
" 9 view 21613 non-null int64 \n",
" 10 condition 21613 non-null int64 \n",
" 11 grade 21613 non-null int64 \n",
" 12 sqft_above 21613 non-null int64 \n",
" 13 sqft_basement 21613 non-null int64 \n",
" 14 yr_built 21613 non-null int64 \n",
" 15 yr_renovated 21613 non-null int64 \n",
" 16 zipcode 21613 non-null int64 \n",
" 17 lat 21613 non-null float64\n",
" 18 long 21613 non-null float64\n",
" 19 sqft_living15 21613 non-null int64 \n",
" 20 sqft_lot15 21613 non-null int64 \n",
"dtypes: float64(5), int64(15), object(1)\n",
"memory usage: 3.5+ MB\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAJcCAYAAACrLZO2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZRtd1kn/O9DEkgICdjmooy5KoMKStSrtoCKgAootOtdYGOL2qId7XZARe3Qbb/qEpXWBiewNTYKDYoD4vCSVqAVUGTyBhmDKAIyGOAyh5kkz/vH2UUqlbr3Vt1bu+r8zvl81jqrzrD3/j17n13nfM9vT9XdAQBgud3ooAsAAODkhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgekqj5YVZ950HXsVFX9RFU99TSn8WtV9d/2qqYt0779tEzPOMEwXVV3mKP9dVBVz6uq7zzoOmBdCW2wR6rqTVX1kSk4vKOqfquqbna84bv7Zt39hplqeV5VvbeqbjLH9E9Vd393d//UTNN+87RMr0lWP2DsJERP6+R996umZWkbVpXQBnvrgd19syRfmOSLk/zY1gGq6sw5C6iqw0m+PEknedCcba2Tud83gJMR2mAG3f22JH+W5K7JJzfLfU9V/WOSf9z03B2m++dU1WOr6p+r6v1V9YKqOmd67V9X1Qur6n1V9YqqutdJmv/WJC9O8qQk37b5hap6UlU9oaouq6qrquolVfVZm17/pap6S1V9oKour6ov366Bafzv2/LcK6vqG2rhF6rqndO8vLKqNpbDk6rq0dP9C6rqmdN8vaeq/rqqbvCZVFU/WVW/Mt0/q6o+VFU/t2m5fbSqPqWqDk/L9Myq+uksguvjp57Px2+a5H2r6h+nnsgnVFUdZx5/oqqeXlVPraoPJPn3VXXzqnpiVV1ZVW+rqkdvbI6tqjtU1fOneX5XVf3epml1VX1/Vb1heu3nN89rVT28ql471fSsqrpw02t3qarnTMvoHVX1X6rqfkn+S5J/O83fK7ap/ylJbp/k/5uG+dHp+QdV1Wum5f68qvqc7eZ/Gvarq+rvp3l6fJLa9NpnVdVfVtW7p3n67aq6xUna3u26DGzW3W5ubntwS/KmJPed7t8uyWuS/NT0uJM8J8m/SnLOpufuMN1/QpLnJblNkjOS3D3JTabH707ygCx+ZH319PjQCep4fZL/lOSLknwiyadteu1JSd6T5EuSnJnkt5P87qbXH5bkU6fXHpnk7UnOnl77iSRPne5/Y5KXbBrvblNdN07ytUkuT3KLLL7kPyfJrTa1/+jp/s8m+bUkZ023L09S28zPvZO8arp/9yT/tNH29NorpvuHp2V65vT4eUm+c8u0Oskzp9pun+RYkvsdZzn+xLT8vmFa9uck+eMkv57k3CS3TPLSJN81Df+0JP91GvbsJPfc0u5zp/f/9kn+YaO2afqvn5bTmVn0zr5weu28