Find DataSet[csv file from internet resources] with features of at least two and one output feature Ex: house , car data sets where they have features like [area, bedrooms, bathrooms and price] or...

1 answer below ยป


  • Find DataSet[csv file from internet resources] with features of at least two and one output feature

  • Ex: house , car data sets where they have features like [area, bedrooms, bathrooms and price] or [mileage, MPG, and price ]

  • apply all preprocessing techniques we have covered

  • Draw bar plots and scatters for the features

  • Using linear regression Draw prediction line[best fit line],

  • Apply prediction for new input

  • Calculate accuracy using r squared method









  • prepare a .Doc file report. Report should include introduction part in which you should write what are you going to do and what kind of data set you are going to work with

  • in Methodologies part you should include : All the steps you applied, cleaning, filling missing values, normalization etc

  • Conclusions: Write your outcomes, how did your model perform.

  • Design of report is up to you, write your name and surname

  • Direct replicas will be dropped down from grading [plagiarism algorithm is applied]

Answered Same DayAug 01, 2021

Answer To: Find DataSet[csv file from internet resources] with features of at least two and one output feature...

Suraj answered on Aug 07 2021
137 Votes
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 21613 entries, 0 to 21612\n",
"Data columns (total 21 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 id 21613 non-null int64 \n",
" 1 date 21613 non-null object \n",
" 2 price 21613 non-null float64\n",
" 3 bedrooms 21613 non-null int64 \n",
" 4 bathrooms 21613 non-null float64\n",
" 5 sqft_living 21613 non-null int64 \n",
" 6 sqft_lot 21613 non-null int64 \n",
" 7 floors 21613 non-null float64\n",
" 8 waterfront 21613 non-null int64 \n",
" 9 view 21613 non-null int64 \n",
" 10 condition 21613 non-null int64 \n",
" 11 grade 21613 non-null int64 \n",
" 12 sqft_above 21613 non-null int64 \n",
" 13 sqft_basement 21613 non-null int64 \n",
" 14 yr_built 21613 non-null int64 \n",
" 15 yr_renovated 21613 non-null int64 \n",
" 16 zipcode 21613 non-null int64 \n",
" 17 lat 21613 non-null float64\n",
" 18 long 21613 non-null float64\n",
" 19 sqft_living15 21613 non-null int64 \n",
" 20 sqft_lot15 21613 non-null int64 \n",
"dtypes: float64(5), int64(15), object(1)\n",
"memory usage: 3.5+ MB\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAJcCAYAAACrLZO2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZRtd1kn/O9DEkgICdjmooy5KoMKStSrtoCKgAootOtdYGOL2qId7XZARe3Qbb/qEpXWBiewNTYKDYoD4vCSVqAVUGTyBhmDKAIyGOAyh5kkz/vH2UUqlbr3Vt1bu+r8zvl81jqrzrD3/j17n13nfM9vT9XdAQBgud3ooAsAAODkhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgekqj5YVZ950HXsVFX9RFU99TSn8WtV9d/2qqYt0779tEzPOMEwXVV3mKP9dVBVz6uq7zzoOmBdCW2wR6rqTVX1kSk4vKOqfquqbna84bv7Zt39hplqeV5VvbeqbjLH9E9Vd393d//UTNN+87RMr0lWP2DsJERP6+R996umZWkbVpXQBnvrgd19syRfmOSLk/zY1gGq6sw5C6iqw0m+PEknedCcba2Tud83gJMR2mAG3f22JH+W5K7JJzfLfU9V/WOSf9z03B2m++dU1WOr6p+r6v1V9YKqOmd67V9X1Qur6n1V9YqqutdJmv/WJC9O8qQk37b5hap6UlU9oaouq6qrquolVfVZm17/pap6S1V9oKour6ov366Bafzv2/LcK6vqG2rhF6rqndO8vLKqNpbDk6rq0dP9C6rqmdN8vaeq/rqqbvCZVFU/WVW/Mt0/q6o+VFU/t2m5fbSqPqWqDk/L9Myq+uksguvjp57Px2+a5H2r6h+nnsgnVFUdZx5/oqqeXlVPraoPJPn3VXXzqnpiVV1ZVW+rqkdvbI6tqjtU1fOneX5XVf3epml1VX1/Vb1heu3nN89rVT28ql471fSsqrpw02t3qarnTMvoHVX1X6rqfkn+S5J/O83fK7ap/ylJbp/k/5uG+dHp+QdV1Wum5f68qvqc7eZ/Gvarq+rvp3l6fJLa9NpnVdVfVtW7p3n67aq6xUna3u26DGzW3W5ubntwS/KmJPed7t8uyWuS/NT0uJM8J8m/SnLOpufuMN1/QpLnJblNkjOS3D3JTabH707ygCx+ZH319PjQCep4fZL/lOSL
