C1P2 CSIS 405 Chapter 6: Time-Series Decomposition 1. Homework: Exercises 8, 9,10, 12, and 13 For this homework, choose "Decomposition" as Forecast Method Exercise 8: a. The forecast =...

1 answer below »
Exercise questions 8,9,10,12, and 13 using the EXCEL spreadsheet attached Questions are attachment in chapter 6 from pages 29-34


C1P2 CSIS 405 Chapter 6: Time-Series Decomposition 1. Homework: Exercises 8, 9,10, 12, and 13 For this homework, choose "Decomposition" as Forecast Method Exercise 8: a. The forecast = (CMAT)(SI)(CF)(I) For example, the forecast for the 1st quarter equals (12.315+0.37 * (21))*1.24*1.01*1=25.155 Exeercise 9: Open Forecast X, choose "Decomposition" as forecast . For "Type", choose "Multiplicative" > Reports > Audit > Finish You will have data for answering a., b., and c.
Answered 1 days AfterAug 10, 2021

Answer To: C1P2 CSIS 405 Chapter 6: Time-Series Decomposition 1. Homework: Exercises 8, 9,10, 12, and 13 For...

Sanchi answered on Aug 11 2021
155 Votes
C1P2
        CSIS 405
        Chapter 6: Time-Series Decomposition
        1. Homework: Exercises 8, 9,10, 12, and 13
                For this homework, choose "Decomposition" as Forecast Method
            Exercise 8:
                a. The forecast = (CMAT)(SI)(CF)(I)
                For example, the forecast for the 1st quarter equals
                (12.315+0.37 * (21))*1.24*1.01*1=25.155
            Exeercise 9:
            Open Forecast X, choose "Decomposition" as forecast . For "Type", choose "Multiplicative" > Reports > Audit > Finish
            You will have data for answering a., b., and c.
Question8
    CMAT =    12.315+ 0.196(T)
    (a)    Prepare a forecast for each quarter of the coming year
    Quarter    T    CF    SI    CMAT= 12.315 + 0.196 (T)    Forecast = CMAT * SI* CF
    1    21    1.01    1.27    16.431    21.0760437
    2    22    1.04    1.02    16.627    17.6379216
    3    23    1.06    0.73    16.823    13.0176374
    4    24    1.04    0.98    17.019    17.3457648
    The forecast for the four quarters are 21.07, 17.63,13.01,17.34 respectively
    (b)
    Formula to be used
    MAPE =            whe
re        actual sales for period i
                        sales forecast
                    n    no. of periods which is 4
    Quarter    T    CF    SI    CMAT= 12.315 + 0.196 (T)    F_i    A_i    (A_i - F_i)    (A_i - F_i)/A_i
    1    21    1.01    1.27    16.43    21.08    17.2    -3.88    0.23
    2    22    1.04    1.02    16.63    17.64    13.2    -4.44    0.34
    3    23    1.06    0.73    16.82    13.02    10.8    -2.22    0.21
    4    24    1.04    0.98    17.02    17.35    14.2    -3.15    0.22
                                MAPE    0.25
    The mean absolute percentage error for the forecast period will be 0.25
√1/N ∑▒〖abs(〖(A_i -F_i)/(A_i ))〗^ 〗
A_i
F_i
Question9
    (a)
    Period    Customer (Y)    Time Index (X)    MA4    CMA    CMAT    SF    CF
    Feb-12    3.5    1
    May-12    2.9    2
    Aug-12    2    3    2.9    3.0    2.902    0.672    1.025
    Nov-12    3.2    4    3.1    3.1    3.098    1.028    1.005
    Feb-13    4.1    5    3.2    3.3    3.293    1.247    0.998
