dy Consider the differential equation 2y(y – 6) (y – 8). - dt Use a phase-line analysis to determine whether each of the following equilibrium solutions are stable or unstable. The equilibrium...


Consider the differential equation dydt=−2y(y−6)(y−8).dydt=-2y(y-6)(y-8).


Use a phase-line analysis to determine whether each of the following equilibrium solutions are stable or unstable.




The equilibrium solution y=0y=0 is:




  • Unstable

  • Stable

  • Half-stable







The equilibrium solution y=6y=6 is:




  • Stable

  • Unstable

  • Half-stable







The equilibrium solution y=8y=8 is:




  • Stable

  • Half-stable

  • Unstable



dy<br>Consider the differential equation<br>2y(y – 6) (y – 8).<br>-<br>dt<br>Use a phase-line analysis to determine whether each of the following equilibrium solutions are stable or<br>unstable.<br>The equilibrium solution y = 0 is:<br>Unstable<br>Stable<br>O Half-stable<br>The equilibrium solution y = 6 is:<br>Stable<br>O Unstable<br>Half-stable<br>The equilibrium solution y = 8 is:<br>Stable<br>O Half-stable<br>Unstable<br>

Extracted text: dy Consider the differential equation 2y(y – 6) (y – 8). - dt Use a phase-line analysis to determine whether each of the following equilibrium solutions are stable or unstable. The equilibrium solution y = 0 is: Unstable Stable O Half-stable The equilibrium solution y = 6 is: Stable O Unstable Half-stable The equilibrium solution y = 8 is: Stable O Half-stable Unstable

Jun 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here