knwiyadteu1JSd6T5EuSnJnkt5P87qbXH5bkU6fXHpnk7UnOnl77iSRPne5/Y5KXbBrvblNdN07ytUkuT3KLLL7kPyfJrTa1/+jp/s8m+bUkZ023L09S28zPvZO8arp/9yT/tNH29NorpvuHp2V65vT4eUm+c8u0Oskzp9pun+RYkvsdZzn+xLT8vmFa9uck+eMkv57k3CS3TPLSJN81Df+0JP91GvbsJPfc0u5zp/f/9kn+YaO2afqvn5bTmVn0zr5weu28JFdO78XZ0+Mv3fp+7GSdnB7fKcmHsliPzkryo1PbN95m3AuSfCDJg6dhfzDJ1ZvqvsM0nZskOZTkr5L84gna3vW67Obmdv3b0vW0VdVvTr/QX73D4b+xqq6Yfjn+ztz1wUn8cVW9L8kLkjw/yc9seu1nu/s93f2RzSNMPS4PT/KI7n5bd1/T3S/s7o9lEaL+T3f/n+6+trufk+RoFl98N1BV90xyYZLf7+7Lswg4/27LYM/o7pd299VZhLaLNl7o7qd297u7++rufmwWX8h33qapP0lyx6q64/T4W5L8Xnd/PIugc16Sz84ihL22u6/cZhqfSHKrJBd29ye6+6+7e7uLIb9oautTk3xFkicmuU0t9hf8yiyW8248prvf191vziJIXXSCYV/U3X/c3dcmOT/J/ZP8QHd/qLvfmeQXkjx00/xcmOTW3f3R7n7Blmn99+n9f3OSX0zyTdPz35XFuvHa6T35mSQXTb1tX5/k7d392GmaV3X3S3Y5v5v92ySXdfdzuvsTSf5HFmH07tsM+4AkV3T306dhfzGLEJ8k6e7XT9P5WHcfS/K4LN6P49nVugzc0NKFtix+id9vJwNOXxiPSnKP7r5Lkh+YsS7YiW/o7lt094Xd/Z+2BLS3HGecC7LoRfmnbV67MMlDps1J75sC4T2zCDvb+bYkz+7ud02PfydbNpFm0xdvkg8n+eTBElX1yGkz3funtm4+1Xc9U6D8/SQPm0LnNyV5yvTaXyZ5fBa9h++oqkur6vxtav35LHp5nj1tNrxkuxmaluHRLALBV2QR0l6Y5B45tdB23Pnfxub37MIsepyu3PRe/HoWPW7Joteqkrx0+hH58BNM65+T3HrTdH9p0zTfM03nNln02G63XpyqW09tJ0mmMPqWqa3thn3LpmF78+OqumVV/e60mfgDSZ6abdaVTXa7LgNbLF1o6+6/yuJD65OmfSf+vBb72Px1VX329NJ/SPKE7n7vNO4797lc2I3tepGS5F1JPprks7Z57S1JnjIFwY3bud39mK0D1mIfuG9M8pVV9faqensWm7TuVlV3O1lxtdh/7T9P0/iU7r5Fkvdn035MWzw5yTcnuU+SD3f3iz45o92/3N1flOQuWWyS+5GtI0+9Ro/s7s9M8sAkP1RV9zlOW8/PYlPoFyT52+nx12axmfevjjPO8Zb3bmyexluSfCzJBZvei/OnH4zp7rd393/o7ltn0Xv2q3X904vcbtP92yf5l03T/a4t7/E53f3C6bXt1oudzt/WYf4li/CUJJn257tdkrdtM+6Vm2veNOyGn52m//ndfX4WPWmb15Wtbe94XQa2t3Sh7TguTfJ905fADyf51en5OyW5U1X9TVW9eNo5F4Yy9Xb8ZpLHVdWtq+qMqvqyWpyu46lJHlhVXzs9f3ZV3auqbrvNpL4hyTVJPjeLTX4XZbGf1F9ncXDCyZyXxT5Lx5KcWVX/bxabBI9X94uSXJvksZl62ZKkqr64qr60qs7KYv+pj051XU9Vff20835lse/UNdsNN3n+NA9XTJtgn5fkO5O8cdo0t513JNmz8+BNm3ifneSxVXV+Vd1o+kH5ldP8PGTT+/LeLELL5vn5kVocMHG7JI9IsnGgwq8leVRV3WWazs2r6iHTa89M8ulV9QNVdZOqOq+qvnTT/B2ubQ7e2GTrMvj9JF9XVfeZ3p9HZhFEX7jNuJcluUtV/T+1OHL2+5N8+qbXz0vywSTvq6rb5IbBfGvbu1mXgW0sfWib9lu5e5I/qKqXZ7E5YqM7/cwkd0xyryw2z/yvjaOXYDA/nORVWfQivSfJf09yo+5+S5J/k8WRgsey6K34kWz/v/ttSX6rF+cre/vGLYtNld9cJz9lxbOyOOL1H7LYhPbRHH+T7ob/neTzsvhC3nB+kt/IIrj8cxY7m/+Pbca9Y5L/m8UX/4uS/Gp3P+847bwwi32vNnrVrpjqO14vW5L8UpIH1+KIzF8+yXzs1LdmcbDFFVnM39Nz3efRFyd5SVV9MMmfZrGP4hs3jfsnWRyg8fIsAtETk6S7/yiL9/t3p82Mr85i37l091VZ7LD/wCw26/5jkq+apvcH0993V9XLjlPvzyb5sWlz5A939+uy6BH7lSx6eB+YxWlqPr51xGkT+0OSPCaL9/COSf5m0yA/mcWpbd4/zc8zTtL2btZlYBu1/X6/B6sW55l6ZnffddoX5nXdfYP9Hqrq15K8uLufND3+iySXdPff7mO5sLaq6luTXNzd9zzoWpZZVXWSO3b36w+6FmBcS/8Lp7s/kOSNG5sLamFj/5w/zvSrs6ouyGJz6SxnmAeur6pumsWpRS496FoA1sHShbaqeloWm0ruXFVvrarvyGJn5++oxQkkX5NFF3uy2Jzz7qq6IotD93+ku999EHXDOqmqr81iE9c7sjhCFYCZLeXmUQAArm/petoAALihpboA8gUXXNCHDx8+6DIAAE7q8ssvf1d3H9qv9pYqtB0+fDhHjx496DIAAE6qqv755EPtHZtHAQAGMGtoq6ofnK7B9+qqelpVnT1newAAq2q20DZd1uT7kxzp7rsmOSPJQ+dqDwBglc29efTMJOdMl8+5aa67QDIAALswW2jr7rdlcb3BNye5Msn7u/vZW4erqour6mhVHT127HjXfQYAWG9zbh79lCyuXPAZSW6d5NyqetjW4br70u4+0t1HDh3at6NmAQCGMufm0fsmeWN3H+vuTyR5RpK7z9geAMDKmjO0vTnJv66qm1ZVJblPktfO2B4AwMqac5+2lyR5epKXJXnV1Nalc7UHALDKZr0iQnf/eJIfn7MNAIB14IoIAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAGsX2g5fctlBlwAAsGtrF9oAAEYktAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaGN4hy+57KBLAIDZzRbaqurOVfXyTbcPVNUPzNUeAMAqO3OuCXf365JclCRVdUaStyX5o7naAwBYZfu