JFdO78XZ0+Mv3fp+7GSdnB7fKcmHsliPzkryo1PbN95m3AuSfCDJg6dhfzDJ1ZvqvsM0nZskOZTkr5L84gna3vW67Obmdv3b0vW0VdVvTr/QX73D4b+xqq6Yfjn+ztz1wUn8cVW9L8kLkjw/yc9seu1nu/s93f2RzSNMPS4PT/KI7n5bd1/T3S/s7o9lEaL+T3f/n+6+trufk+RoFl98N1BV90xyYZLf7+7Lswg4/27LYM/o7pd299VZhLaLNl7o7qd297u7++rufmwWX8h33qapP0lyx6q64/T4W5L8Xnd/PIugc16Sz84ihL22u6/cZhqfSHKrJBd29ye6+6+7e7uLIb9oautTk3xFkicmuU0t9hf8yiyW8248prvf191vziJIXXSCYV/U3X/c3dcmOT/J/ZP8QHd/qLvfmeQXkjx00/xcmOTW3f3R7n7Blmn99+n9f3OSX0zyTdPz35XFuvHa6T35mSQXTb1tX5/k7d392GmaV3X3S3Y5v5v92ySXdfdzuvsTSf5HFmH07tsM+4AkV3T306dhfzGLEJ8k6e7XT9P5WHcfS/K4LN6P49nVugzc0NKFtix+id9vJwNOXxiPSnKP7r5Lkh+YsS7YiW/o7lt094Xd/Z+2BLS3HGecC7LoRfmnbV67MMlDps1J75sC4T2zCDvb+bYkz+7ud02PfydbNpFm0xdvkg8n+eTBElX1yGkz3funtm4+1Xc9U6D8/SQPm0LnNyV5yvTaXyZ5fBa9h++oqkur6vxtav35LHp5nj1tNrxkuxmaluHRLALBV2QR0l6Y5B45tdB23Pnfxub37MIsepyu3PRe/HoWPW7Joteqkrx0+hH58BNM65+T3HrTdH9p0zTfM03nNln02G63XpyqW09tJ0mmMPqWqa3thn3LpmF78+OqumVV/e60mfgDSZ6abdaVTXa7LgNbLF1o6+6/yuJD65OmfSf+vBb72Px1VX329NJ/SPKE7n7vNO4797lc2I3tepGS5F1JPprks7Z57S1JnjIFwY3bud39mK0D1mIfuG9M8pVV9faqensWm7TuVlV3O1lxtdh/7T9P0/iU7r5Fkvdn035MWzw5yTcnuU+SD3f3iz45o92/3N1flOQuWWyS+5GtI0+9Ro/s7s9M8sAkP1RV9zlOW8/PYlPoFyT52+nx12axmfevjjPO8Zb3bmyexluSfCzJBZvei/OnH4zp7rd393/o7ltn0Xv2q3X904vcbtP92yf5l03T/a4t7/E53f3C6bXt1oudzt/WYf4li/CUJJn257tdkrdtM+6Vm2veNOyGn52m//ndfX4WPWmb15Wtbe94XQa2t3Sh7TguTfJ905fADyf51en5OyW5U1X9TVW9eNo5F4Yy9Xb8ZpLHVdWtq+qMqvqyWpyu46lJHlhVXzs9f3ZV3auqbrvNpL4hyTVJPjeLTX4XZbGf1F9ncXDCyZyXxT5Lx5KcWVX/bxabBI9X94uSXJvksZl62ZKkqr64qr60qs7KYv+pj051XU9Vff20835lse/UNdsNN3n+NA9XTJtgn5fkO5O8cdo0t513JNmz8+BNm3ifneSxVXV+Vd1o+kH5ldP8PGTT+/LeLELL5vn5kVocMHG7JI9IsnGgwq8leVRV3WWazs2r6iHTa89M8ulV9QNVdZOqOq+qvnTT/B2ubQ7e2GTrMvj9JF9XVfeZ3p9HZhFEX7jNuJcluUtV/T+1OHL2+5N8+qbXz0vywSTvq6rb5IbBfGvbu1mXgW0sfWib9lu5e5I/qKqXZ7E5YqM7/cwkd0xyryw2z/yvjaOXYDA/nORVWfQivSfJf09yo+5+S5J/k8WRgsey6K34kWz/v/ttSX6rF+cre/vGLYtNld9cJz9lxbOyOOL1H7LYhPbRHH+T7ob/neTzsvhC3nB+kt/IIrj8cxY7m/+Pbca9Y5L/m8UX/4uS/Gp3P+847bwwi32vNnrVrpjqO14vW5L8UpIH1+KIzF8+yXzs1LdmcbDFFVnM39Nz3efRFyd5SVV9MMmfZrGP4hs3jfsnWRyg8fIsAtETk6S7/yiL9/t3p82Mr85i37l091VZ7LD/wCw26/5jkq+apvcH0993V9XLjlPvzyb5sWlz5A939+uy6BH7lSx6eB+YxWlqPr51xGkT+0OSPCaL9/COSf5m0yA/mcWpbd4/zc8zTtL2btZlYBu1/X6/B6sW55l6ZnffddoX5nXdfYP9Hqrq15K8uLufND3+iySXdPff7mO5sLaq6luTXNzd9zzoWpZZVXWSO3b36w+6FmBcS/8Lp7s/kOSNG5sLamFj/5w/zvSrs6ouyGJz6SxnmAeur6pumsWpRS496FoA1sHShbaqeloWm0ruXFVvrarvyGJn5++oxQkkX5NFF3uy2Jzz7qq6IotD93+ku999EHXDOqmqr81iE9c7sjhCFYCZLeXmUQAArm/petoAALihpboA8gUXXNCHDx8+6DIAAE7q8ssvf1d3H9qv9pYqtB0+fDhHjx496DIAAE6qqv755EPtHZtHAQAGMGtoq6ofnK7B9+qqelpVnT1newAAq2q20DZd1uT7kxzp7rsmOSPJQ+dqDwBglc29efTMJOdMl8+5aa67QDIAALswW2jr7rdlcb3BNye5Msn7u/vZW4erqour6mhVHT127HjXfQYAWG9zbh79lCyuXPAZSW6d5NyqetjW4br70u4+0t1HDh3at6NmAQCGMufm0fsmeWN3H+vuTyR5RpK7z9geAMDKmjO0vTnJv66qm1ZVJblPktfO2B4AwMqac5+2lyR5epKXJXnV1Nalc7UHALDKZr0iQnf/eJIfn7MNAIB14IoIAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAGsX2g5fctlBlwAAsGtrF9oAAEYktAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaGN4hy+57KBLAIDZzRbaqurOVfXyTbcPVNUPzNUeAMAqO3OuCXf365JclCRVdUaStyX5o7naAwBYZfu1efQ+Sf6pu/95n9oDAFgp+xXaHprkadu9UFUXV9XRqjp67NixfSoHAGAss4e2qrpxkgcl+YPtXu/uS7v7SHcfOXTo0NzlAAAMaT962u6f5GXd/Y59aAsAYCXtR2j7phxn0ygAADsza2irqpsm+eokz5izHQCAVTfbKT+SpLs/nORT52wDAGAduCICAMAAhDYAgAEIbcANuJ4rwPIR2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAHMGtqq6hZV9fSq+vuqem1Vfdmc7QEArKozZ57+LyX58+5+cFXdOMlNZ24PAGAlzRbaqur8JF+R5N8nSXd/PMnH52oPAGCVzbl59DOTHEvyW1X1d1X1v6rq3K0DVdXFVXW0qo4eO3ZsxnIAAMY1Z2g7M8kXJvmf3f0FST6U5JKtA3X3pd19pLuPHDp0aMZyAADGNWdoe2uSt3b3S6bHT88ixAEAsEuzhbbufnuSt1TVnaen7pPkirnaAwBYZXMfPfp9SX57OnL0DUm+feb2AABW0qyhrbtfnuTInG0AAKwDV0QAABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0Addz+JLLDroEALYhtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbcCeOXzJZQddAsDKEtoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbcBSOXzJZQddAsBSEtoAAAYgtAEADEBoAwAYgNAGADCAM+eceFW9KclVSa5JcnV3H5mzPQCAVTVraJt8VXe/ax/aAQBYWTaPAgAMYO7Q1kmeXVWXV9XF2w1QVRdX1dGqOnrs2LGZywEAGNPcoe0e3f2FSe6f5Huq6iu2DtDdl3b3ke4+cujQoZnLAQAY06yhrbv/Zfr7ziR/lORL5mwPAGBVzRbaqurcqjpv436Sr0ny6rnaAwBYZXMePfppSf6oqjba+Z3u/vMZ2wMAWFmzhbbufkOSu801fQCAdeKUHwAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0A7MjhSy476BJgrQltAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABnDS0VdWdquovqurV0+PPr6ofm780AAA27KSn7TeSPCrJJ5Kku1+Z5KFzFgUAwPXtJLTdtLtfuuW5q+coBoBxuKwV7K+dhLZ3VdVnJekkqaoHJ7ly1qpYW74EAGB7Z+5gmO9JcmmSz66qtyV5Y5KHzVoVAADXc9LQ1t1vSHLfqjo3yY26+6r5ywIAYLOdHD36iKo6P8mHk/xCVb2sqr5m/tIAANiwk33aHt7dH0jyNUlumeTbkzxm1qoAALienYS2mv4+IMlvdfcrNj0HAMA+2Elou7yqnp1FaHtWVZ2X5Np5ywIAYLOdHD36HUkuSvKG7v5wVX1qFptIAQDYJzsJbfec/n5+la2iAAAHYSeh7Uc23T87yZckuTzJvWepCACAG9jJedoeuPlxVd0uyc/NVhEAADewkwMRtnprkrvudSEAABzfSXvaqupXMl13NIuQd1GSV8xZFAAA17eTfdqObrp/dZKndfffzFQPAADb2Mk+bU+uqhsnudP01OvmLQkAgK12snn0XkmenORNWVwJ4XZV9W3d/VfzlgYAwIadbB59bJKv6e7XJUlV3SnJ05J80ZyFAQBwnZ0cPXrWRmBLku7+hyRnzVcSAABb7ehAhKp6YpKnTI+/OYuT6wIAsE920tP2H5O8Jsn3J3lEkiuSfPecRQGwnA5fctlBlwBraydHj34syeOmGwAAB2AnR4/eI8lPJLlw8/Dd/ZnzlQUAwGY72aftiUl+MIv92K6ZtxwAALazk9D2/u7+s9krAQDguI4b2qrqC6e7z62qn0/yjCQf23i9u182c20AAExO1NP22C2Pj2y630nuvfflAACwneOGtu7+qv0sBACA49vJedoAADhgQhsAwACOG9qq6iHT38/Yv3IAANjOiXraHjX9/cPTaaCqzqiqv6uqZ57OdAAA1tmJjh59d1U9N8lnVNWfbn2xux+0wzYekeS1Sc4/hfoAAMiJQ9vXJfnCJE/JDU//sSNVddtpOj+d5IdOZRoAAJxg82h3f7y7X5zk7t39/CQvS3J5dz9/erwTv5jkR5Nce7wBquriqjpaVUePHTu2m9qBPXL4kssOugQATmInR49+WlX9XZJXJ7miqi6vqruebKSq+vok7+zuy080XHdf2t1HuvvIoUOHdlY1AMCa2UlouzTJD3X3hd19+ySPnJ47mXskeVBVvSnJ7ya5d1U99ZQrBQBYYzsJbed293M3HnT385Kce7KRuvtR3X3b7j6c5KFJ/rK7H3aqhQIArLMTHYiw4Q1V9d+yOCAhSR6W5I3zlQQAwFY76Wl7eJJDSZ4x3S5I8u27aaS7n9fdX7/78gAASHbQ09bd703y/ftQCwAAx+HaowAAAxDaAAAGILQBAAzgpKGtqu5UVX9RVa+eHn9+Vf3Y/KWxTpyRHwBObCc9bb+R5FFJPpEk3f3KLM67BgDAPtlJaLtpd790y3NXz1EMAADb20loe1dVfVaSTpKqenCSK2etClgZNn2fmOUD7NROrojwPVlca/Szq+ptWVwNweWoAAD20U5OrvuGJPetqnOT3Ki7r5q/LAAANtvJ0aM/U1W36O4PdfdVVfUpVfXo/SgOAICFnezTdv/uft/Gg+myVg+YryQAALbaSWg7o6pusvGgqs5JcpMTDA8AwB7bSWh7apK/qKrvqKqHJ3lOkifPWxawW45CBFhtOzkQ4eeq6lVJ7pOkkvxUdz9r9soAAPiknZzyI939Z0n+bOZaAAA4juOGtqp6QXffs6quynRi3Y2XknR3nz97dQAAJDnBPm3dfc/p73ndff6m23kCG6vIPmEHz3sAcHwnPBChqm5UVa/er2IAAHZq3X7onTC0dfe1SV5RVbffp3oAANjGTg5EuFWS11TVS5N8aOPJ7n7QbFUBAHA9OwltPzl7FQAM6fAll+VNj/m6gy4D1sKJjh49O8l3J7lDklcleWJ3X71fhQEAcJ0T7dP25CRHsghs90/y2H2pCDgthy+5bO12zgVYByfaPPq53f15SVJVT0zy0v0pCQCArU7U0/aJjTs2iwIAHKwT9bTdrao+MN2vJOdMj10RAQBgnx03tHX3GftZCAAAx3fCk+sCALAchDYAgAEIbQAAAxDaAAAGILQBAAxAaNslZ5oHAA6C0MZa26sQLswDMDehbQ25NiUAjEdoAwAYgNAGADAAoY2VZRMwAKtEaAMAGIDQBgAwAKFtSa37pr11n3/2lvUJWAVCG9fjyw0AlpPQBgAwAKENAGAAQhsAwACENgCAAQhtM7FDPwCwl4Q2OEVzBfN1C/zrNr/My/rEKhPaAAAGILSxLb9WAWC5CG0AAAMQ2gAABiC0sZZs/gVgNELbaTroL/+Dav+g5xsA1o3QBgAwAKFtn2zXM3X4ksv0WAEAOyK0AfvODxaA3ZsttFXV2VX10qp6RVW9pqp+cq62AABW3ZkzTvtjSe7d3R+sqrOSvKCq/qy7XzxjmwAAK2m20NbdneSD08OzplvP1R4AwCqbdZ+2qjqjql6e5J1JntPdL9lmmIur6mhVHT127Nic5ayEvd4PyH5FcMP/g1X+v1jleYNVN2to6+5ruvuiJLdN8iVVdddthrm0u49095FDhw7NWQ5rwBcSAKtqX44e7e73JXlekvvtR3sAAKtmzqNHD1XVLab75yS5b5K/n6s9WDarflqLE83fXs33Ki8/gN2as6ftVkmeW1WvTPK3WezT9swZ24OTEgIAGNWcR4++MskXzDV9SIQwANaHKyIAAAxAaIMDprdwd5ZpX8Gd1LHbWpdl3oDlI7QBsO+EU9g9oQ0AYABCGzAkPTXAuhHaAAAGILQBAAxAaAMAGIDQto1lOqUAAEAitAEADEFoAwAYwFqGNps+AcbicxvWNLQBAIxGaFsyfk2uJ+87ACcjtMEuCViMYoQj4Ze9vlFZrqtJaAMAGIDQBoPzixpgPQhtAAADENoAloAeU+BkhDZYQiPsQA7A/hLaAAAGILQxLD1R68X7Daw7oQ0AYABC2x7RCwDLZa7/Sf/rwEER2oClIAwBnJjQtgJ82Y3F+7W+vPfA6RDaVogvhPXi/QZYL0IbAMAAhLYVNGcPjJO+7j/Le2fmXk7WfeCgCW2wpgSQ5ec9AjYT2gAABiC0wWnSG8KpWuZ1x+ZgWD5CGwDAAIQ2gNOgNwrYL0LbAHwp7L/9OBJxlaza/LA3rBewt4Q2AIABCG0wED0XAOtLaAMAGMBahzb7Le0Py2G1eX8B9sdahzaAvSC4AvtBaAMAGMDah7Z1/oW8zvN+uk607CxXDoL1Dlbf2oc2AIARCG2wBvTCAIxPaANWlrAKrBKhjVO2n1+Ihy+5bKgv4JFqZT2c6jppXYblIbSxb0YLXuw97//y8F7AeIQ2AIABCG0rbBV/Sc91qo1VXFac2H6859YrYC8JbQAAAxDaAAAGILSxJ+baDLQKm5dWYR4AOHhCG8ASW6ejrtdlPuFUCW0AAxJwYP0IbQAAAxDaWDp6EOZnGQOMR2gDABiA0AasHD2JwCqaLbRV1e2q6rlV9dqqek1VPWKutvaSD3sYl1PPAKvszBmnfXWSR3b3y6rqvCSXV9VzuvuKGdsEAFhJs/W0dfeV3f2y6f5VSV6b5DZztQcAsMr2ZZ+2qjqc5AuSvGSb1y6uqqNVdfTYsWP7Uc4pO9VNJCcbb51Onsl4TmfdtF5z0KyDrJI5N48mSarqZkn