    May-13    3.4    6    3.4    3.5    3.489    0.986    0.989
    Aug-13    2.9    7    3.5    3.6    3.685    0.797    0.987
    Nov-13    3.6    8    3.8    3.9    3.880    0.920    1.008
    Feb-14    5.2    9    4.1    4.1    4.076    1.276    1.000
    May-14    4.5    10    4.1    4.2    4.272    1.068    0.986
    Aug-14    3.1    11    4.3    4.4    4.467    0.699    0.993
    Nov-14    4.5    12    4.6    4.6    4.663    0.976    0.989
    Feb-15    6.1    13    4.7    4.8    4.859    1.261    0.996
    May-15    5    14    5    5.2    5.054    0.964    1.026
    Aug-15    4.4    15    5.4        5.250
    Nov-15    6    16            5.446
    slope    0.1956730769
    intercept    2.3149038462
    Formulaes Used
    MA4    (Y_t-2 + Y_t-1 + Y_t + Y_t+1)/4
    CMA    (MA_t + MA_t+1)/2
    CMAT    intercept + slope *( time_index)
    SF    Y/CMA
    CF    CMA/CMAT
    (b)
    Seasonal Index for each quarter
    SI_Feb    (SF_Feb13 + SF_Feb14 +SF_Feb15)/3
        1.261
    SI_May    (SF_May13 + SF_May14 +SF_May15)/3
        1.006
    SI_Aug    (SF_Aug12 + SF_Aug13 +SF_Aug14)/3
        0.723
    SI_Nov    (SF_Nov12 + SF_Nov13 +SF_Nov14)/3
        0.975
    Therefore, the seasonal indices for Feb, May, Aug, Nove are 1.261,1.006,0.723,0.975 respectively
    ©
    Period    Customer (Y)    Time Index (X)    MA4    CMA    CMAT    SI    CF    1    TSD Forecast = CMAT *SI*CF
    Feb-12    3.5    1                1.261        1
    May-12    2.9    2                1.006        1
    Aug-12    2    3    2.9    3.0    2.902    0.723    1.025    1    2.150925
    Nov-12    3.2    4    3.1    3.1    3.098    0.975    1.005    1    3.0346875
    Feb-13    4.1    5    3.2    3.3    3.293    1.261    0.998    1    4.1455375
    May-13    3.4    6    3.4    3.5    3.489    1.006    0.989    1    3.4707
    Aug-13    2.9    7    3.5    3.6    3.685    0.723    0.987    1    2.6299125
    Nov-13    3.6    8    3.8    3.9    3.880    0.975    1.008    1    3.8146875
    Feb-14    5.2    9    4.1    4.1    4.076    1.261    1.000    1    5.138575
    May-14    4.5    10    4.1    4.2    4.272    1.006    0.986    1    4.237775
    Aug-14    3.1    11    4.3    4.4    4.467    0.723    0.993    1    3.2083125
    Nov-14    4.5    12    4.6    4.6    4.663    0.975    0.989    1    4.4971875
    Feb-15    6.1    13    4.7    4.8    4.859    1.261    0.996    1    6.1000875
    May-15    5    14    5    5.2    5.054    1.006    1.026    1    5.218625
    Aug-15    4.4    15    5.4    5.5    5.250    0.723    1.006    1    3.81744
    Nov-15    6    16    5.6    5.6    5.446    0.975    0.999    1    5.304
    Feb-16        17    5.6    5.6    5.641    1.261    0.990    1    7.042685
    May-16        18    5.7    5.7    5.837    1.006    0.988    1    5.79959
    Aug-16        19    5.8        6.033    0.723    1.007    1    4.392225
    Nov-16        20            6.228    0.975    1.000    1    6.07265625
    (d)
    Quarters    Forcast_value    Observed_value    (O-F)/O
    Feb-16    7.0427    6.8    0.0357
    May-16    5.7996    5.1    0.1372
    Aug-16    4.3922    4.7    0.0655
    Nov-16    6.0727    6.5    0.0657
            MAPE    0.0760
    €'
Question9
    