1efQ+Sf6pu/95n9oDAFgp+xXaHprkadu9UFUXV9XRqjp67NixfSoHAGAss4e2qrpxkgcl+YPtXu/uS7v7SHcfOXTo0NzlAAAMaT962u6f5GXd/Y59aAsAYCXtR2j7phxn0ygAADsza2irqpsm+eokz5izHQCAVTfbKT+SpLs/nORT52wDAGAduCICAMAAhDYAgAEIbcANuJ4rwPIR2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAHMGtqq6hZV9fSq+vuqem1Vfdmc7QEArKozZ57+LyX58+5+cFXdOMlNZ24PAGAlzRbaqur8JF+R5N8nSXd/PMnH52oPAGCVzbl59DOTHEvyW1X1d1X1v6rq3K0DVdXFVXW0qo4eO3ZsxnIAAMY1Z2g7M8kXJvmf3f0FST6U5JKtA3X3pd19pLuPHDp0aMZyAADGNWdoe2uSt3b3S6bHT88ixAEAsEuzhbbufnuSt1TVnaen7pPkirnaAwBYZXMfPfp9SX57OnL0DUm+feb2AABW0qyhrbtfnuTInG0AAKwDV0QAABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbQAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0Addz+JLLDroEALYhtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbcCeOXzJZQddAsDKEtoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDABiA0AYAMAChDQBgAEIbAMAAhDYAgAEIbcBSOXzJZQddAsBSEtoAAAYgtAEADEBoAwAYgNAGADCAM+eceFW9KclVSa5JcnV3H5mzPQCAVTVraJt8VXe/ax/aAQBYWTaPAgAMYO7Q1kmeXVWXV9XF2w1QVRdX1dGqOnrs2LGZywEAGNPcoe0e3f2FSe6f5Huq6iu2DtDdl3b3ke4+cujQoZnLAQAY06yhrbv/Zfr7ziR/lORL5mwPAGBVzRbaqurcqjpv436Sr0ny6rnaAwBYZXMePfppSf6oqjba+Z3u/vMZ2wMAWFmzhbbufkOSu801fQCAdeKUHwAAAxDaAAAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABCG0A7MjhSy476BJgrQltAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYABCGwDAAIQ2AIABnDS0VdWdquovqurV0+PPr6ofm780AAA27KSn7TeSPCrJJ5Kku1+Z5KFzFgUAwPXtJLTdtLtfuuW5q+coBoBxuKwV7K+dhLZ3VdVnJekkqaoHJ7ly1qpYW74EAGB7Z+5gmO9JcmmSz66qtyV5Y5KHzVoVAADXc9LQ1t1vSHLfqjo3yY26+6r5ywIAYLOdHD36iKo6P8mHk/xCVb2sqr5m/tIAANiwk33aHt7dH0jyNUlumeTbkzxm1qoAALienYS2mv4+IMlvdfcrNj0HAMA+2Elou7yqnp1FaHtWVZ2X5Np5ywIAYLOdHD36HUkuSvKG7v5wVX1qFptIAQDYJzsJbfec/n5+la2iAAAHYSeh7Uc23T87yZckuTzJvWepCACAG9jJedoeuPlxVd0uyc/NVhEAADewkwMRtnprkrvudSEAABzfSXvaqupXMl13NIuQd1GSV8xZFAAA17eTfdqObrp/dZKndfffzFQPAADb2Mk+bU+uqhsnudP01OvmLQkAgK12snn0XkmenORNWVwJ4XZV9W3d/VfzlgYAwIadbB59bJKv6e7XJUlV3SnJ05J80ZyFAQBwnZ0cPXrWRmBLku7+hyRnzVcSAABb7ehAhKp6YpKnTI+/OYuT6wIAsE920tP2H5O8Jsn3J3lEkiuSfPecRQGwnA5fctlBlwBraydHj34syeOmGwAAB2AnR4/eI8lPJLlw8/Dd/ZnzlQUAwGY72aftiUl+MIv92K6ZtxwAALazk9D2/u7+s9krAQDguI4b2qrqC6e7z62qn0/yjCQf23i9u182c20AAExO1NP22C2Pj2y630nuvfflAACwneOGtu7+qv0sBACA49vJedoAADhgQhsAwACOG9qq6iHT38/Yv3IAANjOiXraHjX9/cPTaaCqzqiqv6uqZ57OdAAA1tmJjh59d1U9N8lnVNWfbn2xux+0wzYekeS1Sc4/hfoAAMiJQ9vXJfnCJE/JDU//sSNVddtpOj+d5IdOZRoAAJxg82h3f7y7X5zk7t39/CQvS3J5dz9/erwTv5jkR5Nce7wBquriqjpaVUePHTu2m9qBPXL4kssOugQATmInR49+WlX9XZJXJ7miqi6vqruebKSq+vok7+zuy080XHdf2t1HuvvIoUOHdlY1AMCa2UlouzTJD3X3hd19+ySPnJ47mXskeVBVvSnJ7ya5d1U99ZQrBQBYYzsJbed293M3HnT385Kce7KRuvtR3X3b7j6c5KFJ/rK7H3aqhQIArLMTHYiw4Q1V9d+yOCAhSR6W5I3zlQQAwFY76Wl7eJJDSZ4x3S5I8u27aaS7n9fdX7/78gAASHbQ09bd703y/ftQCwAAx+HaowAAAxDaAAAGILQBAAzgpKGtqu5UVX9RVa+eHn9+Vf3Y/KWxTpyRHwBObCc9bb+R5FFJPpEk3f3KLM67BgDAPtlJaLtpd790y3NXz1EMAADb20loe1dVfVaSTpKqenCSK2etClgZNn2fmOUD7NROrojwPVlca/Szq+ptWVwNweWoAAD20U5OrvuGJPetqnOT3Ki7r5q/LAAANtvJ0aM/U1W36O4PdfdVVfUpVfXo/SgOAICFnezTdv/uft/Gg+myVg+YryQAALbaSWg7o6pusvGgqs5JcpMTDA8AwB7bSWh7apK/qKrvqKqHJ3lOkifPWxawW45CBFhtOzkQ4eeq6lVJ7pOkkvxUdz9r9soAAPiknZzyI939Z0n+bOZaAAA4juOGtqp6QXffs6quynRi3Y2XknR3nz97dQAAJDnBPm3dfc/p73ndff6m23kCG6vIPmEHz3sAcHwnPBChqm5UVa/er2IAAHZq3X7onTC0dfe1SV5RVbffp3oAANjGTg5EuFWS11TVS5N8aOPJ7n7QbFUBAHA9OwltPzl7FQAM6fAll+VNj/m6gy4D1sKJjh49O8l3J7lDklcleWJ3X71fhQEAcJ0T7dP25CRHsghs90/y2H2pCDgthy+5bO12zgVYByfaPPq53f15SVJVT0zy0v0pCQCArU7U0/aJjTs2iwIAHKwT9bTdrao+MN2vJOdMj10RAQBgnx03tHX3GftZCAAAx3fCk+sCALAchDYAgAEIbQAAAxDaAAAGILQBAAxAaNslZ5oHAA6C0MZa26sQLswDMDehbQ25NiUAjEdoAwAYgNAGADAAoY2VZRMwAKtEaAMAGIDQBgAwAKFtSa37pr11n3/2lvUJWAVCG9fjyw0AlpPQBgAwAKENAGAAQhsAwACENgCAAQhtM7FDPwCwl4Q2OEVzBfN1C/zrNr/My/rEKhPaAAAGILSxLb9WAWC5CG0AAAMQ2gAABiC0sZZs/gVgNELbaTroL/+Dav+g5xsA1o3QBgAwAKFtn2zXM3X4ksv0WAEAOyK0AfvODxaA3ZsttFXV2VX10qp6RVW9pqp+cq62AABW3ZkzTvtjSe7d3R+sqrOSvKCq/qy7XzxjmwAAK2m20NbdneSD08OzplvP1R4AwCqbdZ+2qjqjql6e5J1JntPdL9lmmIur6mhVHT127Nic5ayEvd4PyH5FcMP/g1X+v1jleYNVN2to6+5ruvuiJLdN8iVVdddthrm0u49095FDhw7NWQ5rwBcSAKtqX44e7e73JXlekvvtR3sAAKtmzqNHD1XVLab75yS5b5K/n6s9WDarflqLE83fXs33Ki8/gN2as6ftVkmeW1WvTPK3WezT9swZ24OTEgIAGNWcR4++MskXzDV9SIQwANaHKyIAAAxAaIMDprdwd5ZpX8Gd1LHbWpdl3oDlI7QBsO+EU9g9oQ0AYABCGzAkPTXAuhHaAAAGILQBAAxAaAMAGIDQto1lOqUAAEAitAEADEFoAwAYwFqGNps+AcbicxvWNLQBAIxGaFsyfk2uJ+87ACcjtMEuCViMYoQj4Ze9vlFZrqtJaAMAGIDQBoPzixpgPQhtAAADENoAloAeU+BkhDZYQiPsQA7A/hLaAAAGILQxLD1R68X7Daw7oQ0AYABC2x7RCwDLZa7/Sf/rwEER2oClIAwBnJjQtgJ82Y3F+7W+vPfA6RDaVogvhPXi/QZYL0IbAMAAhLYVNGcPjJO+7j/Le2fmXk7WfeCgCW2wpgSQ5ec9AjYT2gAABiC0wWnSG8KpWuZ1x+ZgWD5CGwDAAIQ2gNOgNwrYL0LbAHwp7L/9OBJxlaza/LA3rBewt4Q2AIABCG0wED0XAOtLaAMAGMBahzb7Le0Py2G1eX8B9sdahzaAvSC4AvtBaAMAGMDah7Z1/oW8zvN+uk607CxXDoL1Dlbf2oc2AIARCG2wBvTCAIxPaANWlrAKrBKhjVO2n1+Ihy+5bKgv4JFqZT2c6jppXYblIbSxb0YLXuw97//y8F7AeIQ2AIABCG0rbBV/Sc91qo1VXFac2H6859YrYC8JbQAAAxDaAAAGILSxJ+baDLQKm5dWYR4AOHhCG8ASW6ejrtdlPuFUCW0AAxJwYP0IbQAAAxDaWDp6EOZnGQOMR2gDABiA0AasHD2JwCqaLbRV1e2q6rlV9dqqek1VPWKutvaSD3sYl1PPAKvszBmnfXWSR3b3y6rqvCSXV9VzuvuKGdsEAFhJs/W0dfeV3f2y6f5VSV6b5DZztQcAsMr2ZZ+2qjqc5AuSvGSb1y6uqqNVdfTYsWP7Uc4pO9VNJCcbb51Onsl4TmfdtF5z0KyDrJI5N48mSarqZkn+MMkPdPcHtr7e3ZcmuTRJjhw50nPXswx8iAAAuzVrT1tVnZVFYPvt7n7GnG2xPIRSANh7cx49WkmemOS13f24udpZdesQgHay+Ri4If8bsF7m7Gm7R5JvSXLvqnr5dHvAjO3BCa3KF9yqzAcAuzPbPm3d/YIkNdf0YUTrGrgOX3JZ3vSYrzvoMgCG5ooIwJ5a12AKMDeh7TT4clrYyXKwrGD1zX16GJ8jrDuhbY855xojsa4CjENoW3HL+qW8rHWdjlWcJ+bjqGlgt4Q2ZuNLh71mnWIO1itGIbQBAAxAaNvkdH9trdqvtVWbHwAYmdB2AkLLalv193fV5w9g3QhtO+QL8OQso3lZvvtjL5bzyO+VI+BheQltACwNoRGOT2gDYEgCHutGaONAzfGB60Ock1m3dWRZ5ndZ6jhIgianQ2hbQv6hYWf8r8DB8f+3/4Q2AIABCG2wRPxyZb9Z52AcQhvAkhCgtme5wILQxo6t+wfnus8/nA7/P3D6hDYA2CHhk4MktJHEBxHLZ7/XSf8DwLIT2gbkywXYzGcCrAehDWCXVjEkreI8waoR2k5iWT7ITqeOg5iHVVhuwLxG+/883XpHm1+Wj9AGwNoQnBiZ0JYx/4ldv24eoy/TrfWPPj8wl+N9hq7a/8yqzc+6E9qAXfElsHq8pzAGoQ1gj+wk/IwYkEas+SBYTsxNaIOBHdSXhC8ngP0ntO0jX3QAwKkS2oAdWYUfHSMfwDNq3bDX1vl/QWhj5Y38RQ3sP58XLCuhDTgpX2IAB09oA9bCKgTPVZiHZWA5MiqhDQ6QLw8AdkpoAwAYgNAGADAAoQ32gc2g17EsAE6N0AYstVUIeU47s5q8p+w3oY1P8gEEAMtLaAOSCBp3USYAAAjQSURBVO0Ay05oAwAYgNAGANHbzPIT2gAYjoC1ntb9fRfa2JF1/0dh/VjnT52jZTkR68apE9qA4S3Tl8Ay1bIM1m15rNv8sr+ENvbdiB9qI9YMwGoR2hiOAMV+sr6dnGUE+0NoWzEn+vD0wQoA4xLaABiKH6CsK6ENAJaQcMpWQhuskWX7Eli2eoBTZ/ec+Qlta8Y/DrCOfPaxCoQ2OI5l+JBfhhoAWA5CGwD7Zqc/RPxggRsS2gAABiC0AQAMQGgDWBE2Ke6eZcZIhDYAgAEIbQCD0TsE6+nMgy4AlpkvRwCWxWw9bVX1m1X1zqp69VxtAMDc/HhjWcy5efRJSe434/QBANbGbKGtu/8qyXvmmj4AwDo58AMRquriqjpaVUePHTt20OUAa8amr+XlvWGn1mVdOfDQ1t2XdveR7j5y6NChgy4HANildQlNB+3AQxsAnK6DDg0H3T7rQWgDgDUmcI5jzlN+PC3Ji5LcuareWlXfMVdbALBBCGFVzXn06Dd19626+6zuvm13P3GutgBgGQmQ7CWbR0+Rf0QAYD8JbbAm/NBYH97rMSzj+7SMNXEdoQ2AXfHFfp1lWxbHq+fwJZctXa3sntAGALuwKgFoFeZh3QhtnJB/amA3luUzY1nq2LBs9TAmoQ0AlsiqBLxVmY9lIrQBsNKEh1M317LznpwaoQ0AYABCGwAsGT1cbEdoAwAYgNAGAEtucw/ZfvWW6ZVbPkIbAMAAhDaANaMHZXxz9rxZP5aX0AYA2xBeWDZCGwAMYFUun3U8qzxve0VoA4DjcOqNg7PqIfVUCG0AcMCEE3ZCaANYQUIArB6hDQAGt+ohfdXnb6eENgBYU7sNQycbfuN1IWseQhuwLR+6sPxW4f90FeZhvwhtAAADOPOgCwAAxrLT3jG9aHtLTxsAwACENgBYAsvaK+Ukt8tDaAMATkpwO3hCGwDAAIQ2AGDf6bnbPaENADglgtf+EtoAYIWNdnqOZaljGQltADAD4YO9JrQBwB5b5sC2jLUtY03LSGgDABiA0AbA0PTSsGHV1wWhDQAO0KoHDfaO0AYAK0QIXF1CGwDAAIQ2AIABCG0AsMTWfXPnus//ZkIbADA74ev0CW0AAAMQ2gCAYa1TD57QBgCsjFUOcUIbAMAAhDYAgAEIbQDAUlnlTZynQ2gDAIayrqFOaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAQhtAAADENoAAAYgtAEADEBoAwAYgNAGADAAoQ0AYACzhraqul9Vva6qXl9Vl8zZFgDAKpsttFXVGUmekOT+ST43yTdV1efO1R4AwCqbs6ftS5K8vrvf0N0fT/K7Sf7NjO0BAKys6u55Jlz14CT36+7vnB5/S5Iv7e7v3TLcxUkunh7eOcnrZinoOhckedf0N1vu7/bxXMMa17jLNu4INRrXuAfdjnGXa9x3ZX4XdvehfWgnSXLmjNOubZ67QULs7kuTXDpjHddTVUe7+0hVHZ3a/+T93T6ea1jjGnfZxh2hRuMa96DbMe5yjdvdR7Ji5tw8+tYkt9v0+LZJ/mXG9gAAVtacoe1vk9yxqj6jqm6c5KFJ/nTG9gAAVtZsm0e7++qq+t4kz0pyRpLf7O7XzNXeLly65e/W+7t9PNewxjXuso07Qo3GNe5Bt2Pc5Rx3Jcx2IAIAAHvHFREAAAYgtAEADOCU92mrqtsl+b0kFyU5O8k1Sa7N4lQfZ+1JdQAAq+OaJB9OctPp8QeTfDTJVUke3d1PPtHIp7xPW1XdKsnnTQ8/nOR/Jzl3ur05yeFcF+A+kkWw6yRXJzkni4C3MQNnTa9tPrfbRgDc/NzVmffccgAAp2Mjz2zkmI3nPpbkJtNzG6dA+/Tp/lck+cskX9Td7z3ehE9582h3X9ndz55uL0jyqiT/lMWRojefin3d1MbZ0/NXTAVvnrEzpvvX5vquyg1P0CuwAQDL6hNZZJfOIv9sZJlrs8gw75uG+/vp9vYk/5Dky5I8J8n9TjTxPQlBVXU4yZGpsJskOS+Lrr9bTs+dMf391FwXFLcGxq0B7eZ7URsAwEy220q42TXT36unYTduG899ePp7mywuSnCbEzV22gciVNXNkvxRFt1+H5luN52K+kiuP0P/ecvoV59g0lu3225dEAAAo9sc5E64z9pphbaqOivJM7LYR+3jSf7n9NK1WaTLP9lUxDVJvm/T6J/YOrmTNOdIVwBgmWzNLluzysYuYGdOt8376p+ZRSfXWVns13bSy32ezoEIleTJWWwWTZJnJ/lXSR6QRYh771TYLbMIcRtdg2dPz189zdwZm16/8aaZuTrXbVbdsLUb8lTt1XQAADbbyYEIV07Pf9p0f/OBCO853oRPJ7TdM8lfb1MkAAA3tPWUHx/Kdaf8+Onu/q0TjewyVgAAA7CfGADAAIQ2AIABCG0AAAMQ2gAABiC0AQAMQGgDhlRV11TVy6vqNVX1iqr6oao64WdaVR2uqn+3XzUC7CWhDRjVR7r7ou6+S5KvzuLE3j9+knEOJxHagCE5TxswpKr6YHffbNPjz0zyt0kuSHJhkqckOXd6+Xu7+4VV9eIkn5PkjVlc0eWXkzwmyb2yOFP5E7r71/dtJgB2QWgDhrQ1tE3PvTfJZ2dxdvFru/ujVXXHJE/r7iNVda8kP9zdXz8Nf3GSW3b3o6vqJkn+JslDuvuN+zozADtw5kEXALCHNi6ld1aSx1fVRVlcNuZOxxn+a5J8flU9eHp88yR3zKInDmCpCG3ASpg2j16T5J1Z7Nv2jiR3y2Lf3Y8eb7Qk39fdz9qXIgFOgwMRgOFV1aEkv5bk8b3Y5+PmSa7s7muTfEuSM6ZBr0py3qZRn5XkP1bVWdN07lRV5wZgCelpA0Z1TlW9PItNoVdnceDB46bXfjXJH1bVQ5I8N8mHpudfmeTqqnpFkicl+aUsjih9WVVVkmNJvmG/ZgBgNxyIAAAwAJtHAQAGILQBAAxAaAMAGIDQBgAwAKENAGAAQhsAwACENgCAAfz/bahZ0HjPBuQAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAJcCAYAAAAsHHqwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZxlZ1kv+t9DOpCQBIOk5TKFZlbgMNmiAgoSZAbxHFA4gkwaOQcFFNHg0WtQOeSq6HFAOcFAGBQFBOXCReAgISBjJyQQCJMhEEJImjlhJjz3j7VKKpWq6t1J3q7q6u/389mf2muvtdf77Hev6vr1u6bq7gAAMM7VNroAAICtTuACABhM4AIAGEzgAgAYTOACABhM4AIAGEzggiugqi6pqptudB2Lqqrjq+olV3Idz62q37mqalqx7qPnPj1onWW6qm4+on3WV1U75v7fttG1wP5K4IIkVXVuVX1t/qN/YVW9oKoOX2v57j68u88ZVMspVfWFqrrGiPVfUd39hO7+/UHr/uTcp5cm/9EHvzCirc1gkQA8b5P3uhJtdFV9Zd6mP1tVL62qI6/o+oArR+CC73pQdx+e5E5JfijJb69cYPT/8KtqR5IfS9JJHjyyrQPJATwyc/t5m75pkmsnOf6qbqAm/pbAHvglgRW6+/wkr0ty2+Q/RgqeWFUfTfLRZa/dfH5+aFU9u6o+UVVfqqq3VdWh87wfqaq3V9UXq+rMqrrHHpr/+STvTHJykkcvn1FVJ1fVc6rqtVV1cVW9q6putmz+n1XVeVX15ao6rap+bLUG5vf/yorX3ldVD5n/eP5pVV00f5b3VdVSP5xcVX8wPz+qql4zf67PV9VbV/ujW1XPqKq/mJ8fPI+4/OGyfvt6VV17+S6rqnpmptD5l/PozF8uW+W9quqj8wjgc6qq1viMx1fVK6rqJVX15SSPqarvqaqTquqCqjq/qv5gaRdmVd28qt4yf+bPVtU/LFtXV9WTquqced4fLf+sVfW4qjp7run1VXXjZfNuU1VvnPvowqr6raq6b5LfSvKz8+c7c5X6X5zk6CT/77zMb8yvP7iqPjD3+ylV9QOrff6VuvvLSV6d5NbL2livPw6qqj+eP+85SR6wor5TquqZVfVvSb6a5KZVdZeqes/ch++pqrssW/76VfXquR8+VlW/uOK7evn8XV1cVe+vqltW1dPn7fC8qrr3suUfM38XF1fVx6vq5xbpA9hw3e3hccA/kpyb5F7z8xsl+UCS35+nO8kbk3xvkkOXvXbz+flzkpyS5AZJDkpylyTXmKc/l+T+mf5z85Pz9PZ16vhYkv+e5AeTfCvJdZfNOznJ55PcOcm2JH+b5O+XzX9kkuvM856a5DNJDpnnHZ/kJfPzn0nyrmXvu/1c19WT3CfJaUmOTFJJfiDJ9Za1/wfz82cleW6Sg+fHjyWpVT7PPZO8f35+lyT/vtT2PO/M+fmOuU+3zdOnJPmFFevqJK+Zazs6ye4k912jH4+f++8hc98fmuSfkvzvJIcl+b4k707yS/PyL03yP+ZlD0lytxXtvnn+/o9