Fibonacci numbers F1, F2, F3, . . . are defined by the rule: F1 = F2 = 1 and Fk = Fk−2 + Fk−1 for k > 2. Lucas numbers L1, L2, L3, . . . are defined in a similar way by the rule: L1 = 1, L2 = 3 and Lk...


Fibonacci numbers F1, F2, F3, . . . are defined by the rule: F1 = F2 = 1 and Fk = Fk−2 + Fk−1 for k > 2. Lucas numbers L1, L2, L3, . . . are defined in a similar way by the rule: L1 = 1, L2 = 3 and Lk = Lk−2 + Lk−1 for k > 2. Show that Fibonacci and Lucas numbers satisfy the following equality for all n ≥ 2 Ln = Fn−1 + Fn+1.



Jun 11, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here