Document1 - Microsoft Word (Product Activation Failed) File Home Insert Page Layout References Mailings Review View a ? W Signature Line - T. πΩ A 5. Date & Time Quick WordArt Drop Cover Blank Page...


Calculus in higher dimensions


Document1 - Microsoft Word (Product Activation Failed)<br>File<br>Home<br>Insert<br>Page Layout<br>References<br>Mailings<br>Review<br>View<br>a ?<br>W<br>Signature Line - T.<br>πΩ<br>A<br>5. Date & Time<br>Quick WordArt Drop<br>Cover Blank Page<br>Page Page<br>Pages<br>Table<br>Picture Clip Shapes SmartArt Chart Screenshot Hyperlink Bookmark Cross-reference Header Footer<br>Page<br>Number<br>Text<br>Equation Symbol<br>Box Parts<br>Cap- Object -<br>Break<br>Art<br>Tables<br>Illustrations<br>Links<br>Header & Footer<br>Тext<br>Symbols<br>2:1·1•I 11• 2:1:3:1·4: 15.1 6:1 7:18•1 9.1 10. 11· I·12: 1 •13. 1 14: I 15. 1 : 17: 1 18.<br>17118 'י 15 14 13 י י 12 וי 11 ו 10 :9 8 7 6 ינ<br>L<br>11.<br>Let S be the surface of the solid D that is bounded below by<br>the paraboloid z = r² + y² +1 and bounded above by the plane z = 5. Use Gauss' Theorem<br>to determine the flux integral<br>|En dS,<br>where<br>F (r, y, z) = (rz, 1 – yz, r2).<br>Hints<br>• Sketch the solid D.<br>• Check whether all the conditions for Gauss' Theorem are satisfied before applying it.<br>• When you have applied Gauss' Theorem you have an ordinary triple integral. Use<br>cylindrical coordinates to evaluate this triple integral.<br>all<br>07:03 PM<br>2021-07-29<br>Page: 7 of 8<br>Words: 5<br>M E E E 90%<br>

Extracted text: Document1 - Microsoft Word (Product Activation Failed) File Home Insert Page Layout References Mailings Review View a ? W Signature Line - T. πΩ A 5. Date & Time Quick WordArt Drop Cover Blank Page Page Page Pages Table Picture Clip Shapes SmartArt Chart Screenshot Hyperlink Bookmark Cross-reference Header Footer Page Number Text Equation Symbol Box Parts Cap- Object - Break Art Tables Illustrations Links Header & Footer Тext Symbols 2:1·1•I 11• 2:1:3:1·4: 15.1 6:1 7:18•1 9.1 10. 11· I·12: 1 •13. 1 14: I 15. 1 : 17: 1 18. 17118 'י 15 14 13 י י 12 וי 11 ו 10 :9 8 7 6 ינ L 11. Let S be the surface of the solid D that is bounded below by the paraboloid z = r² + y² +1 and bounded above by the plane z = 5. Use Gauss' Theorem to determine the flux integral |En dS, where F (r, y, z) = (rz, 1 – yz, r2). Hints • Sketch the solid D. • Check whether all the conditions for Gauss' Theorem are satisfied before applying it. • When you have applied Gauss' Theorem you have an ordinary triple integral. Use cylindrical coordinates to evaluate this triple integral. all 07:03 PM 2021-07-29 Page: 7 of 8 Words: 5 M E E E 90%

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here