O8pGl2ub1f2zup22ZRkXfPs87IskF83dxyDz9wyu/j0W2yXn6lkm+kmk7OjjJb8xtX32N9y/fRq+d5A1Jfm/Z/PX64wlJPpTpd+F758+/8vv5ZJLbzJ/7ukm+kORR8/Qj5unrzMu/Jclfzf1wh/m7O2ZZX3w907a3LcmLknx8/j4OTvKLST4+L3tYki8nudU8fb0kt9nofz88PBZ5bHgBlysoeX6Si5KcteDyP5Pkg5n+QP7dRtfvsX8+5j9ulyT5YpJPzH8cloere65YvpPcfP4D/bVMu25WrvM3k7x4xWuvT/LoNWq4W6aQcNQ8/aEkv7ps/slJ/mbZ9P2TfGidz/SFpbpy2cB1jUzB7Rbz9B8n+av5+T0zBYofSXK1Fes7Od8NXL+X5J8z/0Ffp4ZD5z+m10lyXKaRnU8lOTzJM5L8+bzcjlX+oK8WuJYHoZclOW6Ndo9Pcuqy6esm+cbSdzq/9ogkb56fvyjJiUluuMq6OsuCXaZA/Kb5+euSPH7ZvKtlGvG58bz+965T394Grt9J8rIVbZ2f5B5rvL8zhZMvJrl03p5usGB//GuSJyybd+9Vvp/l4e1RSd69ov13JHlMptB2aZIjls17VpKTl/XFG5fNe1Cm38WD5ukj5raPzBS4vpjkvyyv3cNjf3hsxl2KJye57yILVtUtkjw9yV27+zZJnjKwLra+h3T3kd194+7+7939tWXzzlvjPUdl+l/7v68y78ZJHjbv/vliVX0xU6i63hrrenSSN3T3Z+fpv8uK3YqZRq2WfDVTcEmSVNVT511bX5rb+p65vsvo7m9kCiuPnHeNPSLJi+d5/5rkLzON2l1YVSdW1bVWqfWPMo2uvGHevXPcah9o7sNdSe6e5MczjXS8Pcld59feskZfrGXNz7+K5d/ZjTONllyw7Lv435lGdpJptKiSvHveZfe4ddb1iSTXX7beP1u2zs/P67lBpqCx2nZxRV1/bjtJ0t3fmeu6wTrvuVN3H5lpG/3rJG+tqkOy5/64fi7/mVdaPv/6qyzzibm26yf5fHdfvMq8JRcue/61JJ/t+QSKeTpJDu/uryT52UwjcBfUtHv8+1f/6LC5bLrA1d2nZvpH6z9U1c2q6l9qOi7lrct+wX4xyXO6+wvzey/ax+Vy4Og1Xv9sphGcm60y77xMI1xHLnsc1t0nrFywpmO+fibJ3avqM1X1mSS/muT2VXX7PRVX0/Favzmv49rzH9kvZfrjv5oXJvm5JMck+Wp3v+M/Pmj3n3f3D2baXXTLJE9b+ebuvri7n9rdN800IvFrVXXMGm29JdPI2R2TvGeevk+mXaOnrvGetfp7byxfx3mZRnSOWvZdXGv+j1q6+zPd/Yvdff0kv5Tkr+qyl6C40bLnRyf59LL1/tKK7/jQ7n77PG+17WLRz7dymU9nCkpJpoPV57rO3+OKur+V5G+S3CTTsYnr9kemXaErP/N69V2mtmXvOX+e971VdcQq8/Zad7++u38y039cPpTkeVdkPbCvbbrAtYYTk/zK/Efg1zPt7kmmPwa3rKp/q6p3zgejwj4zjzI8P8mfzAcGH1RVP1rTJR1ekuRBVXWf+fVDquoeVXXDVVb1kEy7XW6d6RiXO2Q6LuitmQ6k35Mjknw707Ex26rq/06y2sjUUt3vSPKdJM/OPLqVJFX1Q1X1w1V1cKbjhb4+13UZVfXA+UDzyrTb6tLVlpu9Zf4MH+zub2beXZjpuJzda7znwkxn1l0luvuCTMcwPbuqrlVVV5v/I3f3+fM8bNn38oVMYWL553laTQf33yjJk5MsHVT/3CRPr6rbzOv5nqp62DzvNUn+r6p6SlVdo6qOqKofXvb5dtT6Z/et7IOXJXlAVR0zfz9PzRSa3r6nzz8fDP/YTKNF5+ypP+a2nlRVN6yqa2faHbye/y/Tv8X/taYTH34207b8mu4+b67xWfPvwO2SPD7TMYh7paquW9OJA4fNn/2SrL3dwaay6QNXTddCukuSl1fVGZmGvZd2yWxLcosk98i0W+RvynVm2Pd+Pcn7M43efD7J/5Pp+KfzkvxUpuOWdmcaVXhaVv+9e3SSF/R0ParPLD0y7d77udrzZQ1en+l4oo9k2l3z9ay9G3TJi5L8p0zBcMm1Mo0YfGFez+cyHeO10i2S/J9Mf/DekekYsFPWaOftmY7lWhrN+uBc31qjW0nyZ0keWtOZf3++h8+xqJ/PdGLABzN9vlfku/+W/FCSd1XVJZnO5ntyd3982Xv/OdPJBGckeW2Sk5Kku1+V6fv++5rOhjwryf3meRdnOsD9QZl2hX40yU/M63v5/PNzVXX6GvU+K8lvz7v8fr27P5zpxIi/yDSy+qBMlzL55jqf+cz5M30h0zb20929tAdhvf54XqZt6swkpyd55TptpLs/l+SBmULg5zLton3gst3jj8h0nN6nk7wqye929xvXW+carja38elMv2t3z3RMHWx61X1VjNxftWq6FtFruvu28/EjH+7uyx33UlXPTfLO7j55nn5TpoNo37MPy4X9UlX9fJJju/tuG13LZlZVnekEg49tdC3A/mvTj3D1dP2Yjy8N09dk6ZiWf8r8P8aqOirTLsYhV/+GraSqrplpZODEja4F4ECw6QJXVb000y6KW1XVp6rq8ZkO7n18TRcI/ECm3TTJNOT9uar6YKbrxDxtHtoG1lBV98m0i/PCTGdCAjDYptylCACwlWy6ES4AgK1mU93Q9aijjuodO3ZsdBkAAHt02mmnfba7ty+y7KYKXDt27MiuXbs2ugwAgD2qqtXuwrAquxQBAAYbGriq6lfn+5KdVVUvne/hBQBwQBkWuKrqBkmelGRnd982yUFJHj6qPQCAzWr0LsVtSQ6db0tyzXz3hq8AAAeMYYGru8/PdA+2T2a68/yXuvsNK5erqmOraldV7dq9e6372AIA7L9G7lK8dqYrwt8kyfWTHFZVj1y5XHef2N07u3vn9u0LnVkJALBfGblL8V5JPt7du7v7W5nuNn+Xge0BAGxKIwPXJ5P8SFVds6oqyTFJzh7YHgDApjTyGK53JXlFktOTvH9u68RR7QEAbFZDrzTf3b+b5HdHtgEAsNm50jwAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYNs2ugC2ph3HvXavlj/3hAcMqgQANp4RLgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMG2bXQBbF47jnvtXi1/7gkPGFQJAOzfho1wVdWtquqMZY8vV9VTRrUHALBZDRvh6u4PJ7lDklTVQUnOT/KqUe0BAGxW++oYrmOS/Ht3f2IftQcAsGnsq8D18CQvXW1GVR1bVbuqatfu3bv3UTkAAPvO8MBVVVdP8uAkL19tfnef2N07u3vn9u3bR5cDALDP7YsRrvslOb27L9wHbQEAbDr7InA9ImvsTgQAOBAMDVxVdc0kP5nklSPbAQDYzIZe+LS7v5rkOiPbAADY7NzaBwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgsKGBq6qOrKpXVNWHqursqvrRke0BAGxG2wav/8+S/Et3P7Sqrp7kmoPbAwDYdIYFrqq6VpIfT/KYJOnubyb55qj2AAA2q5G7FG+aZHeSF1TVe6vqb6rqsJULVdWxVbWrqnbt3r17YDkAABtjZODaluROSf66u++Y5CtJjlu5UHef2N07u3vn9u3bB5YDALAxRgauTyX5VHe/a55+RaYABgBwQBkWuLr7M0nOq6pbzS8dk+SDo9oDANisRp+l+CtJ/nY+Q/GcJI8d3B4AwKYzNHB19xlJdo5sAwBgs3OleQCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBto1ceVWdm+TiJJcm+XZ37xzZHgDAZjQ0cM1+ors/uw/aAQDYlOxSBAAYbHTg6iRvqKrTqurY1RaoqmOraldV7dq9e/fgcgAA9r3Rgeuu3X2nJPdL8sSq+vGVC3T3id29s7t3bt++fXA5AAD73tDA1d2fnn9elORVSe48sj0AgM1oWOCqqsOq6oil50nuneSsUe0BAGxWI89SvG6SV1XVUjt/193/MrA9AIBNaVjg6u5zktx+1PoBAPYXLgsBADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADDYHgNXVd2yqt5UVWfN07erqt8eXxoAwNawyAjX85I8Pcm3kqS735fk4SOLAgDYShYJXNfs7neveO3bI4oBANiKti2wzGer6mZJOkmq6qFJLhhaFVeZHce9dq+WP/eEBwyqBAAOXIsEricmOTHJ91fV+Uk+nuSRQ6sCANhC9hi4uvucJPeqqsOSXK27Lx5fFgDA1rHIWYpPrqprJflqkj+tqtOr6t7jSwMA2BoWOWj+cd395ST3TvJ9SR6b5IShVQEAbCGLBK6af94/yQu6+8xlrwEAsAeLBK7TquoNmQLX66vqiCTfGVsWAMDWschZio9Pcock53T3V6vqOpl2KwIAsIBFAtfd5p+3q7InEQBgby0SuJ627PkhSe6c5LQk9xxSEQDAFrPIdbgetHy6qm6U5A+HVQQAsMUsctD8Sp9KcturuhAAgK1qjyNcVfUXme+jmCmg3SHJmSOLAgDYShY5hmvXsuffTvLS7v63QfUAAGw5ixzD9cKqunqSW84vfXhsSQAAW8siuxTvkeSFSc7NdIX5G1XVo7v71LGlAQBsDYvsUnx2knt394eTpKpumeSlSX5wZGEAAFvFImcpHrwUtpKkuz+S5OBxJQEAbC0LHTRfVSclefE8/XOZLnwKAMACFglc/y3JE5M8KdMxXKcm+auRRQEAbCWLnKX4jSR/Mj8AANhLi5yleNckxye58fLlu/um48oCANg6FtmleFKSX8103NalY8sBANh6FglcX+ru1w2vBABgi1ozcFXVneanb66qP0ryyiTfWJrf3acPrg0AYEtYb4Tr2Sumdy573knuedWXAwCw9awZuLr7J/ZlIQAAW9UiV5oHAOBKELgAAAZbM3BV1cPmnzfZd+UAAGw9641wPX3++Y9XpoGqOqiq3ltVr7ky6wEA2F+td5bi56rqzUluUlWvXjmzux+8YBtPTnJ2kmtdgfoAAPZ76wWuByS5U5IX5/KXiFhIVd1wXs8zk/zaFVkHAMD+br3LQnwzyTur6i7dvbuqjphe7kv2Yv3/K8lvJDlirQWq6tgkxybJ0UcfvRerBgDYPyxyluJ1q+q9Sc5K8sGqOq2qbrunN1XVA5Nc1N2nrbdcd5/Y3Tu7e+f27dsXqxoAYD+ySOA6McmvdfeNu/voJE+dX9uTuyZ5cFWdm+Tvk9yzql5yhSsFANhPLRK4DuvuNy9NdPcpSQ7b05u6++ndfcPu3pHk4Un+tbsfeUULBQDYX6130PySc6rqdzIdPJ8kj0zy8XElAQBsLYuMcD0uyfYkr5wfRyV57N400t2ndPcD9748AID93x5HuLr7C0metA9qAQDYktxLEQBgMIELAGAwgQsAYLA9Bq6qumVVvamqzpqnb1dVvz2+NACArWGREa7nJXl6km8lSXe/L9N1tQAAWMAigeua3f3uFa99e0QxAABb0SIXPv1sVd0sSSdJVT00yQVDq+Iydhz32r1a/twTHjCoEgDgilgkcD0x070Tv7+qzs90lXm36AEAWNAiFz49J8m9quqwJFfr7ovHlwUAsHUscpbi/6yqI7v7K919cVVdu6r+YF8UBwCwFSxy0Pz9uvuLSxPzrX7uP64kAICtZZHAdVBVXWNpoqoOTXKNdZYHAGCZRQ6af0mSN1XVCzKdqfi4JC8cWhUAwBayyEHzf1hV709yTJJK8vvd/frhlQEAbBGLjHClu1+X5HWDawEA2JLWDFxV9bbuvltVXZz5oqdLs5J0d19reHUAAFvAmoGru+82/zxi35UDALD1rHuWYlVdrarO2lfFAABsResGru7+TpIzq+rofVQPAMCWs8hB89dL8oGqeneSryy92N0PHlYVAMAWskjgesbwKgAAtrD1zlI8JMkTktw8yfuTnNTd395XhQEAbBXrHcP1wiQ7M4Wt+yV59j6pCABgi1lvl+Ktu/s/JUlVnZTk3fumJACArWW9Ea5vLT2xKxEA4Ipbb4Tr9lX15fl5JTl0nnaleQCAvbDeleYP2peFAABsVete+BQAgCtP4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhs20YXAFelHce9dq+WP/eEBwyqBAC+S+DaRwQBADhw2aUIADCYwAUAMJjABQAwmMAFADCYwAUAMJizFNl0nNEJwFZjhAsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGCwYYGrqg6pqndX1ZlV9YGqesaotgAANrORt/b5RpJ7dvclVXVwkrdV1eu6+50D2wQA2HSGBa7u7iSXzJMHz48e1R4AwGY19Biuqjqoqs5IclGSN3b3u1ZZ5tiq2lVVu3bv3j2yHACADTE0cHX3pd19hyQ3THLnqrrtKsuc2N07u3vn9u3bR5YDALAh9slZit39xSSnJLnvvmgPAGAzGXmW4vaqOnJ+fmiSeyX50Kj2AAA2q5FnKV4vyQur6qBMwe5l3f2age0BAGxKI89SfF+SO45aPwDA/sKV5gEABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhsWuKrqRlX15qo6u6o+UFVPHtUWAMBmtm3gur+d5KndfXpVHZHktKp6Y3d/cGCbAACbzrARru6+oLtPn59fnOTsJDcY1R4AwGa1T47hqqodSe6Y5F2rzDu2qnZV1a7du3fvi3IAAPap4YGrqg5P8o9JntLdX