dz 19.9. Use Equations (19.5) and (19.6), to establish the following identities: Im(sin z) (a) Re(sin z) = sin x cosh y, (b) Re(cos z) : = COs x sinh y. COS Z = COS x Cosh y, Im(cos z) - sin x sinh Y....


hi


My question is about Complex Derivative and Integral. I showed the picture in the upload photos.The first photo is the guide and the second is the question itself


Thank you very much.


dz<br>19.9. Use Equations (19.5) and (19.6), to establish the following identities:<br>Im(sin z)<br>(a) Re(sin z) = sin x cosh y,<br>(b) Re(cos z) :<br>= COs x sinh y.<br>COS Z<br>= COS x Cosh y,<br>Im(cos z)<br>- sin x sinh<br>Y.<br>(c) Re(sinh z) = sinh x cos y,<br>Im(sinh z) = cosh x sin y.<br>(d) Re(cosh z) = cosh x cos y,<br>Im(cosh z) = sinh x sin y.<br>(e) | sin z|2 = sin? x + sinh? y,<br>(f) | sinh z|² = sinh x + sin? y,<br>| cos z|2<br>= cos“ x + sinh² y.<br>cos?<br>| cosh z|2 = sinh² x + cos² y.<br>

Extracted text: dz 19.9. Use Equations (19.5) and (19.6), to establish the following identities: Im(sin z) (a) Re(sin z) = sin x cosh y, (b) Re(cos z) : = COs x sinh y. COS Z = COS x Cosh y, Im(cos z) - sin x sinh Y. (c) Re(sinh z) = sinh x cos y, Im(sinh z) = cosh x sin y. (d) Re(cosh z) = cosh x cos y, Im(cosh z) = sinh x sin y. (e) | sin z|2 = sin? x + sinh? y, (f) | sinh z|² = sinh x + sin? y, | cos z|2 = cos“ x + sinh² y. cos? | cosh z|2 = sinh² x + cos² y.
eiz – e-i:<br>eiz +e-iz<br>sin z<br>and<br>COS Z<br>(19.5)<br>2i<br>2<br>e - e<br>e? +e-2<br>sinh z<br>and<br>cosh z =<br>(19.6)<br>2<br>2<br>

Extracted text: eiz – e-i: eiz +e-iz sin z and COS Z (19.5) 2i 2 e - e e? +e-2 sinh z and cosh z = (19.6) 2 2

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here