Customer (Y)
CMA
CMAT
TSD Forecast = CMAT *SI*CF
Time series
Question10
        Quarter    Period (t)    Sales    MA    CMA    Seasonal Factors    SI    CMAT    CF    One    TSD    Error    abs error    abs error %    deseasonlised data    Trend (Y=5.178-0.019T)    Forecast
        Mar-05    1    6.44                1.27            1                    6.44    5.159
        Jun-05    2    4.85                0.85            1                    4.85    5.14
        Sep-05    3    4.67    5.43    5.41    0.86    0.80    5.27    1.03    1    4.323    0.347    0.347    7.44%    3.81    5.121    5.9850148011
        Dec-05    4    5.77    5.38    5.30    1.09    1.09    5.25    1.01    1    5.763    0.007    0.007    0.13%    4.68    5.102    6.1901659595
        Mar-06    5    6.22    5.23    5.16    1.21    1.27    5.23    0.99    1    6.560    -0.340    0.340    5.46%    5.01    5.083    6.2881344151
        Jun-06    6    4.25    5.10    5.04    0.84    0.85    5.21    0.97    1    4.265    -0.015    0.015    0.35%    3.41    5.064    5.9070448797
        Sep-06    7    4.14    4.99    4.97    0.83    0.80    5.20    0.96    1    3.974    0.166    0.166    4.01%    3.31    5.045    5.8782075472
        Dec-06    8    5.34    4.95    4.96    1.08    1.09    5.18    0.96    1    5.395    -0.055    0.055    1.02%    4.26    5.026    6.1017995467
        Mar-07    9    6.07    4.98    4.97    1.22    1.27    5.16    0.96    1    6.315    -0.245    0.245    4.04%    4.85    5.007    6.2286352201
        Jun-07    10    4.36    4.96    5.02    0.87    0.85    5.15    0.98    1    4.249    0.111    0.111    2.55%    3.49    4.988    5.8560935789
        Sep-07    11    4.07    5.09    5.08    0.80    0.80    5.13    0.99    1    4.066    0.004    0.004    0.10%    3.27    4.969    5.7695901156
        Dec-07    12    5.84    5.08    5.07    1.15    1.09    5.11    0.99    1    5.507    0.333    0.333    5.70%    4.69    4.95    6.1024420326
        Mar-08    13    6.06    5.05    5.07    1.20    1.27    5.10    0.99    1    6.442    -0.382    0.382    6.31%    4.86    4.931    6.1265610358
        Jun-08    14    4.24    5.09    5.03    0.84    0.85    5.08    0.99    1    4.258    -0.018    0.018    0.43%    3.40    4.912    5.7543143779
        Sep-08    15    4.2    4.98    5.05    0.83    0.80    5.06    1.00    1    4.035    0.165    0.165    3.93%    3.37    4.893    5.7255074331
        Dec-08    16    5.43    5.11    5.11    1.06    1.09    5.05    1.01    1    5.552    -0.122    0.122    2.25%    4.37    4.874    5.9368823098
        Mar-09    17    6.56    5.11    5.08    1.29    1.27    5.03    1.01    1    6.450    0.110    0.110    1.68%    5.27    4.855    6.1476108374
        Jun-09    18    4.25    5.04    5.02    0.85    0.85    5.01    1.00    1    4.246    0.004    0.004    0.10%    3.40    4.836    5.6828244085
        Sep-09    19    3.92    5.00    5.01    0.78    0.80    5.00    1.00    1    4.006    -0.086    0.086    2.19%    3.14    4.817    5.5996303968
        Dec-09    20    5.26    5.02    5.04    1.04    1.09    4.98    1.01    1    5.479    -0.219    0.219    4.16%    4.22    4.798    5.8413920159
        Mar-10    21    6.65    5.06    5.08    1.31    1.27    4.96    1.02    1    6.461    0.189    0.189    2.84%    5.34    4.779    6.0870895009
        Jun-10    22    4.42    5.11    5.14    0.86    0.85    4.95    1.04    1    4.345    0.075    0.075    1.69%    3.56    4.76    5.6205500122
        Sep-10    23    4.09    5.17    5.16    0.79    0.80    4.93    1.05    1    4.129    -0.039    0.039    0.95%    3.30    4.741    5.533251816
        Dec-10    24    5.51    5.16    5.14    1.07    1.09    4.91    1.05    1    5.582    -0.072    0.072    1.31%    4.44    4.722    5.7947670966
        Mar-11    25    6.61    5.12    5.10    1.30    1.27    4.90    1.04    1    6.483    0.127    0.127    1.91%    5.31    4.703    5.9987608429
        Jun-11    26    4.25    5.09    5.09    0.83    0.85    4.88    1.04    1    4.308    -0.058    0.058    1.37%    3.42    4.684    5.5185606284
        Sep-11    27    3.98    5.10    5.05    0.79    0.80    4.86    1.04    1    4.040    -0.060    0.060    1.50%    3.19    4.665    5.4529237812