145v7tP7O6d3b1z+/bto8sBANjnhgauqjo4U9j62+5+5ci2AAA2q5FnKVaSk5Kc3d1/MqodAIDNbuQI112TPCrJPavqjPlx/4HtAQBsSsMuC9Hdb0tSo9YPALC/cKV5AIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMG2bXQBsFnsOO61e7X8uSc8YFAlAGw1RrgAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGO+AuC+HUfwBgXzPCBQAwmMAFADDYAbdL8cqwOxIAuCKMcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAzmshBwFXDJEADWY4QLAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgsGGBq6qeX1UXVdVZo9oAANgfjBzhOjnJfQeuHwBgvzAscHX3qUk+P2r9AAD7iw0/hquqjq2qXVW1a/fu3RtdDgDAVW7DA1d3n9jdO7t75/bt2ze6HACAq9yGBy4AgK1O4AIAGGzkZSFemuQdSW5VVZ+qqsePagsAYDPbNmrF3f2IUesGANif2KUIADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAw2LaNLgAAYD07jnvtXi1/7gkPGFTJFWeECwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMNfhgg22Fa4vA8D6jHABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAw2NHBV1X2r6sNV9bGqOm5kWwAAm9WwwFVVByV5TpL7Jbl1ku6VRjkAAAbxSURBVEdU1a1HtQcAsFmNHOG6c5KPdfc53f3NJH+f5KcGtgcAsClVd49ZcdVDk9y3u39hnn5Ukh/u7l9esdyxSY6dJ2+V5MNDCtqzo5J8doPa3t/oq8Xpq8Xpq8Xpq8Xpq8Xpq8Ut9dWNu3v7Im/YNrCYWuW1y6W77j4xyYkD61hIVe3q7p0bXcf+QF8tTl8tTl8tTl8tTl8tTl8t7or01chdip9KcqNl0zdM8umB7QEAbEojA9d7ktyiqm5SVVdP8vAkrx7YHgDApjRsl2J3f7uqfjnJ65MclOT53f2BUe1dBTZ8t+Z+RF8tTl8tTl8tTl8tTl8tTl8tbq/7athB8wAATFxpHgBgMIELAGCwAz5wuf3Q3qmqc6vq/VV1RlXt2uh6NpOqen5VXVRVZy177Xur6o1V9dH557U3ssbNYo2+Or6qzp+3rTOq6v4bWeNmUFU3qqo3V9XZVfWBqnry/LrtahXr9Jdta4WqOqSq3l1VZ8599Yz5ddvWCuv01V5tVwf0MVzz7Yc+kuQnM13G4j1JHtHdH9zQwjaxqjo3yc7udnG8Farqx5NckuRF3X3b+bU/TPL57j5hDvTX7u7f3Mg6N4M1+ur4JJd09x9vZG2bSVVdL8n1uvv0qjoiyWlJHpLkMbFdXc46/fUzsW1dRlVVksO6+5KqOjjJ25I8Ocl/jm3rMtbpq/tmL7arA32Ey+2HuMp096lJPr/i5Z9K8sL5+Qsz/eN/wFujr1ihuy/o7tPn5xcnOTvJDWK7WtU6/cUKPblknjx4fnRsW5ezTl/tlQM9cN0gyXnLpj8Vv5x70kneUFWnzbdlYn3X7e4LkumPQZLv2+B6Nrtfrqr3zbscD/hdGctV1Y4kd0zyrtiu9mhFfyW2rcupqoOq6owkFyV5Y3fbttawRl8le7FdHeiBa6HbD3EZd+3uOyW5X5InzruG4Krw10luluQOSS5I8uyNLWfzqKrDk/xjkqd095c3up7NbpX+sm2torsv7e47ZLoTzJ2r6rYbXdNmtUZf7dV2daAHLrcf2kvd/en550VJXpVptyxru3A+rmTp+JKLNrieTau7L5z/UftOkufFtpUkmY8Z+cckf9vdr5xftl2tYbX+sm2tr7u/mOSUTMck2bbWsbyv9na7OtADl9sP7YWqOmw+EDVVdViSeyc5a/13HfBeneTR8/NHJ/nnDaxlU1v6R37207FtLR2se1KSs7v7T5bNsl2tYq3+sm1dXlVtr6oj5+eHJrlXkg/FtnU5a/XV3m5XB/RZikkyn8b5v/Ld2w89c4NL2rSq6qaZRrWS6bZQf6e/vquqXprkHkmOSnJhkt9N8k9JXpbk6CSfTPKw7j7gDxZfo6/ukWlovpOcm+SXlo4lOVBV1d2SvDXJ+5N8Z375tzIdl2S7WmGd/npEbFuXUVW3y3RQ/EGZBl9e1t2/V1XXiW3rMtbpqxdnL7arAz5wAQCMdqDvUgQAGE7gAgAYTOACABhM4AIAGEzgAgAYTOACNlxVXVpVZ1TVmVV1elXdZS/ff3xV/fqo+gCurG0bXQBAkq/Nt81IVd0nybOS3P3KrrSqtnX3t6/segCuLCNcwGZzrSRfWJqoqqdV1XvmG8Q+Y9nr/6OqPlxV/yfJrZa9fkpV/c+qekuSJ1fVMVX13qp6/3yD2WvMy631+rnz+99RVbuq6k5V9fqq+veqesK8zPWq6tR5VO6sqvqxfdQ3wH7KCBewGRxaVWckOSTJ9ZLcM0mq6t5JbpHpHmWV5NXzDdO/kulWXHfM9O/Y6UlOW7a+I7v77lV1SJKPJjmmuz9SVS9K8t+q6rlJTl75eqa7TiTJed39o1X1p/Nyd51r+0CS5yb5r0le393PrKqDklxzRKcAW4fABWwGy3cp/miSF1XVbTPdr/PeSd47L3d4pgB2RJJXdfdX5/esvAfqP8w/b5Xk4939kXn6hUmemOTNa7y+FLiW1vf+JId398VJLq6qr8/3VHtPkufPN0r+p+4+40r3ALCl2aUIbCrd/Y5M91jcnmlU61ndfYf5cfPuPmlp0XVW85X5Z60xf63Xl3xj/vmdZc+Xprd196lJfjzJ+UleXFU/v4f1AQc4gQvYVKrq+zPdJPZzSV6f5HFVdfg87wZV9X1JTk3y01V1aFUdkeRBa6zuQ0l2VNXN5+lHJXnLOq8vWuONk1zU3c9LclKSO+3NZwQOPHYpApvB0jFcyTT69OjuvjTJG6rqB5K8o6qS5JIkj+zu06vqH5KckeQTSd662kq7++tV9dgkL6+qbZl2BT63u7+x2ut7Ue89kjytqr4112SEC1hXda83Kg8AwJVllyIAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGD/P0L3sluiolXRAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png":...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions ยป

Submit New Assignment

Copy and Paste Your Assignment Here