(e) For 0


(e) For 0 < x < 1 marginal probability distribution of X is<br>Ох-1<br>16,<br>-for 0 < x < 1;for 1 < x < 4; 0elsewhere<br>45<br>7.5<br>O 2<br>for 0 < x < 1;-for 1 < x < 4; 0elsewhere<br>15<br>13<br>45<br>O x+1<br>-for 0 < x < 1;¬nfor 1 < x < 4;Oelsewhere<br>12<br>O x+1<br>for 0 < x < 1;-<br>7.5<br>4<br>-for 1 < x < 4;0 elsewhere<br>15<br>11<br>4<br>-for 0 < x < 1;for 1 < x < 4; 0elsewhere<br>15<br>45<br>

Extracted text: (e) For 0 < x="">< 1="" marginal="" probability="" distribution="" of="" x="" is="" ох-1="" 16,="" -for="" 0="">< x="">< 1;for="" 1="">< x="">< 4;="" 0elsewhere="" 45="" 7.5="" o="" 2="" for="" 0="">< x="">< 1;-for="" 1="">< x="">< 4;="" 0elsewhere="" 15="" 13="" 45="" o="" x+1="" -for="" 0="">< x="">< 1;¬nfor="" 1="">< x="">< 4;oelsewhere="" 12="" o="" x+1="" for="" 0="">< x="">< 1;-="" 7.5="" 4="" -for="" 1="">< x="">< 4;0="" elsewhere="" 15="" 11="" 4="" -for="" 0="">< x="">< 1;for="" 1="">< x="">< 4;="" 0elsewhere="" 15="">
Two methods of measuring surface smoothness are used to evaluate a paper product. The measurements are recorded as deviations<br>from the nominal surface smoothness in coded units. The joint probability distribution of the two measurements is a uniform<br>distribution over the region 0 < x < 4,0 < y, and x – 1 < y < x + 1. That is, fry (x, y) = c for x and y in the region. Determine the<br>value for c such thatfy (x, y) is a joint probability density function.<br>Round your answers to three decimal places (e.g. 98.765).<br>Determine the following:<br>C =<br>i<br>0.133<br>(a) P(X < 0.6, Y < 0.7) =<br>i<br>(b) P(X < 0.6) =<br>i<br>(c) E(X) =<br>i<br>(d) E(Y) =<br>i<br>

Extracted text: Two methods of measuring surface smoothness are used to evaluate a paper product. The measurements are recorded as deviations from the nominal surface smoothness in coded units. The joint probability distribution of the two measurements is a uniform distribution over the region 0 < x="">< 4,0="">< y,="" and="" x="" –="" 1="">< y="">< x="" +="" 1.="" that="" is,="" fry="" (x,="" y)="c" for="" x="" and="" y="" in="" the="" region.="" determine="" the="" value="" for="" c="" such="" thatfy="" (x,="" y)="" is="" a="" joint="" probability="" density="" function.="" round="" your="" answers="" to="" three="" decimal="" places="" (e.g.="" 98.765).="" determine="" the="" following:="" c="i" 0.133="" (a)="" p(x="">< 0.6,="" y="">< 0.7)="i" (b)="" p(x="">< 0.6)="i" (c)="" e(x)="i" (d)="" e(y)="">

Jun 09, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here