ehicles arrive at a single toll booth beginning at 8:00 A.M. They arrive and depart according to a uniform deterministic distribution. However, the toll booth does not open until 8:10 A.M. The average arrival rate is 8 veh/min and the average departure rate is 10 veh/min. Assuming D/D/1 queuing, when does the initial queue clear and what are the total delay, the average delay per vehicle, longest queue length (in vehicles), and the wait time of the 100th vehicle to arrive (assuming first-in-first- out)?