        Dec-11    28    5.55    5.01    5.02    1.11    1.09    4.84    1.04    1    5.452    0.098    0.098    1.77%    4.44    4.646    5.7524041864
        Mar-12    29    6.24    5.03    5.03    1.24    1.27    4.83    1.04    1    6.393    -0.153    0.153    2.45%    5.00    4.627    5.86755666
        Jun-12    30    4.34    5.03    5.01    0.87    0.85    4.81    1.04    1    4.237    0.103    0.103    2.37%    3.47    4.608    5.4744836536
        Sep-12    31    4    4.99    5.01    0.80    0.80    4.79    1.04    1    4.003    -0.003    0.003    0.07%    3.20    4.589    5.3882007992
        Dec-12    32    5.36    5.03    4.96    1.08    1.09    4.78    1.04    1    5.393    -0.033    0.033    0.62%    4.28    4.57    5.6501007557
        Mar-13    33    6.4    4.90    4.84    1.32    1.27    4.76    1.02    1    6.153    0.247    0.247    3.86%    5.08    4.551    5.872972631
        Jun-13    34    3.84    4.78    4.71    0.82    0.85    4.74    0.99    1    3.980    -0.140    0.140    3.65%    3.02    4.532    5.3481530287
        Sep-13    35    3.53    4.63    4.50    0.78    0.80    4.73    0.95    1    3.598    -0.068    0.068    1.92%    2.75    4.513    5.2976624062
        Dec-13    36    4.74    4.37    4.34    1.09    1.09    4.71    0.92    1    4.713    0.027    0.027    0.58%    3.65    4.494    5.5871104065
        Mar-14    37    5.37    4.30    4.28    1.26    1.27    4.69    0.91    1    5.435    -0.065    0.065    1.21%    4.11    4.475    5.7307731657
        Jun-14    38    3.57    4.25    4.29    0.83    0.85    4.68    0.92    1    3.632    -0.062    0.062    1.75%    2.74    4.456    5.287441048
        Sep-14    39    3.32    4.34    4.42    0.75    0.80    4.66    0.95    1    3.535    -0.215    0.215    6.47%    2.57    4.437    5.1881312217
        Dec-14    40    5.09    4.50    4.55    1.12    1.09    4.64    0.98    1    4.949    0.141    0.141    2.77%    3.97    4.418    5.5357600878
        Mar-15    41    6.03    4.61    4.64    1.30    1.27    4.63    1.00    1    5.892    0.138    0.138    2.28%    4.73    4.399    5.6996201132
        Jun-15    42    3.98    4.67    4.65    0.86    0.85    4.61    1.01    1    3.931    0.049    0.049    1.24%    3.12    4.38    5.2366047888
        Sep-15    43    3.57    4.63    4.64    0.77    0.80    4.59    1.01    1    3.712    -0.142    0.142    3.97%    2.80    4.361    5.1301893348
        Dec-15    44    4.92    4.66    4.63    1.06    1.09    4.58    1.01    1    5.036    -0.116    0.116    2.36%    3.86    4.342    5.4037750202
        Mar-16    45    6.16    4.61    4.59    1.34    1.27    4.56    1.01    1    5.831    0.329    0.329    5.35%    4.82    4.323    5.6657792916
        Jun-16    46    3.79    4.57    4.51    0.84    0.85    4.54    0.99    1    3.819    -0.029    0.029    0.75%    2.95    4.304    5.1436566048
        Sep-16    47    3.39    4.46    4.37    0.78    0.80    4.52    1.00    1    3.619    -0.229    0.229    6.75%    2.61    4.285    5.0614099628
        Dec-16    48    4.51    4.27    4.24    1.06    1.09    4.51    1.00    1    4.899    -0.389    0.389    8.63%    3.45    4.266    5.329365753
        Mar-17    49    5.39    4.21    4.17    1.29    1.27    4.49    1.00    1    5.708    -0.318    0.318    5.90%    4.10    4.247    5.5403413317
        Jun-17    50    3.56    4.12    4.06    0.88    0.85    4.47    1.00    1    3.785    -0.225    0.225    6.33%    2.68    4.228    5.1043076923
        Sep-17    51    3.03    4.00    3.77    0.80    0.80    4.46    1.00    1    3.565    -0.535    0.535    17.66%    2.23    4.209    5.0124471329
        Dec-17    52    4.03    3.54    3.54    1.14    1.09    4.44    1.00    1    4.826    -0.796    0.796    19.76%    2.89    4.19    5.3284180791
                                                        MAPE    3.48%
    SLOPE    -0.0168256        INTERCEPT    5.178
    INTERCEPT    5.3157494715        X VAR COEFFICIENT    -0.019
    (a)
    (b)
    Refer the table above
    Seasonal Factor is calculated
    using Formula
    SF = sales/ CMA
    ©
    (d)
    MAPE has been calucluated in the table abve
Question10
    
Sales
deseasonlised data
Question12
    
Sales
deseasonlised data
Trend ...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here