Define the estimate mn by
m˜ n(·) = arg min f∈Ck(R) 1 n n i=1 |f(Xi) − Yi| 2 I{Xi∈[− log(n),log(n)]} +λn
and
mn(x) = Tlog(n)m˜ n(x) · I{x∈[− log(n),log(n)]}.
Show that mn is strongly universally consistent provided
λn → 0 (n → ∞) and nλn → ∞ (n → ∞).
Hint: Use the error decomposition
|mn(x) − m(x)| 2 µ(dx) =
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here