+MMkPdPcHtr7e3ZcmuTRJjhw50nPXswx8iAAAuzVrT1tVnZVFYPvt7n7GnG2xPIRSANh7cx49WkmemOS13f24udpZdesQgHay+Ri4If8bsF7m7Gm7R5JvSXLvqnr5dHvAjO3BCa3KF9yqzAcAuzPbPm3d/YIkNdf0YUTrGrgOX3JZ3vSYrzvoMgCG5ooIwJ5a12AKMDeh7TT4clrYyXKwrGD1zX16GJ8jrDuhbY855xojsa4CjENoW3HL+qW8rHWdjlWcJ+bjqGlgt4Q2ZuNLh71mnWIO1itGIbQBAAxAaNvkdH9trdqvtVWbHwAYmdB2AkLLalv193fV5w9g3QhtO+QL8OQso3lZvvtjL5bzyO+VI+BheQltACwNoRGOT2gDYEgCHutGaONAzfGB60Ock1m3dWRZ5ndZ6jhIgianQ2hbQv6hYWf8r8DB8f+3/4Q2AIABCG2wRPxyZb9Z52AcQhvAkhCgtme5wILQxo6t+wfnus8/nA7/P3D6hDYA2CHhk4MktJHEBxHLZ7/XSf8DwLIT2gbkywXYzGcCrAehDWCXVjEkreI8waoR2k5iWT7ITqeOg5iHVVhuwLxG+/883XpHm1+Wj9AGwNoQnBiZ0JYx/4ldv24eoy/TrfWPPj8wl+N9hq7a/8yqzc+6E9qAXfElsHq8pzAGoQ1gj+wk/IwYkEas+SBYTsxNaIOBHdSXhC8ngP0ntO0jX3QAwKkS2oAdWYUfHSMfwDNq3bDX1vl/QWhj5Y38RQ3sP58XLCuhDTgpX2IAB09oA9bCKgTPVZiHZWA5MiqhDQ6QLw8AdkpoAwAYgNAGADAAoQ32gc2g17EsAE6N0AYstVUIeU47s5q8p+w3oY1P8gEEAMtLaAOSCBp3USYAAAjQSURBVO0Ay05oAwAYgNAGANHbzPIT2gAYjoC1ntb9fRfa2JF1/0dh/VjnT52jZTkR68apE9qA4S3Tl8Ay1bIM1m15rNv8sr+ENvbdiB9qI9YMwGoR2hiOAMV+sr6dnGUE+0NoWzEn+vD0wQoA4xLaABiKH6CsK6ENAJaQcMpWQhuskWX7Eli2eoBTZ/ec+Qlta8Y/DrCOfPaxCoQ2OI5l+JBfhhoAWA5CGwD7Zqc/RPxggRsS2gAABiC0AQAMQGgDWBE2Ke6eZcZIhDYAgAEIbQCD0TsE6+nMgy4AlpkvRwCWxWw9bVX1m1X1zqp69VxtAMDc/HhjWcy5efRJSe434/QBANbGbKGtu/8qyXvmmj4AwDo58AMRquriqjpaVUePHTt20OUAa8amr+XlvWGn1mVdOfDQ1t2XdveR7j5y6NChgy4HANildQlNB+3AQxsAnK6DDg0H3T7rQWgDgDUmcI5jzlN+PC3Ji5LcuareWlXfMVdbALBBCGFVzXn06Dd19626+6zuvm13P3GutgBgGQmQ7CWbR0+Rf0QAYD8JbbAm/NBYH97rMSzj+7SMNXEdoQ2AXfHFfp1lWxbHq+fwJZctXa3sntAGALuwKgFoFeZh3QhtnJB/amA3luUzY1nq2LBs9TAmoQ0AlsiqBLxVmY9lIrQBsNKEh1M317LznpwaoQ0AYABCGwAsGT1cbEdoAwAYgNAGAEtucw/ZfvWW6ZVbPkIbAMAAhDaANaMHZXxz9rxZP5aX0AYA2xBeWDZCGwAMYFUun3U8qzxve0VoA4DjcOqNg7PqIfVUCG0AcMCEE3ZCaANYQUIArB6hDQAGt+ohfdXnb6eENgBYU7sNQycbfuN1IWseQhuwLR+6sPxW4f90FeZhvwhtAAADOPOgCwAAxrLT3jG9aHtLTxsAwACENgBYAsvaK+Ukt8tDaAMATkpwO3hCGwDAAIQ2AGDf6bnbPaENADglgtf+EtoAYIWNdnqOZaljGQltADAD4YO9JrQBwB5b5sC2jLUtY03LSGgDABiA0AbA0PTSsGHV1wWhDQAO0KoHDfaO0AYAK0QIXF1CGwDAAIQ2AIABCG0AsMTWfXPnus//ZkIbADA74ev0CW0AAAMQ2gCAYa1TD57QBgCsjFUOcUIbAMAAhDYAgAEIbQDAUlnlTZynQ2gDAIayrqFOaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYACzhraqul9Vva6qXl9Vl8zZFgDAKpsttFXVGUmekOT+ST43yTdV1efO1R4AwCqbs6ftS5K8vrvf0N0fT/K7Sf7NjO0BAKys6u55Jlz14CT36+7vnB5/S5Iv7e7v3TLcxUkunh7eOcnrZinoOhckedf0N1vu7/bxXMMa17jLNu4INRrXuAfdjnGXa9x3ZX4XdvehfWgnSXLmjNOubZ67QULs7kuTXDpjHddTVUe7+0hVHZ3a/+T93T6ea1jjGnfZxh2hRuMa96DbMe5yjdvdR7Ji5tw8+tYkt9v0+LZJ/mXG9gAAVtacoe1vk9yxqj6jqm6c5KFJ/nTG9gAAVtZsm0e7++qq+t4kz0pyRpLf7O7XzNXeLly65e/W+7t9PNewxjXuso07Qo3GNe5Bt2Pc5Rx3Jcx2IAIAAHvHFREAAAYgtAEADOCU92mrqtsl+b0kFyU5O8k1Sa7N4lQfZ+1JdQAAq+OaJB9OctPp8QeTfDTJVUke3d1PPtHIp7xPW1XdKsnnTQ8/nOR/Jzl3ur05yeFcF+A+kkWw6yRXJzkni4C3MQNnTa9tPrfbRgDc/NzVmffccgAAp2Mjz2zkmI3nPpbkJtNzG6dA+/Tp/lck+cskX9Td7z3ehE9582h3X9ndz55uL0jyqiT/lMWRojefin3d1MbZ0/NXTAVvnrEzpvvX5vquyg1P0CuwAQDL6hNZZJfOIv9sZJlrs8gw75uG+/vp9vYk/5Dky5I8J8n9TjTxPQlBVXU4yZGpsJskOS+Lrr9bTs+dMf391FwXFLcGxq0B7eZ7URsAwEy220q42TXT36unYTduG899ePp7mywuSnCbEzV22gciVNXNkvxRFt1+H5luN52K+kiuP0P/ecvoV59g0lu3225dEAAAo9sc5E64z9pphbaqOivJM7LYR+3jSf7n9NK1WaTLP9lUxDVJvm/T6J/YOrmTNOdIVwBgmWzNLluzysYuYGdOt8376p+ZRSfXWVns13bSy32ezoEIleTJWWwWTZJnJ/lXSR6QRYh771TYLbMIcRtdg2dPz189zdwZm16/8aaZuTrXbVbdsLUb8lTt1XQAADbbyYEIV07Pf9p0f/OBCO853oRPJ7TdM8lfb1MkAAA3tPWUHx/Kdaf8+Onu/q0TjewyVgAAA7CfGADAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDhlRV11TVy6vqNVX1iqr6oao64WdaVR2uqn+3XzUC7CWhDRjVR7r7ou6+S5KvzuLE3j9+knEOJxHagCE5TxswpKr6YHffbNPjz0zyt0kuSHJhkqckOXd6+Xu7+4VV9eIkn5PkjVlc0eWXkzwmyb2yOFP5E7r71/dtJgB2QWgDhrQ1tE3PvTfJZ2dxdvFru/ujVXXHJE/r7iNVda8kP9zdXz8Nf3GSW3b3o6vqJkn+JslDuvuN+zozADtw5kEXALCHNi6ld1aSx1fVRVlcNuZOxxn+a5J8flU9eHp88yR3zKInDmCpCG3ASpg2j16T5J1Z7Nv2jiR3y2Lf3Y8eb7Qk39fdz9qXIgFOgwMRgOFV1aEkv5bk8b3Y5+PmSa7s7muTfEuSM6ZBr0py3qZRn5XkP1bVWdN07lRV5wZgCelpA0Z1TlW9PItNoVdnceDB46bXfjXJH1bVQ5I8N8mHpudfmeTqqnpFkicl+aUsjih9WVVVkmNJvmG/ZgBgNxyIAAAwAJtHAQAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAfz/bahZ0HjPBuQAAAAASUVORK5CYII=\n",
"text/plain": [
"